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OPTIMAL CONTROL FOR A BMAP/SM/1 QUEUE
WITH MAP-INPUT OF DISASTERS AND TWO

OPERATION MODES

Olga V. Semenova
1

Abstract. A single-server queueing system with a batch Markovian
arrival process (BMAP) and MAP-input of disasters causing all cus-
tomers to leave the system instantaneously is considered. The system
has two operation modes, which depend on the current queue length.
The embedded and arbitrary time stationary queue length distribution
has been derived and the optimal control threshold strategy has been
determined.

Keywords. Negative arrivals, BMAP/SM/1 queue, Markovian arrival
process of disasters, operation modes.

1. Introduction

Models of queueing systems describe quite adequately the situations appearing
during queue serving in industry, communications, etc. Although having been
investigated well by now, classical models of queueing systems fail to take into
account the possibilities for time-changing system rates and disaster appearance
considerably limiting their application.

During real queueing system operation the appearance of disasters is possible.
Such queueing systems models describe disasters, which instantaneously destroy
the entire queue including the customer being processed. Such disasters are the
special case of the so called negative arrivals. The theory of negative arrivals has
been originated and developed significantly by Gelenbe et al. [10–22]. The negative

1 Laboratory of Applied Probabilistic Analysis, Faculty of Applied Mathematics and
Computer Sciences, Belarus State University, 4 F. Skorina Ave., 220050 Minsk 50, Belarus;
e-mail: semenovaov@bsu.by

c© EDP Sciences 2004



154 O.V. SEMENOVA

arrival removes one customer [14, 15, 18, 24] or a batch of ones of random size [19]
from the queueing system. The detailed survey of results concerning the queues
and networks with negative customers is given by Artalejo [1].

A disaster as a partial case of a negative arrival removes all the customers from
the system. So, the models with disasters can be considered as the partial case
of models where a random number of customers is deleted by the negative arrival
(see paper [19] by Gelenbe), if we assume that the infinite number of customers
is removed from the system by the negative arrival with probability 1. Queueing
systems with disasters were investigated in [2, 5–7,25].

The appearance of new practical problems in the last decades encouraged in-
vestigation of queueing systems with controlled rates of operation. The queueing
system with controllable service rate belongs to the same class. Such queueing
models have many promising applications for telecommunication systems and dig-
ital networks. It explains the attention that these models receive in literature. See
for example [3,4,29–31]. Since there are many different types of data with different
requirements to quality of service and different economical values, it is necessary to
organize a dynamic schedule of information transmission. Controllable queueing
models provide appropriate tools for optimizing such dynamic schedules. When
the quality of the customers being processed is evaluated by some economic cri-
terion, which includes holding and service costs and one customer loss cost, the
problem of the modes switching in dependence on the current value of the queue
length is very important and interesting.

Considering the batch Markovian arrival process (BMAP) as a customer input
process is explained by its adequate describing of real information flows in modern
communication network.

The rest of the paper is organized as follows. In Section 2, the model is de-
scribed. The stationary queue length distribution at the customer departure epoch
is derived in Section 3. The probability of successful service of a customer and the
average interdeparture time are given in Section 4. In Section 5, the queue length
distribution at an arbitrary time is obtained. The value of the cost criterion is
calculated in Section 6. In Section 7, numerical examples are presented. Section 8
contains concluding remarks.

2. Model

Let us consider a single-server queue with unlimited waiting space having two
possible modes of operation and additional input of disasters.

The rth mode of customer processing is described as follows. The input into the
system is a BMAP (Batch Markovian Arrival Process). This input is controlled
by continuous-time Markov chain νt which is called a directing process of the
BMAP. The state space of νt is {0, 1, ..., W}. The transitions of process νt and
arrivals of customers are performed according to a matrix generating function
D(r)(z) =

∑∞
k=0 D

(r)
k zk, |z| < 1. We suppose that the matrix D(r)(z) satisfies all

assumptions of Lucantoni [26].
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Denote by �ϕ(r) the stationary probability row vector of the Markov chain νt. It
is defined by equations:

�ϕ(r)D(r)(1) = �OW+1, �ϕ(r)1W+1 = 1.

Here �OW+1 is a null vector of size W + 1 and 1W+1 = (1, 1, ..., 1)T .
The intensity λ(r) of BMAP-input (the fundamental rate) is calculated as

λ(r) = �ϕ(r) dD(r)(z)
dz

∣∣∣∣
z=1

1W+1.

We assume that successful service times of customers are the sojourn times of a
semi-Markovian process mt. This process has a state space {1, ..., M} and a semi-
Markovian kernel B(r)(x), where B(r)(x) is a matrix with entries B

(r)
m,m′(x), m, m′ =

1, M . The function B
(r)
m,m′(x) is the conditional distribution function of the so-

journ time of the process mt in a state m under the condition that the next state
is m′. We use the same assumptions about the kernel B(r)(x) as Neuts [28] and
Lucantoni and Neuts [27]. Denote by P (r) = B(r)(∞) the transition matrix of
the embedded Markov chain for the semi-Markovian process mt. It is assumed
that the states of the service directing process mt change according to the ma-
trix P (r) at service completion epochs regardless of whether service is completed
successfully or is canceled by a disaster appearance.

The arrival of disasters to the system is directed by a continues-time Markov
chain ηt with a state space {0, 1, ..., N} and a matrix transition generating function
F (r)(z) = F

(r)
0 + F

(r)
1 z, |z| ≤ 1.

Transitions of the chain ηt without generating of disasters are governed by the
matrix F

(r)
0 . Transitions of the chain ηt, which cause the appearance of disasters,

are governed by the matrix F
(r)
1 , r = 1, 2.

Following Jain and Sigman [25] we suppose that the arrival of disasters immedi-
ately removes all customers from the system. If the system is empty at a disaster
arrival epoch, this disaster is ignored by the system.

The changing of the operation mode is possible at customer departure epoch.
We assume that the quality of the system operation is evaluated by the following

cost criterion:

C = aΛL + c1Φ1 + c2Φ2 + gR, (1)

where L is an average queue length at customer departure epoch; Λ−1 is the
average interdeparture time; Φr is the average fraction of time, when the rth
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mode is used, r = 1, 2; R is the average number of customers lost per time unit;
a, c1, c2 and g are the corresponding cost coefficients. We suppose that a > 0, c1 ≤
c2, g ≥ 0.

For M/G/1 systems without disasters it has been proven (Tijms, [33]) that opti-
mal strategy for the modes control is threshold strategy. Although the optimality
of such strategies in class of all Markovian strategies for the system with disasters
is not proved yet, it seems reasonable to exploit threshold strategy for the control
of operation modes. The strategy is determined as follows. An integer-valued
threshold j is fixed, j ≥ 0. If a queue length is i at a given customer departure
epoch and it does not exceed j, the first mode is selected for the next customer
servicing. Otherwise, the second mode will be used. Also we assume that the first
customer arriving to the system at the beginning of a system busy period is served
always in the first mode.

Our problem is the optimal threshold strategy determining. We use a so-called
direct approach, which is described as follows. Fix the threshold j. Calculate the
stationary state probabilities of the Markov chain describing the system behavior.
Using these probabilities, calculate the value of cost criterion under the fixed value
of threshold and solve the problem of minimizing the cost criterion function of one
integer-valued variable.

3. Stationary queue length distribution

Let the threshold j be fixed, j ≥ 0 and let tn be the nth epoch of customer
departure from the system. Note that it is a service completion epoch or a disaster
arrival epoch at a busy period. Consider the following four-dimensional process:

{in, νn, ηn, mn}, n ≥ 1,

where in is a queue length at the epoch tn + 0, in ≥ 0; νn is the state of
arrival directing process νt at the epoch tn, νn = 0, W ; ηn is the state of
disasters directing process ηt at the epoch tn, ηn = 0, N and mn is the state
of service directing process mt at the epoch tn + 0, mn = 1, M .

The process {in, νn, ηn, mn}, n ≥ 1 is a four-dimensional embedded Markov
chain. Enumerate the states of this chain in lexicographic order and denote by

P{(i, ν, η, m) → (l, ν′, η′, m′)}
= P{in+1 = l, νn+1 = ν′, ηn+1 = η′,

mn+1 = m′|in = i, νn = ν, ηn = η, mn = m},
i, l ≥ 0, ν, ν′ = 0, W, η, η′ = 0, N, m, m′ = 1, M.
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Lemma 1. The transitions probabilities P{(i, ν, η, m) → (l, ν′, η′, m′)} form the
following matrices:

Ω(1)
l−i+1, if 0 < i ≤ j, l ≥ i − 1,

Ω(2)
l−i+1, if i > j, l ≥ i − 1,

S(1), if 1 < i ≤ j, l = 0,
S(2), if i > j, l = 0,

Ω(1)
0 + S(1), if i = 1, l = 0,∑l+1
k=1 ΨkΩ(1)

l−i+1, if i = 0, l > 0,

Ψ1Ω
(1)
0 +

∑∞
k=1 ΨkS(1), if i = 0, l = 0,

O, if l < i − 1, l �= 0.

Here:
• the entries of the matrix Ω(r)

l , l ≥ 0, r = 1, 2 have the following probabilis-
tic sense: l customers arrive but no disaster arrives to the system during
the customer processing, which is performed in the rth mode, and a triple
{νn, ηn, mn} transits from the state {ν, η, m} into the state {ν′, η′, m′}.
These matrices can be determined from the following matrix expansion:

∞∑
l=0

Ω(r)
l zl =

∫ ∞

0

eD(r)(z)t ⊗ eF
(r)
0 t ⊗ dB(r)(t) = β̂r(z), r = 1, 2. (2)

The matrices Ω(r)
l can be calculated in essentially the same way as the

corresponding matrices in Lucantoni [26];
• the entries of the matrix S(r), r = 1, 2 have the following probabilistic

sense: a disaster appears during the current customer processing, which
is performed in the r-th mode, and a triple {νn, ηn, mn} transits from the
state {ν, η, m} into the state {ν′, η′, m′} during this uncompleted service.
This matrix is determined by

S(r) =
∫ ∞

0

eD(r)(1)t⊗
(

eF
(r)
0 tF

(r)
1

)
⊗ (P (r) − B(r)(t))dt; (3)

• the entries of the matrix Ψk, k ≥ 1 have the following probabilistic sense: a
busy period begins by the arrival of customers batch of size k and a triple
{νn, ηn, mn} transits from the state {ν, η, m} into the state {ν′, η′, m′}
during the idle period. These matrices are defined by

Ψk =
∫ ∞

0

(
eD

(1)
0 tD

(1)
k

)
⊗ eF (1)(1)tdt ⊗ IM (4)

= −
[(

D
(1)
0 ⊕ F (1)(1)

)−1 (
D

(1)
k ⊗ IN+1

)]
⊗ IM , k ≥ 1.

Here ⊗ and ⊕ are the symbols of the Kronecker product and the Kronecker sum,
respectively; see for example [23] for definitions and properties. Ii denotes an



158 O.V. SEMENOVA

identity matrix of the size i, I later denotes an identity matrix of the size K,
where K = (W + 1)(N + 1)M . O is the zero matrix.

Introduce into consideration the stationary state probabilities

π(i, ν, η, m) = lim
n→∞P{in = i, νn = ν, ηn = η, mn = m},

i ≥ 0, ν = 0, W , η = 0, N, m = 1, M. (5)

Note that due to the presence of disasters, the limits (5) exist for any finite positive
arrival and service rates.

Denote

�π(i, ν, η) = (π(i, ν, η, 1), ..., π(i, ν, η, M)),

�π(i, ν) = (�π(i, ν, 0), ..., �π(i, ν, N)),

�πi = (�π(i, 0), ..., �π(i, W )).

Introduce also the partial generating functions

�Π1(z) =
j∑

i=0

�πiz
i, �Π2(z) =

∞∑
i=j+1

�πiz
i, |z| < 1.

Theorem 1. The partial generating functions �Π1(z), �Π2(z) satisfy the following
matrix functional equation:

�Π1(z)(zI−β̂1(z))+�Π2(z)(zI−β̂2(z)) = �π0(Ψ(z)−I)β̂1(z)+�π0(Ψ−I)S(1)z+�θz, (6)

where

Ψ(z) =
∞∑

k=1

Ψkzk = −
[
(D(1)

0 ⊕ F (1)(1))−1((D(1)(z) − D
(1)
0 ) ⊗ IN+1)

]
⊗ IM ,

Ψ = Ψ(1), (7)

�θ = �Π1(1)S(1) + �Π2(1)S(2), (8)

and matrices β̂r(z), S(r), r = 1, 2 are determined by (2) and (3), respectively.
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Proof. Using the formula of total probability and Lemma 1, we derive the following
system of equations:

�π0 = �π0

(
Ψ1Ω

(1)
0 + ΨS(1)

)
+ �π1Ω

(1)
0 +

j∑
i=1

�πiS
(1) +

∞∑
i=j+1

�πiS
(2),

�πi = �π0

i+1∑
k=1

ΨkΩ(1)
i−k+1 +

i+1∑
k=1

�πkΩ(1)
i−k+1, i = 1, j − 1, (9)

�πj+l = �π0

j+l+1∑
k=1

ΨkΩ(1)
j+l−k+1 +

j∑
k=1

�πkΩ(1)
j+l−k+1 +

l+1∑
k=1

�πj+kΩ(2)
l−k+1, l ≥ 0.

Multiplying the equations (9) by a corresponding degree of z, summing up and
taking into account notation (8) we derive the equation (6). Formula (7) follows
from (4) and Theorem 1 is proved. �

Corollary 1. The generating function �Π1(z) is determined by the equation:

�Π1(z) = �π0Y (z) + (�π0(Ψ − I)S(1) + �θ)Q(z), (10)

where Y (z) =
∑j

i=0 Yiz
i, Q(z) =

∑j
i=0 Qiz

i, and matrices Yi and Qi, i = 0, j are
calculated from the recurrent formulas:

Y0 = I,

Yi+1 =
(

Yi −
i+1∑
k=1

ΨkΩ(1)
i−k+1 −

i∑
k=1

YkΩ(1)
i−k+1

)
(Ω(1)

0 )−1, i = 0, j − 1, (11)

Q0 = O, Q1 = −(Ω(1)
0 )−1,

Qi+1 =
(

Qi −
i∑

k=1

QkΩ(1)
i−k+1

)
(Ω(1)

0 )−1, i = 1, j − 1.

Proof. Rewrite the relation (6) in the form

�Π1(z) =
[
�π0

(
(Ψ(z) − I)β̂1(z) + (Ψ − I)S(1)z

)
+ �θz

+�Π2(z)(β̂2(z) − zI)
]
(zI − β̂1(z))−1. (12)

From (12) we derive the following equations for the vectors �πi, i = 1, j:

�πi = �π0Yi +
[
�π0(Ψ − I)S(1) + �θ

]
Qi, i = 1, j, (13)
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where

Yi =
1
i!

∂i

∂zi
(Ψ(z) − I)β̂1(z)(zI − β̂1(z))−1

∣∣∣∣∣
z=0

,

Qi =
1
i!

∂i

∂zi
(z(zI − β̂1(z))−1)

∣∣∣∣∣
z=0

, i = 0, j.

Multiplying the equations (13) by a corresponding degree of z and summing up,
we get the formula (10).

By expanding the expressions (Ψ(z)−I)β̂1(z)(zI−β̂1(z))−1 and z(zI−β̂1(z))−1

in series at the point z = 0 it can be shown that matrices Yi and Qi, i = 0, j satisfy
the recursions (11). Corollary 1 is proved. �

So the vector function �Π1(z) is a known function up to the vectors �π0 and �θ.
Further we well get a relation between vectors �π0 and �θ.

By substituting z = 1 into (6) and using the equation (8) we derive

�Π2(1)(I − A2) = �π0(Ψ − I)A1 + �Π1(1)(A1 − I), (14)

where Ar = β̂r(1) + S(r), r = 1, 2. It should be noted that A1 and A2 are the
matrices of transition probabilities of the all directing processes during the service
time. Hence these matrices are stochastic and the matrices I − Ar, r = 1, 2 are
singular. Therefore Ar has a row eigenvector �ρr corresponding to the eigenvalue 1:

�ρrAr = �ρr, �ρr1 = 1, r = 1, 2.

There is a well-known fact from the matrix theory that the matrix I −A2 +1�ρ2 is
not singular. So matrix Z = (I−A2+1�ρ2)−1 exists. Since the vector �Π1(1)+�Π2(1)
is stochastic, adding the expression (�Π1(1) + �Π2(1))1�ρ2 = �ρ2 to the both parts of
equation (14) and multiplying the result by Z from the right side we derive

�Π2(1) = �ρ2 + �π0(Ψ − I)A1Z + �Π1(1)(A1 − I − 1�ρ2)Z. (15)

Substituting (15) and expression for the vector �Π1(1) from (10) in (8) we get the
following result.

Corollary 2. The dependence of �θ on vector �π0 has the form

�θ = �π0T V + �ρ2S
(2)V, (16)

where

T = [Y (1) + (Ψ − I)S(1)Q(1)]A∗ + (Ψ − I)A1ZS(2),

V = (I − Q(1)A∗)−1,

A∗ = S(1) + (A1 − I − 1�ρ2)ZS(2).
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Rewrite (6) in the form

Π2(z)(zI − β̂2(z)) = �π0(Ψ(z) − I)β̂1(z) + �π0(Ψ − I)S(1)z + �θz

+ �Π1(z)(β̂1(z) − zI). (17)

Substituting (10) and (16) in (17), we derive an algorithm for calculating the
unknown vector �π0.

It is known (Th. 3 in [9]) that the equation

det(zI − β̂2(z)) = 0

has exactly K roots inside the unit disc |z| < 1 and no root on the circle because
the matrix β̂2(z) is substochastic. Denote these roots as zk with corresponding
multiplicities nk, k = 1, H,

∑H
k=1 nk = K, where H is the number of different

root.
The vector generating function �Π2(z) is analytic in the unit disc |z| < 1. So

entries of the unknown vector �π0 satisfy the following system of linear algebraic
equations:

�π0
dn

dzn

{[
(Ψ(z) − I)β̂1(z) + Y (z)(β̂1(z) − zI) + ((Ψ − I)S(1) + T V )

× (zI + Q(z)(β̂1(z) − zI))
]
adj(zI − β̂2(z))

}∣∣∣∣
z=zk

�e1

= −�ρ2S
(2)V

dn

dzn

{[
zI + Q(z)(β̂1(z) − zI)

]
adj(zI − β̂2(z))

}∣∣∣∣
z=zk

�e1,

n = 0, nk − 1, k = 1, H. (18)

Here �e1 = (1, 0, · · · , 0)T , T denotes transposition and adj denotes the adjoint
matrix. Following Gail et al. [8, 9] it can be shown that (18) has unique solution.

Having known the value of vector �π0, we calculate the value of �θ. Then substi-
tuting the values of these vectors into (10) and (17) we get the final expressions
for the partial generating functions �Π1(z) and �Π2(z).

4. Probability of successful service of a customer

and average interdeparture time

Due to the presence of disasters, some of the customers leave the system un-
served or only partially served. So let find the probability of successful service
of an arbitrary customer. To this end we consider the five-dimensional Markov
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chain {in, νn, ηn, mn, cn}, n ≥ 1. Here the processes {in, νn, ηn, mn} have the
same sense as in the Section 3. The process cn, n ≥ 1 is defined as follows:

• cn = 1, if tn is the epoch of successful service completion;
• cn = 0, if tn is the disaster arrival epoch.

If cn = 1, we consider in as the number of customers in the system at epoch
tn + 0, in ≥ 0. If cn ≥ 1, we consider in as the number of customers that leave
the system at epoch tn due to a disaster appearance, in ≥ 1.

Introduce into consideration the stationary probabilities

p(i, ν, η, m) = lim
n→∞P{in = i, νn = ν, ηn = η, mn = m, cn = 1}, in ≥ 0,

k(i, ν, η, m) = lim
n→∞P{in = i, νn = ν, ηn = η, mn = m, cn = 0}, in ≥ 1,

ν = 0, W, η = 0, N, m = 1, M.

Corresponding to the lexicographic order, introduce also the vectors

�p(i, ν, η) = (p(i, ν, η, 1), · · · , p(i, ν, η, M)),
�k(i, ν, η) = (k(i, ν, η, 1), · · · , k(i, ν, η, M)),

�p(i, ν) = (�p(i, ν, 0), · · · , �p(i, ν, N)),
�k(i, ν) = (�k(i, ν, 0), · · · , �k(i, ν, N)),

�pi = (�p(i, 0), · · · , �p(i, W )),
�ki = (�k(i, 0), · · · , �k(i, W ))

and generating functions

�P1(z) =
j∑

i=0

�piz
i, �P2(z) =

∞∑
i=j+1

�piz
i, �K(z) =

∞∑
i=1

�kiz
i, |z| ≤ 1.

Theorem 2. The vector generating functions �P1(z), �P2(z) and �K(z) satisfy the
following system of matrix functional equations:

�P1(z)(zI − β̂1(z)) + �P2(z)(zI − β̂2(z)) = −�p0β̂1(z) + (�p0 + �K(1))Ψ(z)β̂1(z),
�K(z) = (�p0(Ψ(z) − I) + �K(1)Ψ(z) + �P1(z))S(1)(z) + �P2(z)S(2)(z), (19)

where

S(r)(z) =
∞∑
l=0

S
(r)
l zl =

∫ ∞

0

eD(r)(z)t⊗
(

eF
(r)
0 tF

(r)
1

)
⊗ (P (r) − B(r)(t)) dt, (20)

in particular S(r)(1) = S(r), r = 1, 2.
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Proof. The vectors of the stationary probabilities �pi, i ≥ 0, �ki, i ≥ 1 satisfy the
following equations:

�pi =

(
�p0 +

∞∑
m=1

�km

)
i+1∑
n=1

ΨnΩ(1)
i−n+1 +

i+1∑
n=1

�pnΩ(1)
i−n+1, i = 0, j − 1,

�pj+l =

(
�p0 +

∞∑
m=1

�km

)
j+l+1∑
n=1

ΨnΩ(1)
j+l−n+1

+
j∑

n=1

�pnΩ(1)
j+l−n+1 +

l+1∑
n=1

�pj+nΩ(2)
l−n+1, l ≥ 0,

�ki =

(
�p0 +

∞∑
m=1

�km

)
i∑

n=1

ΨnS
(1)
i−n +

i∑
n=1

�pnS
(1)
i−n, i = 1, j,

�kj+l =

(
�p0 +

∞∑
m=1

�km

)
j+l∑
n=1

ΨnS
(1)
j+l−n +

j∑
n=1

�pnS
(1)
j+l−n +

l∑
k=1

�pj+kS
(2)
l−k, l ≥ 1,

(21)

where S
(r)
m , m ≥ 0 are the coefficients of the expansion (20) and they are the

matrices of the transition probabilities of the process {νn, ηn, mn} corresponding
to the arrival of m customers during the uncompleted service that is interrupted by
a disaster arrival when the system operates in the rth mode, r = 1, 2. Multiplying
the equations in the system (21) by the corresponding degree of z and summing
up, and using notion (20), we get the functional equations (19). So, Theorem 2 is
proved. �

It is easy to see that �π0 = �p0 + �K(1). So the equations (19) can be rewritten
as follows:

�P1(z)(zI − β̂1(z)) + �P2(z)(zI − β̂2(z)) = (�π0(Ψ(z) − I) + �K(1))β̂1(z), (22)

�K(z) = (�π0(Ψ(z) − I) + �K(1) + �P1(z))S(1)(z) + �P2(z)S(2)(z). (23)

By substituting z = 1 into (23) and using the notion (8) we derive the following
relation:

�K(1) = �π0(Ψ − I)S(1) + �θ. (24)

In particular the formula (10) can be rewritten as

�Π1(z) = �π0Y (z) + �K(1)Q(z).

So, having known the values of vectors �π0 and �θ we can find the value of the vector
�K(1) from (24). Hence the vector �p0 can be calculated as �p0 = �π0 − �K(1). From
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(22) and (23) we get the following equations:

�P1(1) = �π0Y (1) + �K(1)[Q(1) − I],
�P2(1) = {[�π0(Ψ − I) + �K(1)]β̂1(1) + �P1(1)(β̂1(1) − I)}(I − β̂2(1))−1,

�P ′
1(1) = �π0Y

′(1) + �K(1)Q′(1),
�P ′
2(1) = {�π0[Ψ′(1)β̂1(1) + (Ψ − I)β̂′

1(1)] + �K(1)β̂′
1(1) + �P1(1)(β̂′

1(1) − I)

+�P ′
1(1)(β̂1(1) − I) + �P2(1)(β̂′

2(1) − I)}(I − β̂2(1))−1,

�K ′(1) = [�π0Ψ′(1) + �P ′
1(1)]S(1) + [�π0(Ψ − I) + �K(1) + �P1(1)](S(1))′(1)

+�P ′
2(1)S(2) + �P2(1)(S(2))′(1). (25)

Note that (�P1(1)+ �P2(1))1 is the probability of having successful service completion
of an arbitrary customer at a given customer departure epoch and �K ′(1)1 is the
average number of customers which are deleted from the system at a disaster
arrival epoch.

Denote by P+ the probability of successful service of an arbitrary customer. Us-
ing the ergodic theorems for functionals defined on the Markov chain (see e.g. [32]),
we derive the following result from the above considerations.

Theorem 3. The probability P+ of successful service of an arbitrary customer is
defined as:

P+ =
(�P1(1) + �P2(1))1

(�P1(1) + �P2(1))1 + �K ′(1)1
·

Let Λ−1 be an average interdeparture time, i.e. interval between customers’ depar-
ture epochs. For the system BMAP/SM/1 without disasters it is known from [27]
that

Λ = λ, (26)

where λ is a fundamental arrival rate. Because in our system with disasters the
departure of batches of unserved customers appear, the equation (26) is not valid
here. Using the theory of renewal processes we derive the following result.

Theorem 4. The average interdeparture time Λ−1 is determined by

Λ =
λ(1)

(�P1(1) + �P2(1) + �K ′(1))1 + (λ(1) − λ(2))�P2(1)b̄(1)
2 1

,
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where the matrix b̄
(1)
2 is defined as

b̄
(1)
2 =∫ ∞

0

eD(2)(1)t⊗eF
(2)
0 t⊗t dB(2)(t)+

∫ ∞

0

eD(2)(1)t⊗
(

teF
(2)
0 tF

(2)
1

)
⊗(P (2)−B(2)(t)) dt.

5. Queue length at an arbitrary time

Introduce into consideration the following stationary state probabilities:

α(i, ν, η, m) = lim
t→∞P{it = i, νt = ν, ηt = η, mt = m},

i ≥ 0, ν = 0, W, η = 0, W, m = 1, M,

and vectors

�α(i, ν, η) = {α(i, ν, η, 1), · · · , α(i, ν, η, M)},
�α(i, ν) = {�α(i, ν, 0), · · · , �α(i, ν, N)},

�αi = {�α(i, 0), · · · , �α(i, W )}·

The vectors �αi, i ≥ 0 characterize the presence of i customers at an arbitrary
epoch. Using the known expression for average interdeparture time and the
same technique as in [27], the relations of �αi and �πi, i ≥ 0 can be found. De-
note by B̃(r)(t) the diagonal matrix with diagonal entries defined by the vector
B(r)(t)1, r = 1, 2.

Theorem 5. The vector generating function �α(z) =
∑∞

i=0 �αiz
i is expressed in

terms of the generating functions �Π1(z) and �Π2(z) as follows:

�α(z) = Λ�π0[(−D
(1)
0 ⊕ F (1)(1))−1 ⊗ IM ] + Λ{�π0(Ψ(z) − I)

+ �Π1(z)}B∗
1(z) + Λ�Π2(z)B∗

2(z), (27)

where B∗
r (z) =

∫∞
0

e(D(r)(z)⊕F
(r)
0 )t ⊗ (IM − B̃(r)(t)) dt, r = 1, 2.
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Proof. Using the technique of Neuts [28], we derive the following expressions for
the vectors �αi, i ≥ 0:

�α0 = Λ�π0

∫ ∞

0

e(D
(1)
0 ⊕F (1)(1))t ⊗ IM dt = Λ�π0

[
(−D

(1)
0 ⊕ F (1)(1))−1 ⊗ IM

]
,

�αi = Λ�π0

∫ ∞

0

∫ t

0

eD
(1)
0 v

i∑
k=1

D
(1)
k ⊗ eF (1)(1)v ⊗ IM dv

×P (1)(i − k, t − v) ⊗ eF
(1)
0 (t−v) ⊗ (IM − B̃1(t − v)) dt (28)

+Λ
i∑

k=1

�πk

∫ ∞

0

P (1)(i − k, t) ⊗ eF
(1)
0 t ⊗ (IM − B̃1(t)) dt, i = 1, j,

�αj+l = Λ�π0

∫ ∞

0

∫ t

0

eD
(1)
0 v

j+l∑
k=1

D
(1)
k ⊗ eF (1)(1)v ⊗ IM dv

×P (1)(j + l − k, t − v) ⊗ eF
(1)
0 (t−v) ⊗ (IM − B̃1(t − v)) dt

+Λ
j∑

k=1

�πk

∫ ∞

0

P (1)(j + l − k, t) ⊗ eF
(1)
0 t ⊗ (IM − B̃1(t))) dt

+Λ
l∑

k=1

�πj+k

∫ ∞

0

P (2)(l − k, t) ⊗ eF
(2)
0 t ⊗ (IM − B̃2(t))) dt, l > 0.

Multiplying (28) by the corresponding degrees of z, summing up and using the
notion (7), we derive the required expression (27). Theorem 5 is proved. �

6. Calculating the value of the cost criterion

Having calculated the stationary state distribution under the fixed value of the
threshold j we can calculate the value of the cost criterion (1).

The formula for the calculation of the mean queue length is determined by

L = (�Π′
1(1) + �Π′

2(1))1. (29)

Since �πi = �pi, i ≥ 1 the following equations are valid: �Π′
i(1) = �P ′

i (1), i = 1, 2. So
we can use the equations (25) for calculating the value of L.

By exploiting the ergodic theorems for Markov chains, see e.g. Skorohod [32],
it can be shown that

Φ2 = Λ�P2(1)b̄(1)
2 1, Φ1 = 1 − Φ2. (30)

The value of R is calculated by the formula

R = (λ(1)Φ1 + λ(2)Φ2)(1 − P+). (31)
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Substituting (29)–(31) into (1) we get the value of the cost criterion (1). Having of
possibility to calculate the value of criterion (1) for any fixed j practically we can
find the optimal value of threshold j∗, minimizing the value of the cost criterion.

7. Numerical example

In this section, to illustrate obtained results we present simple numerical exam-
ples.

Let the customers input flow be ordinary and we set

D
(1)
0 =

(−4.4 2.4
2.8 −7.8

)
, D

(1)
1 =

(
2 0
0 5

)
,

D
(2)
0 =

(−2.2 1.2
4.8 −7.8

)
, D

(2)
1 =

(
1 0
0 3

)
.

The intensities of the input flow are equal 3.38 and 1.39 for the first and second
modes, respectively.

We also assume that the kernel B(r)(t), that describes the service process in
the rth mode, has the form

B(r)(t) = diag{B(r)
1 (t), . . . , B(r)

M (t)}P (r), r = 1, 2. (32)

Here diag{c1, . . . , cM} denotes a diagonal matrix with the diagonal entries c1, . . . ,

cM ; P (r) is a stochastic matrix and B
(r)
i (t), i = 1, M are distribution functions.

The form (32) of semi-Markovian kernel B(r)(t) means that the sojourn times
of service directing process mt depend only on the current state of the process
and do not depend on future states. The matrix P (r) = B(r)(+∞) determines the
transition probabilities of the embedded Markov chain mn, n ≥ 1, r = 1, 2.

Let M = 2 and T
(r)
m be the customer service time when the system operates in

the rth mode and service directing process mt is on the state m, m = 1, M, r = 1, 2.
We assume that

T
(1)
1 = 0.15, T

(1)
2 = 0.2, T

(2)
1 = 0.4, T

(2)
2 = 0.3, P (1) = P (2) =

(
0.6 0.4
0.35 0.65

)
.

The average service times are equal 0.176 and 0.346 for the first and second modes,
respectively.

For disasters flow we set N = 1 and

F
(1)
0 =

(−0.25 0.15
0.24 −0.33

)
, F

(1)
1 =

(
0.1 0
0 0.09

)
,

F
(2)
0 =

(−0.21 0.16
0.27 −0.35

)
, F

(2)
1 =

(
0.05 0
0 0.08

)
.
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Figure 1. The dependence of the cost criterion value on the threshold.

Table 1.

a j∗ C(j∗) C1 C2

8 3 36.75 37.73 54.01
9 2 40.18 41.74 55.22
10 2 43.51 45.8 56.33

The disasters arrival intensities are equal 0.096 and 0.061 for the first and second
modes, respectively. The cost coefficients are defined as: c1 = 5, c2 = 40, g = 2.5.

Figure 1 illustrates the dependence of the cost criterion value (1) on threshold
j under some values of the cost coefficient a.

Let j∗ be the optimal threshold value and Cr be the cost criterion value when
the system operates only in the rth mode, r = 1, 2. The values j∗, C(j∗), C1, C2

under some values of the coefficient a are adduced at the Table 1.
So the system control allows to reduce the expense of the system operation.
For the following example we consider a batch input flow of customers, that is

defined by the following matrices:

D
(1)
0 =

(−1.45 0.45
0.6 −2.6

)
, D

(1)
1 = D

(1)
2 =

(
0.5 0
0 1

)
,

D
(2)
0 =

(−2 1
0.9 −1.4

)
, D

(2)
1 = D

(2)
2 =

(
0.5 0
0 0.25

)
.

The intensities of the input flow are equal 2.14 and 1.1 for the first and second
modes, respectively.
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Figure 2. The dependence of the cost criterion value on the threshold.

Table 2.

a j∗ C(j∗) C1 C2

9 2 44.49 51.42 93.57
10 2 47.46 54.93 94.52
11 1 50.12 60.44 95.45

Let M = 1, T
(1)
1 = 0.3, T

(2)
1 = 0.25. The input of disasters is the same as in

the previous example. The cost coefficients are the following: c1 = 10, c2 = 85,
g = 5.

Figure 2 gives the dependence of the cost criterion value on threshold j and Ta-
ble 2 contains the values of j∗, C(j∗), C1, C2 under some values of the parameter a.

8. Conclusion

Controlled queueing system with additional disaster input and two operation
modes has been studied. Stationary distribution of system state probabilities has
been found and the problem of optimization of the threshold strategy has been
solved.
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[12] E. Gelenbe, Réseaux neuronaux aléatoires stables. C. R. Acad. Sci. 310 (1990) 177-180.
[13] E. Gelenbe, Stable random neural networks. Neural Comput. 2 (1990) 239-247.
[14] E. Gelenbe, Queueing networks with negative and positive customers. J. Appl. Prob. 28

(1991) 655-663.
[15] E. Gelenbe, P. Glynn and K. Sigman, Queues with negative arrivals. J. Appl. Prob. 28

(1991) 245-250.
[16] E. Gelenbe and S. Tucci, Performances d’un systeme informatique dupliqué. C. R. Acad.
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