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PRODUCT FORM SOLUTION FOR G-NETWORKS
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Abstract. We consider a G-network with Poisson flow of positive
customers. Each positive customer entering the network is character-
ized by a set of stochastic parameters: customer route, the length of
customer route, customer volume and his service length at each route
stage as well. The following node types are considered:

(0) an exponential node with ¢, servers, infinite buffer and FIFO dis-
cipline;

(1) an infinite-server node;

(2) a single-server node with infinite buffer and LIFO PR discipline;

(3) a single-server node with infinite buffer and PS discipline.

Negative customers arriving at each node also form a Poisson flow. A
negative customer entering a node with k customers in service, with
probability 1/k chooses one of served positive customer as a “target”.
Then, if the node is of a type 0 the negative customer immediately
“kills” (displaces from the network) the target customer, and if the node
is of types 1-3 the negative customer with given probability depending
on parameters of the target customer route kills this customer and
with complementary probability he quits the network with no service.
A product form for the stationary probabilities of underlying Markov
process is obtained.

* This work was supported by the Russian Foundation for Basic Research, Grant No 02-07-
90147.

I Department of Probability Theory and Mathematical Statistics Peoples’ Friendship Univer-
sity of Russia, Moscow, Russia; e-mail: ppbocharov@sci.pfu.edu.ru; tropic_mos@rambler.ru
2 Department of Information Engineering and Applied Mathematics, University of Salerno,
Italy; e-mail: dapice@diima.unisa.it

3 Institute of Informatics Problems Russian Academy of Sciences Moscow, Russia;

e-mail: APechinkin@ipiran.ru
© EDP Sciences 2004



106 P. BOCHAROV ET AL.
1. INTRODUCTION

Queueing networks are widely used for analytical modelling of computer com-
munication networks [1,2,24,31,34,36]. A central place in queueing network theory
belongs to networks admitting product form of the joint stationary distribution
of the number of customers at nodes which we call “multiplicative networks”.
The theory of multiplicative networks takes its origin from the results of Jackson
[29,30] where the solution for an exponential network with nodes of infinite capac-
ity was expressed in a product form for the first time ever. Subsequent weighty
contributions to multiplicative network theory were stimulated by the publica-
tion formulating the so-called BCMP theorem [3], see also monographs such as
[2,24,25], that gives a product solution for a larger class of open networks that are
the generalization of the Jackson network. The necessary conditions for a Jackson
network to be multiplicative are that all its input flows are Poisson and distribu-
tions of customer service times are exponential. For BCMP-networks, the second
constraint may not always hold, but then the service disciplines at nodes must be
of special types. Subsequent developments in the theory of multiplicative networks
resulted from different types of generalizations of the Jackson and BCMP-networks
concerned with, for example, the dependence of input flows on the number of cus-
tomers in a network, dependence of probabilities of transitions between network
nodes on the state of these nodes, bypassing of nodes, etc. [1,2,33,35]. A large
body of literature exists on approximate methods of decomposition of queueing
network models (see, for example, [1,24,25,32,36]).

An absolutely new class of open networks generalizing the Jackson and BCMP-
networks and admitting product solution was introduced by Gelenbe [10-13], ini-
tially motivated by neural networks and associative memory [5]. These networks
contain, along with usual (positive) customers, additional Poisson flows of neg-
ative customers [8,21]. A negative customer differs from a positive customer in
that upon arrival at a network node he kills a positive customer if there is any at
this node, thereby reducing the number of positive customers at the node by one.
Thereafter the negative customer quits the network, getting no service. Such a
network is called the G-network.

The investigation of G-networks has started relatively recently with the first
papers of Gelenbe on this topic appearing in 1989. In later publications of Gelenbe
and other authors extended most of the results obtained for Jackson and BCMP-
networks and their generalizations to G-networks [9,14,15,18,20,23,26], including
batch destruction of normal customers by negative customers, multiple customer
classes, and new types of “signals” such as the ability of negative customers to move
normal customers to other queues without destroying them, and reset customers.
The link with neural networks was also further developed by Gelenbe [16,17,19,22].
Many instances of applications were also presented including [6,7,27,28].

In the present work we give an extension of multiplicative theory for a class of
non-traditional BCMP-networks with negative customers. In these extended G-
networks, a customer is characterized by a set of stochastic parameters: customer
route, the length of customer route, customer volume and his service length at each
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route stage as well. Such open networks were analysed in [4,36] where product
solution for network nodes of BCMP type was obtained. Thus the present paper
generalizes the results of [4] for the case when negative customers are also taken
into consideration.

2. NETWORK DESCRIPTION

We consider an open queueing network with M nodes and a finite set M of
node types. Each node s, s = 1, M, can be any of the following types:

(0) exponential multi-server with infinite buffer capacity and FCFS discipline
(note that the theorem below can be easily extended to exponential nodes with
random choice of customers for service from the queue);

(1) infinite-server;

(2) single-server with infinite buffer and LIFO discipline with interruption and
resumption;

(3) single-server with infinite buffer and processor sharing (PS) discipline.

We denote by M; the set of nodes of type i, i = 0,3, and by ¢, the number of
servers in sth (exponential) node.

A Poisson flow of (usual, positive) customers of intensity A enters the network.
Each customer arriving at the network is characterized by a set of random vari-
ables (L, ]?, }7, X ) which depend neither on analogous random variables for other
customers nor on network history, where:

— L is a customer route random length, i.e. the number of stages at which
he will be served;

-~ R = (Ri,...,Ry) is a random route comprising an assembly of node
numbers (nodes of the same number at different stages are allowed) the
customer subsequently passes at all L stages;

Y = (Y1,...,Yr) are customer random volumes at route stages the cus-
tomer subsequently passes (generally speaking, these volumes are different
at different stages);

- X = (X1,...,X1) are customer random service lengths at the route stages
this customer subsequently passes (service lengths, generally speaking, are
different at different stages as well). Note that if the customer is being
served at a node of type 2 or 3, then the service length at each stage
coincides with the service time which he would be served if he would stay

at that node alone.

The customer volume Y can have a real physical meaning as, for instance, a
memory volume which is required for message allocation, or it can be interpreted
differently. For instance, it can be used to expose customers’ types; in this case
the network under consideration can be interpreted as a network with continual
message set.

It is only natural that under this network description the volume Y,, and the
length X,, define a customer being served at node R,. Let us recall that the
routes K where the numbers R, can be repeated are allowed, i.e. a customer
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can be served at the same node s for the several times but with different service
lengths.

Stochastic characteristics of a random variable (L, I%, ?,X ) are given by the
joint probability distribution function (PDF)

B(Z5F7g7f):P{L:Za Rn:rna Ynfym XTL anv n:m}
Further on, let us denote by
G 7§) =P{L=1, Ry =10, Yo <yn, n=1,1}

the joint PDF of the route R of the length L and with customer volumes Y at the
route stages, by

the conditional joint PDF of the customer service lengths X at the route stages
under a fixed route R = 7 of the length L = and volumes Y = ¢, and by

— _—

Bu(a |7 ) =P{X, <z |L=1L,RE=7FY =73}, n=1,1,

the conditional PDF of the customer service length X, at the nth stage (at a node
with number R,, = r,,) under a fixed route R = 7 of the length L = [ and volumes
Y =7
We shall make the following assumptions on the functions introduced above.
A 1.1. Service lengths are conditionally independent along the route, i.e. the
conditional PDF B(Z | [, 7,¥) has the form

l
B(@ | 1,7§) = [[ Bulwn |1,7,9).
n=1

A 1.2. Each exponential node s is a cs-server queueing system with infinite
buffer capacity and service intensity for all customers at each server is equal to ps.
So, if ,, = s € My, i.e. at an nth route stage there is a customer being served at
node s of type 0, then

Bo(x | 1,7 ) =1 — e He=.

In other words, service length X,, at node R,, = s of the type 0 depends on neither
the route ﬁ, nor any of the the volumes Y}, (including the volume Y;,) and has
exponential PDF with parameter pus.

We shall make an additional technical assumptions on the functions introduced
above, which could be easily neglected if we interpret derivatives as generalized
ones. Namely, we suppose that the PDF G(I,7, %) and B, (z | [, 7, ¢) are absolutely

K

continuous, and denote by ¢(I,7, %) and b, (x | [, 7,¥), respectively, their densities,
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i.e.

GU7D),  bule |L7G) = 2 Bala | 1L7,9).

L o
g(l, 7,7 p

)= Oy --- Oy

Besides of the flow of positive customers described above, negative customers arrive
at the network. These flows are defined in the following way.

A 2.1. The flows arriving at different nodes are independent.

A 2.2. A customer flow arriving at node s of type 2 or 3 is Poisson one of
intensity ~s.

A 2.3. A customer flow arriving at node s of either type 0 or 1 is a Markov
one with intensity v5(n) depending (only) on the number n of busy servers at this
node in the following way: vs(n) = n~ys.

A 2.4. A negative customer arriving at a node s with k positive customers in
service at this node (if this node is of type 0 then k is the number of busy servers,
if this node is of the type 1 or 3, then k is the total number of positive customers
at the node, if it is of type 2, then k = 1), with the same probability 1/k chooses
one of positive customers being served. After this, if the node is of the type 0 the
negative customer immediately “kills” (displaces from the network) the chosen
positive customer. If the node s is of any other type then the negative customer
either with probability w, (x | [, 7, ¢) kills (here and in what follows we shall omit
the quotation marks) the chosen positive customer or with the complementary
probability 1 —wy,(z | [, 7, %) quits the network without inducing any action. Here
(1,7, ) are the parameters of the chosen positive customer, defined earlier: n is
the number of route stage in which this customer is served (it is only natural that
rn, = s) and x is the elaborated (serviced) customer length. The negative and
killed customers quit the network and do not return there ever. If at the moment
of a negative customer’s arrival into some node there is no positive customer there,
then the negative customer quits the network without inducing any action.

3. AUXILIARY FUNCTIONS

First we introduce for n = 1,1 auxiliary functions w,(l,7, %), Fu.(z | I,7,%)
and B (x | I,7,%), defined for a positive customer with parameters (I, 7,7) in
the following way (in what follows for any PDF F(x) we shall use the notation
F(r) =1— F(z)).

If r, is a node of any of the types 1-3, then these functions are given by the

formulae
o0

on(L7, ) = /E(x L7 ) bl | 1,7, §) da, (1)
0
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Similar functions for the node r,, of the type 0 have the form

=\ lu""n

wn(l, 7, _l 4
nl 2 Mo, +Vr, @
By | 17,5) = 1 — e limtom)e,
Let us set

n—1
w7 3) = [[wi, 7 9), n=T1T+1, (5)

i=1
g,*l(l,f',zj'):w,*l(l,f’,gj')g(l,ﬁg'), nzﬁ, (6)

mn(laf'ag):/En(m|lﬂfag)dma n= al'
0

As we shall see later these functions have a very transparent physical meaning.

F,(z | I, 7 ¢) is the probability that a positive customer with parameters (I, 7, §),
not killed until the nth stage and having an infinite service length at the nth stage
(at node r,,) will be killed at this stage during the time less than z.

wn (1,7, %) is the probability that a positive customer with parameters (I, 7, %),
not killed until the nth stage, will not be killed at this stage (at node ).

w(l,7 7) is the probability that a positive customer with parameters (I, 7, §)
will not be killed until the nth stage.

B} (z | I,7 ) is the conditional probability that a positive customer with pa-
rameters (I, 7, 7) will be served (will stay at the server until the moment when
either his service is completed or he is killed) at nth stage (at node r,,) the time
less than = provided that he will not be killed until the nth stage.

my (1,7, ) is the mean service time (sojourn at the server) of a positive customer
with parameters (I, 7, 7) at nth stage (at node r,), not killed until the nth stage.

It is only natural that for the nodes of types 2 and 3 the last two characteristics
are defined under the condition that there exist no other customers at these nodes.

Let us set for the sth node

oo l
Ps = )\Z Z / Z g;;(l’ 7?7 37) 5sfrnmn(la 7?7 37) d?/a (7)

I=11<ry,....p<M | n=1

where d; is the Kronecker symbol. For the sake of brevity we shall use the notation

/...d},:/.../dyl...dyl.
1 1

Note that ps is the traffic intensity at the sth node.
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Let us suppose that for all nodes s

oo l
LAY Y [y <. (®)

1=11<r1,...m;<M 7 n=1

The last condition means that the total flow intensity As; of positive customers
arriving at node s is finite. Note that for non-exponential nodes this condition
does not follow from the condition that the traffic intensity of these nodes is finite
too (the latter condition will be given below).

And finally, for the sake of brevity we denote by 3, (z | I, 7, ) and 3, (z | I, 7, ¥),
the intensities of departure of positive customer with parameters (I, 7, §) from the
server at the nth route stage (at node s = r,) owing to the service completion
and owing to the killing by a negative customer respectively. These intensities are
defined by the formulae:

for nodes of the types 1-3

o bn(x | 1,7,y on(xz | 1,7,y o
gt | 17 g) = o ILrd) @ LD s ()
Bn(x | 1,7,9) B, (z|l,7,¥)

67:(1' | lvfag') = PYan’ﬂ(x | lafa ?7) = _*—)En(l‘ | lafa g)ﬁn(l' | lafag‘)a

(10)

and for nodes of type 0
67—1_(1' | l,r,gj’) = Hry, (11)
ﬂ’r: (:L' | L, 7, 37) = VYrn (12)

4. MARKOV PROCESS

Let us now define the Markov process describing the stochastic behaviour of
the network under consideration.

We shall denote a network state by an assembly Z = (21,..., 2y ), where the
assembly 7, = (kg, Zs1,. .., Zsk.); s = 1, M, in turn, describes the state of the sth
node in the following way: ks is the number of customer at the sth node and the
assembly Zs;, s = 1, M, i = 1,ks, with components Zs; = (I, Tsi, Usiy Nsis Lsi)
stores the information ({4, 7s;, Js;) on the ith customer at the sth node, and his
position (ng;, xs;) in the network:

— lg; is the route length;

— Toi = (Tsi1, .-+, Tsil,;) 1S the route;

— Usi = (Ysil, - - - Ysil.; ) are customer volumes at route stages;

— ng; is the route stage number, the customer is passing (while being serviced
or waiting for service); clearly that ng; < lg;

— &g is the customer length already serviced at a given stage.
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Evidently that due to the notations introduced above, we have g, , = s. It is
also clear that the vector z;, = 0 if k; = 0, i.e. when there are no customers at
the sth node, and the vector 7 = 0 = (0,...,0) in the case, when there are no
customers in the network at all. Moreover we shall consider that the coordinates
Zs; are not defined for exponential nodes, i.e. when s € M (the length already
serviced at this stage is not taken into consideration), although, like as before, for
the sake of uniformity we shall preserve the argument ;.

In what follows we will accept the following rule of numbering of customers in
the nodes. For the nodes of type 0 the numbers are assigned to the customers in
the order of their arrivals at the nodes, for the nodes of types 1 or 3, the numbers
are assigned randomly, and for the nodes of type 2, in the inverse order to their
arrivals at the nodes.

We denote by £ = {Z} the state space of the network. The behaviour of the
network can be described by a Markov process {Z(t), t > 0} with the state space
Z. So Z(t) = Z, if at the instant ¢ the network is in the state Z.

5. PRODUCT FORM SOLUTION

In this section we will prove the theorem on the multiplicative representation of
the stationary probabilities of states for the Markov process under consideration.

The stationary probability density of states of the process Z(¢) will be denoted
by p(Z). In the text below, we shall show in an explicit way the existence of this
probability density under the natural constraints on the network traffic imposed
above.

Theorem 5.1. If for a node s of type 0 ps < cs, for a node s of type 1 ps < 00,
and for a node s of types 2 and 3 ps < 1, where ps is defined by the formula (7),
then there exists a limit (stationary) probability state distribution of the process
Z(t) with probability distribution density

M
p(Z) - Hps(gs)a (13)

thereby:
for a node s of the type 0

k
- AR TT L
ps(zs) :ps(o) ds(ks)('u +'Y ) Hgnu (lsiarsiaysi)a (14)
s T =1

where

1
Cs i cs+1
Ps Ps’
ps(0) = <E T + 7) ) (15)
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1/ks! if ks <ecs,
ds(ks) = 16
(k) {1/(05!05555) if ks > cs; (16)

for a node s of the type 1

R L o L
ps(zs) =e | HB (xsi | lsiarsiaysi)gnsi (lsiarsi;ysi); (17)
for a node s of the type 2 or 3

ks
Ds (Zs) = ]- - ps H 1’51 | lsza Tsis ysz) gn97 (lsz; Tsi, ysz) (18)

Proof. Tt can be easily seen that the Markov process Z(t) is regular and Harris
positively recurrent because the state 0 is a positively recurrent atom for this pro-
cess. Therefore to prove the theorem it is sufficient to show that the function p(Z2),
defined by theorem assertions satisfies the system of equations for the stationary
density of states of the process Z(t), which we shall call the system of equilibrium
equations by analogy with the discrete case.

For the system of equilibrium equations we introduce the following notations.
Let the network be in the state Z. Then vg;(2) identifies the service rate of the ith
customer staying in the node s, i.e.

vsi(Z) =
1, if the ith customer is served in a node s of the type 1
or if the ith customer engages the server in a node s of type 0 or 2;
1/ks, if the ith customer is served in the node s of the type 3

(in which other ks — 1 customers are also being served);

0, if the ith customer remains in the queue at the node s of type 0 or 2,
(19)

and
1 (2) = vai(2) B (@i | Lsis Py Usi) (20)

and
:us_z(g) = 'Usi(g) ﬁ;ql(xsz | loiy Tsis :'jsz) (21)

are the output intensities from the state Z owing, respectively, to the service com-
pletion or killing of an ith customer at the node s.
Moreover, for s € M1 U Mo U Mgz, k>0, and i = 1,k let us set

1, ifseMpandi=1,
usi(k) = <0, if se My and @ > 1; (22)
]_/k, if s € M1 U Mgs.
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The function wus;(k) is the probability that to a customer, arriving at a non-
exponential node s with k£ — 1 customers also staying there, is assigned a number 3.

Since for different states of the set Z of the process A (t), the equilibrium equa-
tions will be different we divide the set Z into two subsets of states. We assign
all states with x5 > 0 for all (s,4) they are defined (i.e. for all s € M\ My) to
the first subset. Such states will be called inner states. It is obvious that an inner
state is a state in which all the customers residing in the nodes of the types 1-3
have already received service for at least some time. The remaining states will be
assigned to the second subset and called boundary states.

Let us start with inner states, and assign each inner state zZ € Z a set of states
Z(Z) to. The states from of the set Z(Z) will be called the states preceding the
state Z. The reason why we introduce the preceding states is that the direct
transition into the state 2’ is only possible from these states.

In turn, all states preceding an inner state 2, will be divided into 4 classes. Each
class will be associated to a certain transition into the state Z.

The first class Z¥(2) = Z;7(2)UZS () consists of two disjoint subclasses Z;(2)
and Z, (2).

The first subclass Z;7(2) = {#+(2,s,4,l,7,4,x)}, is a set of network states from
which a transition to the state z'is possible owing to the exit of a customer from the
network after the completion of his service (at the route’s last node) and contains
only the states 21 (2, s,4,(,7, §, z) of the form

R . RN o = o — =
Z(Z, 8,0, 1, T Y, ) = (21,0 Zo1y Zay Zstdy - ooy ZM)s
o % %
where 27 = (ks +1,25,..., 255 41) and
Zsjy ,7<Za
- - - L
Zsj - (177“7?],1,35); J =1,
Zs,jfla j>i7

and (1,7, ¥, x) are the parameters of the completely served customer which departs
from the ith place at the sth node, which can take any (possible) values.

The second subclass Z7(2) = {Z7(Z, 5,4, 7, i, 1)}, is a set of network states from
which a transition to the state Z' is possible owing to the exit of a customer from
the network after his killing at the ith place at the nth route’s stage node and
contains only the states z*(Z) s, 1,1, 7,7, n,z) of the form

el v - - — _ — — —k = —
Z(Z, 8,0, L, PG, ny ) = (F1y e v oy Zs1y Zay Zotls -y ZM),
> ) >
where Z7 = (ks +1,25;,...,2% ;. ,,) and
Zsjy ,7 <i7
% JENN .
Zsj - (l,r,y,n,x), J =1
Zs,jfla j>7;7

and parameters (I, 7, ¥, n,x) can take any possible values.
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The remaining 3 classes of preceding states are not empty only for the networks
which have any non-exponential nodes.

Let s € My and 7 be such a state that ks > 0. We also suppose that ng, = 1.
Let us denote by Z7(Z, s) the state

Z’_(Z”S): (215'"728—172:728-‘,-1)"'721\/1)7

where Z¥ = (ks — 1, Zs1, ..., Zs k,—1)- The states of the set Z] () will be called the
states preceding the state z. We also denote the set of such nodes s for which the
states 27 (Z, s) are defined by S;(Z). Evidently, the class Z; () contains the states
from which a transition into the state 2’ is possible owing to the arrival of a new
customer at an exponential network node, and the set S1(Z) contains exponential
nodes in which, while the network is in state Z, a customer just arrived at the
network is placed into the last position in the queue.

The class Z5 (Z) is associated to the preceding states from which a transition
into the state Z'is performed owing to the service completion of a customer in an
exponential node and his arrival to another exponential node (at the last place),
and contains disjoint subclasses Z,5 (2, s) defined in the following way. Let s €
M and 2 be such a state that ks > 0. We also suppose that ng,, > 1 and
Tskynen, —1 = 8 € Mo. Then Z, (Z,s) = {Z7(Z,5,7)}, and each state 27 (2, s, j)
has the form

- . - JE - R
z (Zasaj):(217"'725’71725/)25’4*1)'"725717257'254»1;'"7ZM)

(it is only natural that s can precede to s’ and even coincide with §', if a customer
from the sth node arrives again at the sth node), where

o* % %
ZS/ —_— (ksl + ].,Zsll, .. 725’,]{2514’1)7
Zs’i7 Z<]7
% - - L
Zgy = (Uskys Tskys Uskas sk, — L, ), 0 =7,
Zs!i—1, 7:>j7
% - -
Zg = (ks — 1,281, .. .,237]%_1).

We shall denote by Sa(Z) the set of nodes for which subclasses Z5 (%, s) are non-
empty.

And finally, the class Z5 (%) is analogous to the class Z5 (%) except the case
when a transition into the state Z' is performed owing to a service completion at
a non-exponential node. Disjoint classes Z5 (%, s), forming the class Z5 (%), are
defined as follows. Let s € Mg and z'be such a state that ks > 0. We also suppose
nek, > 1 and rsp, pn,,. —1 =5 & Mo. Then Z5 (Z,s) = {Z7(Z,s,4,7)}, and each
state Z7(Z, s, j, ) has the form

. . - - o o - . -
z (2787]71'):(zla"'725/71723/7Zs/+1a'"7Zsflazsazs+1a"'7ZM)a
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where
o o o
Zy = (ks + 1,250, 25 g 41)s
Zs’i7 Z< j)
v Lo .
Rsli = (lsksarsksaysksansks - 1793)7 =17,
Zs!i—1, 7:>j7
. R R
Zr = (ks — 1,251,y Zs keu—1)-

We shall denote by S3(Z) the set of nodes s, for which the subclasses Z5 (%, s) are

non-empty.
Note once again that each of the classes Z_(_')fZ; (Z) can be empty. In par-
ticular, for the state 0 = (0,...,0) all classes Z; (2)—Z5 (%) are empty.

Now we shall write the system of equlhbrlum equatlons for inner states 2-

I -(0(2)5(2) (A+Zzbumz>+um< o2

sgMyp i=1 s=1i=1

ks+1
-5 Z/u;wz 5., L7 5,2) (5, 5,1,1, 7. 5, )
eMy i=1

ks+1 o0
+ d},/u;(f(as,i,z,f,g,x))p(,ﬁ(z,s,z‘,z,f,g,m))dx
sgMg =1 l,mr" 0
ks+1 -
+ /u;(z""’(é’,s,i,l,ﬁ 7,m,2)) p(ZY(Z,s,4,1,7 §,n,z))dy
seEMyp i=1 I,mr,n
ks+1 ©0
+ d@/u;(?(is,i,l,f',gj',n,x))p(é*(i’,s,i,l,f’, ¥,m,x))dz
s¢gMo i=1 l,mr,n 0
k41
+ Z )‘p(g_('ga3))g(lsk‘gvfsksagsk Z Z :usj Z s j)) (+(2a3aj))
s€81(%) s€S2(2) j=1
k41

pg (27 (28,4, 2)) p(Z (%, 5,4, 2)) da. (23)

M
0\8
+

5633(,2) j=1

We now pass on to the boundary states. We shall limit ourselves to consideration
of boundary states z’ for which x5 = 0 only for a pair (s,4). The case when some
elaborated service lengths are equal to zero simultaneously can be studied in a
similar way. Moreover for nodes s of the type 3 we consider only such states for
which x4 = 0, because for nodes of these types in the case x5 = 0, i > 1, the
system of equilibrium equations is composed in the same way as for inner states.
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Let Z be a boundary state, i.e. such a state that x5 = 0 for some s € M\ My
and i. We assign each state to one of 3 types in accordance with the following
rule.

Let ng; = 1. Then a state Z is associated to the first type of boundary states.
It is clear that a transition to a boundary state Z’ of the first type is realized owing
to a new customer arrival at the network, where he is placed at the ¢th position
at an sth (non-exponential) node.

If ng > 1 and rs;n,,—1 = s € My, then a state Z is associated to the second
type of boundary states. A transition to a boundary state Z’ of the second type is
realized owing to the arrival at the ith place at an sth (non-exponential) node of
customer which has been served earlier at an exponential node.

Finally, if ng; > 1 and rs;n,,—1 = 8 € M\ My a state 7 is associated to the
third type of boundary states. A transition to a boundary state Z’ of the third type
is realized owing to the arrival at the ith place in sth (non-exponential) node of a
customer who has been served earlier at a non-exponential node.

As it has been made earlier for an inner state, for a boundary state zZ we define
a set Z(Z) of preceding states.

For a boundary state Z of the first type the set Z (2) contains only one state

2\_(5) = (217" '728—1723528-‘,-17" '72771)7

where

ok - - - -
Zs - (ks - ]-;Zsl; .. '7Zs,iflazs,i+17 s 7zs,k5)~

For a boundary state Z of the second type the set Z(Z) contains states Z~(Z,j) of
the type

o . - - O - . -
< (Z,j) = (Zla"'725’7lazs/azs’+1a'"7Zsflazsazs+1;"'7zm)a
where
o o o
ZS/ = (ksl —+ 1,2511, - ,Zsl’k5/+1),
Zslty t<,7)
—nk — — .
Rt = (lsi;rsiaysi;nsi_17x)7 t:ja
Zslt—1, t> 7,
e - - - -
Zs = (ks — 1,251, . .,zsyi,l,zsﬁﬁl, e 7zs,k5)~

For a boundary state Z of the third type the set Z(Z) contains states 2~ (2, j, z) of
the type

- . - - o o - JE— -
z (Z,],ﬂ?):(Zl,...,25/,1,281,25/+1,...,Zsfl,Zs,Zerl,...,Zm),

where

o o %
Rgr = (ksl + 1,2511, ce ,Zsl’ks/+1),
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Zs/t; t<j’
gz/t = (lsi;Fsiagsi;nsi - 17x)7 t=j,
Es’,t—h t>ja

5: = (ké —1,Z1,.. .,Zs7i_1,gs,i+1, - ,Es,ks).

We now shall write the equilibrium equations for the boundary states Z of different
types for which zg = 0:

vsi(2) p(2) = Ap(Z () 9(Lsis Tsis Ysi) wsi (s ),

ko +1
’Usz('g)p('g): Z :u:_’]('g_(zv]))p(g_('ga.j))usz(ks)a
ko +1 ” oo
vsi(2) p(2) = Z usi(kzs)/u:j(f(g,j,x))p(f(i,j,x))dx. (24)
j=1 0

It can be shown that a direct substitution of formulae (13)—(18) into the systems of
equations (23) and (24) leads to systems of identities. The proof of theorem is com-
pleted by verification of the fact that the function p(2) satisfies the normalization
condition. d
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