RAIRO Operations Research
RAIRO Oper. Res. 37 (2003) 235-247
DOI: 10.1051/r0:2004003

APPROXIMATION ALGORITHMS FOR THE DESIGN
OF SDH/SONET NETWORKS

NADIA BRAUNER!, YVES CRAMAZ, GERD FINKE!,
PIERRE LEMAIRE! AND CHRISTELLE WYNANTS?

Abstract. In this paper, a graph partitioning problem that arises in
the design of SONET/SDH networks is defined and formalized. Ap-
proximation algorithms with performance guarantees are presented. To
solve this problem efficiently in practice, fast greedy algorithms and a
tabu-search method are proposed and analyzed by means of an exper-
imental study.

Keywords. Graph partitioning, approximations, heuristics, tabu,
SONET/SDH networks.

1. INTRODUCTION

With the explosion of telecommunications, the optimal design of networks has
become a major issue. One of the most important requirements is the reliability
of the network, i.e. its aptitude for coping with signals and routing them (if pos-
sible automatically) even when a link breaks down. However, increased reliability
translates into higher design costs, meaning that a compromise has usually to be
found between these two conflicting criteria.

I Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France;
e-mail: nadia.brauner@imag.fr, gerd.finke@imag.fr, pierre.lemaire@imag.fr

2 Ecole d’Administration des Affaires, Université de Liége, boulevard du Rectorat 7 (B31),
4000 Liege, Belgique; e-mail: y.crama@ulg.ac.be

3 Electrabel Quantitive Analysis, 8 boulevard du Régent, 1000 Brussels, Belgique;

e-mail: christelle.wynants@electrabel.com
© EDP Sciences 2004

236 N. BRAUNER ET AL.

NORMAL MODE FAILURE MODE

Protection line

—— Working line

Ox O

FIGURE 1. A unidirectional self-healing ring.

A Synchronous Digital Hierarchy (SDH), also known as a Synchronous Opti-
cal NETwork (SONET)!, is a widely-used solution which meets both technical
and economical expectations. Such a network is based on basic elements called
Self-Healing Rings (SHR): nodes of the demand graph are gathered together and
physically linked, so as to form cycles, by two separated fibers of opposite direc-
tion. At every node, an Add/Drop Multiplezer (ADM) is capable of detecting a
failure and accordingly rerouting signals along one of the two fibers.

Several protocols exist for SDH/SONET networks. We focus here on the Euro-
pean standard, based on unidirectional rings.

In this case, as illustrated by Figure 1, one fiber is dedicated for normal work,
while the other is saved for the cases of failure. The demand between two nodes of
a ring is thus routed all the way around the ring (for example: a demand from A
to C' goes through AB, BC, and the opposite demand from C' to A goes through
all other links). As a consequence, an ADM must have a capacity large enough to
be able to handle the sum of all demands in a ring.

Our purpose, in this paper, is to partition a demand graph into SONET/SDH
rings at minimum cost.

For further details on SDH/SONET networks, the reader is referred to The
SONET Home Page [25] and to Demetris Mili’s webpage [21] for a more technical
description. For precisions on the european standards, the European Telecommu-
nications Standards Institute (ETSI) [5] publishes documentations, for
instance [6,7]. For a more complete view on SONET architectures, technologies,
and design methods, see the book by Wu [24].

The reader is also referred to the following related references. Goldschmidt,
Laugier and Olinick [13] deal with the problem of partitioning a demand-graph into
SONET rings linked together by a “federal link”; Fortz, Sorianio and Wynants [8]
propose a tabu-search heuristic for partitioning a demand-graph into SONET rings

1SDH is the name of the European standard; SONET is the american standard.

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 237

of different capacities. In both cases, only the cost of creating a ring is consid-
ered. Other tabu-based solution techniques are proposed by Laguna [17] and by
Aringhieri and Dell Amico [1]. Lee et al. [18] and Sutter et al. [23] propose alter-
native approaches to this problem, based on integer programming.

In the case of bidirectional SONET rings, once the rings are built, one must
cope with the Ring Loading Problem of balancing demands one way or the other
around a ring. This problem is well-solved in [16,22].

In Section 2 we formally define the problem and give complexity results. Sec-
tion 3 presents several approximation algorithms with performance guarantees.
Sections 4 and 5 are dedicated to practical solution methods, namely fast greedy
heuristics and a tabu search approach. The experimental behaviour and perfor-
mances of these methods are analysed in Section 6.

2. THE ADR PROBLEM

2.1. FORMALIZATION

We focus on the following problem: given a simple demand graph, we want
to partition it into sub-graphs (rings) at minimum cost. Every demand must
be satisfied (i.e.: the edge representing this demand must belong to a sub-graph
representing a ring); a demand cannot be split but a node can be shared by several
rings. A fixed cost r is imposed for creating a ring and a cost [is incurred for every
node linked to a ring. We call a r-link (for “link to a ring”) such a connection of
a node to a ring. Moreover, each ring capacity is a constant C'.

Formally, this leads to the following decision problem:

Assignment of Demands to Rings (ADR):

Instance: a simple graph G = (V, E), a demand per edge: d. € N,Ve € E, a
capacity C € N, costs r € Nand [€ N, a bound B € N;

Question: is there a partition of the edges of G into R sub-graphs G; = (V;, E;)
such that: Vi : Y, p de < Cand I3, [Vi| + 7R < B?

We shall also deal with a special case that we call ADRL (L means that only
links have a cost) where demands are unitary and only the cost of linking a node
to a ring is considered, i.e.: r = 0,1l = 1. In the literature, this particular case is
also called C-Edge-Partitioning Problem [12].

Let us point out that we only deal with the partition of the demand graph. The
best way of connecting nodes within a ring is not considered here.

2.2. COMPLEXITY

Table 1 sums up complexity results for the ADR problem and some subcases.
Most of these results are straightforward.

The polynomiality of the case C' = 2 is derived from an algorithm by Masuyama
and Ibaraki [20] that finds an optimal decomposition of a graph into k-chains, for
any positive k.

238 N. BRAUNER ET AL.

TABLE 1. Complexity results for ADR (m is the number of demands).

Restrictions Complexity
C r l demands graph
C=2 - - - - polynomial - O(m) [2,12]
C=3 - - unitary grid polynomial - O(m) [19]
C=3 - - unitary Ky p polynomial - O(m) [19]
C= - - unitary tree polynomial - O(m) 19
C even - - unitary Ko polynomial - O(m) 19
C>3 - 1=0 - - | N'P-complete (bin-packing) 9]
c>3 r=0 - unitary - strongly N'P-complete [2,12]

The N'P-completeness of the ADRL case when C = 3 is given by a reduction
from EPT (Edge Partition into Triangles [14]).

3. APPROXIMATIONS

In this section, we focus on the ADRL subcase, i.e. all demands are equal to 1,
and the cost r is zero. With these assumptions we have the following lower bound
on the value of a solution:

Proposition 3.1 (see also Goldschmidt et al. [12]). Let G = (V, E) be a simple
graph and S be a solution of ADRL for G. If L is the total number of r-links in S,

then:
LZ[1HH+8_MM Iﬂ/

Proof. Let L4 be the minimum number of r-links (nodes) of a ring satisfying d
demands. That is, £ is the number of nodes of the smallest clique with at least
d edges, so that

v(v —1)

>
5 >d

EdZmin{v v >0,

o1

A solution of ADRL for a capacity C'is a partition of the demand-graph into sub-
graphs of at most C' edges and the cost per edge of a ring of x demands is at least

%. Moreover the function x — % is a decreasing function. Therefore, the cost
per edge is at least % and a solution costs at least %|E|

The second lower bound is a trivial approximation of the first one and is asymp-
totically equivalent to it. O

The above bound is very pessimistic for most demand-graphs. However, it is
tight if the graph can be partitioned into C-cliques.

This bound is the basis to establish the performance guarantees of some algo-
rithms. The first one consists of using the Masuyama and Ibaraki decomposition

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 239

of a graph into 2-chains [20]. It is an exact algorithm for C' = 2; for other cases,
the following straightforward proposition holds:

Proposition 3.2. For every connected demand graph and for every capacity C >
3, Masuyama and Ibaraki’s algorithm for partitioning the edges of a graph into
2-chains yields a linear-time «-approximation for the ADRL problem, where:

B 3C _3 \/E

) "1+\/%+T-| —2V 2
In order to improve the performance, one can think of covering the graph with
trees larger than 2-chains. There exists an exact algorithm for solving ADRL on a
tree with capacity C' = 3 [19]. The solutions returned by such an algorithm have
at most 3’”24'1 r-links and they can be used as approximations for any connected
demand graph and any capacity C' > 3. The result is a linear-time (% + ﬁ) \/g—
approximation. Even if the guarantee is similar, in practice this leads to better
results than considering only 2-chains.

This approach of covering the demand-graph by trees has been extended by

Goldschmidt et al. [12] to trees with % to C' edges. They proved the following
result:

Proposition 3.3 (Goldschmidt et al. [12]). There exists an algorithm that parti-
tions a graph into trees of % to C edges, and this gives a linear-time a-approrima-
tion for the ADRL problem, with:

_.jC,./2
“=V3 c

Here is another approximation algorithm, based on a completely different approach
even though it also produces trees of at most C' edges. It is easy to see that
splitting an Eulerian path — assuming there is one — into subpaths of length at

most C provides a feasible solution for ADRL with cost at most |E| + {%—‘ If
the graph is not Eulerian, the same method holds, but we have to consider some
additional splits: when an odd-degree node is reached, there may be no more
unsatisfied demands to leave it. Every time this happens, a new ring must be
started, thus implying an additional cost of 1; however, if we take care to start
with an odd-degree node at the beginning of a ring or after a split, the number

of additional splits cannot exceed g, where ¢ is the number of odd-degree nodes
in the graph. Altogether, the maximal cost is |E| + P—g‘—‘ + g and we get the

following proposition:

Proposition 3.4. The heuristic based on the search for an FEulerian path is a
linear-time a-approximation for the ADRL problem, with:

a = 1+i+#+ifi g
N c 1ElC T 2B 1E]) V2

where § is the number of odd-degree nodes.

240 N. BRAUNER ET AL.

This last algorithm has a better guarantee on Eulerian graphs, or when C' <
[EI-1_than the algorithm by Goldschmidt et al. [12].

/2|E|-1

All those approximations build trees and their performance ratio is indeed the
ratio between the number of nodes per edge for a tree and for a C-clique, which
is very pessimistic.

Another completely different approach is to consider the ADRL problem as a
Set-Covering problem. Then the well-known Greedy Algorithm for set-covering
can be applied. This algorithm is a In(C')-approximation in the general case [4]

and a In (, / %)-approximation for ADRL [3]. This algorithm, however, is based on

the search for a minimum-cost ring at each iteration, which is a AP-hard problem
if the capacity C' is not fixed.

4. GREEDY ALGORITHMS

We now turn to a practical efficient solution of the ADR problem with no
restriction. Two main approaches are considered: first we focus on the number
of rings, second on the number of r-links. An experimental comparison of these
heuristics can be found in Section 6.

4.1. ADAPTATION OF THE FFD ALGORITHM

One can remark that, when the cost for a r-link is null (I = 0, and approximately
when | < r), the structure of the demand-graph does not matter anymore and
ADR is a Bin-Packing problem [9]. It is therefore natural to look for an adaptation
of the well-known and efficient First-Fit Decreasing (FFD) algorithm? [15], which
provides a guarantee of creating no more than %R* + 4 rings, where R* is the
minimum number of rings in a feasible solution. FFD is thus a %—approximation
algorithm for the case: r =1,1 = 0.

In order to integrate the cost of a r-link, several alternatives have been tried.
First, we refine the sorting of the demands: among the set of equal-value demands,
we sort them according to their endpoints so that adjacent demands are more likely
to be considered successively and put into the same ring. The second alternative
consists in taking some freedom with the FFD rules, and not putting a demand
in the first ring that can contain it, but in the one which maximizes the number
of common endpoints among such rings.

2The FFD algorithm is a mere application of the rules: “(1) sort the demands in non-increasing
order and (2) assign each demand to the first ring that can contain it”.

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 241

4.2. LOOKING FOR A SMALL NUMBER OF R-LINKS

The second approach favors a small number of r-links.

The first algorithm consists in greedily adding the “best node” to the current
ring, that is the node that allows to satisfy the greatest sum of demands, without
exceeding the capacity constraint.

Another greedy algorithm consists in adding the “best demand” to the current
ring, that is the greatest demand among those which have the largest number of
nodes in the current ring, and which can be added without violating the capacity
constraint. To speed up the algorithm, one may consider only the demands which
are adjacent to the latest one. This simplification turns out, not only to be faster,
but also to deliver slightly better solutions than the original method.

In addition to this algorithms, we also adapted the eulerian-path based approach
(described in the previous section) to design another algorithm, which works for
any demands and costs.

5. A TABU METHOD FOR THE ADR PROBLEM

In the previous section, we presented several greedy algorithms to build feasible
solutions for the ADR problem. We now try to improve those initial solutions by
means of a meta-heuristic. We propose here a tabu-search method (for description
and details about tabu-search methods, see Glover and Laguna [10,11]). The
experimental study of the behaviour and the performances of this tabu-method
can be found in Section 6.

Neighborhood: the neighborhood of a solution is merely defined as the set of all
feasible solutions that can be reached by exchanging one demand of a ring with
one (or zero) demand of another ring.

The first quality of this neighborhood is its size which permits quick iterations.
There is however a major drawback since the number of rings cannot increase.
We therefore miss some possibly optimal solutions, since only the most promising
solutions are kept. Therefore, a diversification step is added to allow a modification
of the number of rings.

Tabu list: let us suppose that we have just exchanged demand d; from ring R
and demand ds from ring Ry (d2 may be null, and thus only d; is added to Rs).
We implemented three different tabu-lists.

The first rule forbids moving dy or de. The second one forbids exchanging d
for d2 (no matter which rings they are in). The third one forbids putting d; back
into Ry or dg into Rs.

In all three cases, the movements are tabu for a fixed number n; of iterations.
Moreover, as those tabu-list management rules disallow more than the explored
solutions, the aspiration mechanism [11] may be turned on and thus some unex-
plored but tabu solutions may be considered if they are better than the best one
so far.

242 N. BRAUNER ET AL.

Diversification: we perform a diversification step, when no better solution has
been found for too long, as follows. First, every ring is split into p parts, and each
demand is assigned to a part randomly with equal probability. Then all those
parts are greedily merged into new rings according to their common vertices. This
procedure may increase the number of rings, but not much, and thus it balances
the drawback of the neighborhood.

In our implementation of the tabu-search, every procedure is parameterized
(including the greedy algorithm used for the initial solution) and every strategy
described above can be used.

6. EMPIRICAL RESULTS

In this section, we present an experimental study of the solution methods de-
scribed above. All procedures have been coded in C++ and run under Linux on
a Pentium IIT with 256Mo RAM. The programs, as well as the tests, are available
from the web (http://www-leibniz.imag.fr/"lemaire/).

6.1. THE DATA

The algorithms have been tested on several kinds of generated instances.

The “Gnp” and “geometric” instances are taken from Goldschmidt et al. [13]
and tend to represent real instances. These graphs are parameterized by their
number n of nodes; every node is given a weight (1 with probability 0.8, and 2
with probability 0.2). An edge that connects two nodes of weights w;, w; carries a
demand of w; +w; — 1. In a “Gnp” graph, two nodes are connected with a given
probability p, independently of the other pairs of nodes. In a “geometric” graph,
two nodes, uniformly distributed on a square, are connected if their Euclidian
distance is less than a given bound L. Parameters p and L have been chosen so
that graphs have a total demand of about 100. Ring capacity C for those graphs
was chosen to be equal to 40 and 60.

In addition to those realistic graphs, we generated “purely” random graphs.
Those “rand” graphs are parameterized by n, p, and d: they have n nodes, an
edge has probability p to exist and, if it exists, it carries a demand uniformly
distributed between 1 and d. Ring capacity C for those graphs was chosen to be
equal to 25, 40 and 60.

We also used simple graphs, such as grids, bipartite complete graphs, and trees,
with unitary demands and a ring capacity C' of 3.

For every instance, we considered the different combinations of the costs r and
[, taken in 0, 1 and 10.

A large number of other tests has been performed to find good tunnings for the
algorithms. They do not appear here.

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 243

6.2. THE RESULTS

Many tests have been carried out in order to study the behavior of our tabu
search method. What follows is a representative synthesis of all the gathered
results.

General behavior: for almost every instance, the behavior is the same: most of
the gain is obtained during the first iterations (but with some plateaux a pure-
descent heuristic would not go through). After this relatively short phase, there
are few new best solutions found. However, this classical tabu-search behavior is
dependent on the settings.

Some good settings: for nearly all instances, the third management rule for the
tabu-list leads to the best results. As to the tabu list length, a value of n, = 3/|E|,
where |E| is the number of demands, yields good results, which may be slightly
improved by increasing n; slowly during the iterations.

The diversification of the solutions does deserve further work. Our method per-
forms poorly if rings are split into only two parts. However, gains are obtained
with 3 or 4 parts. Moreover, at least with unitary demands, to force a diversifi-
cation at the beginning of the search is beneficial most of the time. For variable
demands, it seems to be worthwhile to develop further refinements.

The initial solution does not seem to have a big influence on the final solution,
as long as it is not too bad. That is, we can use any of our greedy algorithms.

Once we knew some good settings for the tabu-search, we have tested and com-
pared the different heuristics: the FFD-based algorithm (FFD), the best-node
algorithm (BN), the Eulerian-path based algorithm (EUL), the best-demand al-
gorithm (BD), and the tabu-search (TS) on the instances described above.

The settings for TS were as follows. We used FFD as initial algorithm; we used
the third management rule for the tabu-list and this list was set to a constant
length of 15; we forced diversification after 500 unsuccessful iterations and then
the rings were split in 3 parts. These settings were chosen since they appear to be
good instance-independent settings for TS (see above).

From our tests, it appears that the cost r, for creating a ring, does not have a
big influence on the behavior and on the relative performance of the algorithms
(both the greedy algorithms and the tabu search). Indeed, the number of rings
hardly changes from one solution to the other; hence the gain is made on the
number of r-links. Apart from this cost, the other parameters of an instance are
greatly influent, in particular the type of the graph. The main results are gathered
in Tables 2—4, but the comments include additional results.

On simple instances, the algorithms perform well (¢f. Tab. 2). On grids and
bipartite complete graphs of unitary demands, EUL is always very close to the
optimal value, with an average distance of 0.26%. BN is by far the worst on this
kind of instances. On trees, BD takes the advantage over the other algorithms
whereas FFD performs poorly.

244 N. BRAUNER ET AL.

TABLE 2. Performances of greedy and TS algorithms on simple
instances with » = [. Gap is the gap to optimum, if known (grids
and K, p), or to a good lower bound (trees).

graph |E| algorithm | gap (%)
FFD 9.24
grids n=3510,15,20,25,50 | BN 11.49
nXp s 015 EUL 0.52
Cc=3 A BD 3.51
FFD+TS 0.00
FFD 2.87
Knp n = 3,5,10,15,20,25,50 BN 14.07
C=3 p=3,5,10,15 EUL 0.00
P BD 1.03
FFD+TS 0.00
FFD 11.24
trees of m nodes BN 8.75
ol n=3,510,15,20,25,50 | EUL 7.10
BD 4.84
FFD+TS 1.69

Even without a good initialization, T'S finds optimal solutions for all cases of
grids and K, , in less than 500 iterations (in most cases in less than 100 iterations).
On trees, it permits to reach quickly near-optimal or even optimal solutions.

On most realistic graphs, FFD is the best greedy algorithm and EUL the worst.
However, the solutions given by the different greedy heuristics do not differ much,
usually by less than 10%. On random graphs, FFD and EUL exchange their role:
FFD is the worst, EUL the best, and this tendency increases as the graph becomes
bigger and/or more dense (that is: with more edges for the same number of nodes).
Indeed, for very big and dense graphs, EUL is by far the best greedy algorithm
and FFD the worst (cf. Tab. 3).

TS permits a gain of at least about 10%, and generally more, over the best
greedy solutions, with only few iterations (less than 500). Going on with TS for a
longer time does not provide much improvement on realistic instances, but allows
few-percent additional gains on random graphs (c¢f. Tab. 4).

The fact that TS mainly fails to find improved solutions after the first 500 it-
erations or so reveals the lack of efficiency of the diversification phase.

All the greedy heuristics are very quick and they all have good performances.
Indeed they all outperform the best guarantees provided by the algorithms of
Section 3 by about 60% on realistic graphs, and by more than 100% on big random
graphs (cf. Tab. 3).

The two best greedy algorithms appear to be FFD and EUL, depending on the
type of graph. An advantage of using these two heuristics together is that they are
really complementary: when one performs poorly, the other one does very good.

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 245

TABLE 3. Performances of the greedy algorithms on realistic and
random instances (r = 0,1 = 1). RP is the ratio with the best
greedy solution; BG is the ratio with the best guarantee from

Section 3 3.
instance algorithm | CPU-time (s) | RP BG
6 “gup” graphs FFD 0.000 1.00 | 0.40
n—15.p— 95 BN 0.003 1.06 0.36
c _ 40 EUL 0.000 1.06 0.37
BD 0.002 1.03 0.34
6 “geometric” graphs FFD 0.000 1.01 0.38
n— 15.d— 8 BN 0.000 1.20 0.37
c _ 40 EUL 0.002 1.09 0.38
BD 0.002 1.14 0.35
6 “rand” graphs FFD 0.002 1.00 0.37
n—=15p=85d=5 BN 0.000 1.06 0.39
’C _ 40’ EUL 0.002 1.04 0.38
BD 0.002 1.04 0.38
6 “rand” graphs FF D 0.010 135 | 118
n=T5p=50.d="5 BN 0.020 1.19 1.04
’C _ 25’ EUL 0.000 1.00 0.87
BD 0.050 1.22 1.07

TABLE 4. Performances of TS on instances of Table 3, for 1500
and 5000 iterations. The gain is (1) over the initial solution and
(2) over the best greedy solution; B is the iteration when the best
solution was found.

instance fiter | CPU-time gain (%) BI
(s) (1) (2)

6'” i 52%}? 1500 1.6 19.67 | 19.34 | 377

ol 5000 5.3 19.67 | 19.34 | 454

0 gfloinelt;fl _g?phs 1500 2.0 891 | 820 | 266

o2 5000 6.4 891 | 820 | 301

6 1r5and_ %gazhf 5 | 1500 1.0 4212 | 2096 | 846

[t 5000 3.2 4357 | 2295 | 2673
C =40

6 7r5and_ %Bazhi 5 | 1500 188 36.67 | 1.15 | 1491

"= ’C{’__%’ - 5000 629 39.92 | 352 | 4428

3Choosing 7 = 0 unables this comparison; however this is not a limitation, since r do not
seem to have a big impact on the solutions. Furthermore, the guarantees are computed using a
lower bound instead of the optimal solution, and are thus optimistic.

246 N. BRAUNER ET AL.

TS, as it is implemented and with standard instance-independent settings, per-
mits to achieve improvements of more than 10% on realistic instances in little
time.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented and formalized the ADR problem, which turned
out to be N'P-hard. Several fast approximation algorithms for the particular case
of ADRL have been recalled or introduced. An interesting point would be to find
better bounds than the pessimistic ones proposed.

For practical solutions, fast and efficient greedy algorithms have been proposed,
together with a tabu-search approach to improve the solutions they deliver. The
results are good and the approach can be considered to be successful. However, the
method leaves room for improvements. In particular, the diversification step de-
serves more attention; a dynamic management of the tabu list is also very promis-
ing according to some preliminary tests.

REFERENCES

[1] R. Aringhieri and M. Dell’Amico, A Variable-Neighborhood Variable-Objective Tabu Search
Algorithm for the SONET Ring Assignment with Capacity Constraints. DISMI, Universita
di Modena e Reggio Emilia, 10 (2001).

[2] N. Brauner, Y. Crama, P. Lemaire and C. Wynants, Complezité et approzimation pour
la conception de réseauz SONET/SDH. Technical Report 61, Les Cahiers du Laboratoire
Leibniz-IMAG, (October 2002). http://www-leibniz.imag.fr/LesCahiers/

[3] N. Brauner and P. Lemaire, A Set-Covering Approach for SONET Network De-
sign. Technical Report 62, Les Cahiers du Laboratoire Leibniz-IMAG (October 2002).
http://www-leibniz.imag.fr/LesCahiers/

[4] V. Chvatal, A Greedy Heuristic for the Set-Covering Problem. Math. Oper. Res. 4 (1979)
233-235.

[5] ETSI. ETSI — Telecom Standards. http://www.etsi.org

[6] ETSI. Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH); Network
protection schemes; Rings and other schemes. Technical specification (November 1997). ref:
TS 101 010 v1.1.1.

[7] ETSI Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH); Network
protection schemes; Types and characteristics. Technical specification (November 1997). ref:
TS 101 009 v1.1.1.

[8] B. Fortz, P. Soriano and C. Wynants, A Tabu Search Algorithm for Self-Healing Ring
Network Design. Eur. J. Oper. Res. 151 (2003).

[9] M.R. Garey and D.S. Johnson, Computers and Intractability (A Guide to the Theory of
NP-Completeness). W.H. Freeman And Company (1979).

[10] F. Glover and M. Laguna, Modern Heuristic Techniques for Combinatorial Problems, Chap-
ter 3: Tabu Search. C.R. Reeves, Blackwell Scientific Publications edition (1993).

[11] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers, London (1997).

[12] O. Goldschmidt, D.S. Hochbaum, A. Levin and E.V. Olinick, The SONET Edge-Partition
Problem. Networks 41 (2003) 13-23.

[13] O. Goldschmidt, A. Laugier and E.V. Olinick, SONET/SDH Ring Assignment with Capacity
Constraints. Discrete Appl. Math. 129 (2003) 99-128.

(14]

(15]

[16]
(17]
(18]
19]

20]
(21]

(22]
(23]

[24]
(25]

APPROXIMATION ALGORITHMS FOR SDH/SONET NETWORKS 247

I. Holyer, The NP-completeness of some edge-partition problems. SIAM J. Comput. 4 (1981)
713-717.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and R.L. Graham, Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3 (1974)
299-325.

S. Khanna, A Polynomial Time Approximation Scheme for the SONET Ring Loading Prob-
lem. Bell Labs Technical Journal (1997) 36-41.

M. Laguna, Clustering for the Design of SONET Rings in Interoffice Telecommunications.
Manage. Sci. 40 (1994) 1533-1541.

Y. Lee, H.D. Sherali, J. Han and S. Kim, A branch-and-cut algorithm for solving an intraring
synchronous optical network design problem. Networks 35 (2000) 223-232.

P. Lemaire, Optimisation de réseaux SONET/SDH : éléments théoriques et résolution pra-
tique (juin 2001). Mémoire de DEA.

S. Masuyama and T. Ibaraki, Chain Packing in Graphs. Algorithmica 6 (1991) 826-839.

D. Mili, Self-Healing Ring Architectures for SONET Network Applications.
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/dm9/article2.html

A. Schrijver, P. Seymour and P. Winkler, The Ring Loading Problem. SIAM J. Discrete
Math. 11 (1998) 1-14.

A. Sutter, F. Vanderbeck and L.A. Wolsey, Optimal Placement of Add/Drop Multiplexers:
Heuristic and Exact Algorithms. Oper. Res. 46 (1998) 719-728.

T.-H. Wu, Fiber Network Service Survivability. Artech House, Inc. (1992).

The SONET Home Page. http://www.sonet.com

To access this journal online:
www.edpsciences.org

