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COERCIVITY PROPERTIES AND WELL-POSEDNESS
IN VECTOR OPTIMIZATION
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Abstract. This paper studies the issue of well-posedness for vector
optimization. It is shown that coercivity implies well-posedness with-
out any convexity assumptions on problem data. For convex vector
optimization problems, solution sets of such problems are non-convex
in general, but they are highly structured. By exploring such struc-
tures carefully via convex analysis, we are able to obtain a number of
positive results, including a criterion for well-posedness in terms of that
of associated scalar problems. In particular we show that a well-known
relative interiority condition can be used as a sufficient condition for
well-posedness in convex vector optimization.
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1. INTRODUCTION
In this paper we are concerned with the following vector optimization problem,

(P) min  F(z)
s.t. xz e,
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where F(z) = (fi(x),..., fm(x)) : R® — IR™ is a vector-valued function, and
C C IR" is a nonempty closed set. For the clarity of exposition, we assume
throughout that each f; is a continuous function. When each f; is a finite convex
function, and C'is a closed convex set, (P) is a convex vector optimization problem
(CVOP for short).

There are several solution concepts associated with (P). Throughout this paper,
we will use the notion of weakly efficient solution, which is defined as follows.

Let W = IR™\(—int IRT'), where int denotes interior. A vector z € C'is a
weakly efficient solution of problem (P) if and only if

F(z)-F(@)eW Vzel.

Denote by E,, the set of all weakly efficient solutions to problem (P). In what
follows, we assume that, for each i € [1,m],

argming o fi(x) # 0. (1)

Assumption (1) implies in particular that E, # 0 since the following inclusion
holds always

Ey D Uxenargming o fr(z),
where fy(z) = ATF(z) and A = {(A1, ..., An)T | X > 0Vi € [L,m], >0, A =1}
This implies also that F(E,,) is nonempty. When (P) is a CVOP, by [18, Th. 11.2]
or [21, Cor. 3.4.1], we have

Ey = Uxenargming o fa (). (2)

Denote the parametric problem: minimize fj(z) = AT F(x) subject to the con-
straint € C by (P(X)). Then (2) reveals a basic connection between (P) and the
parametric problem (P(\)). This basic observation is a key for much of our stud-
ies on CVOPs, which enables us to study CVOPs through a family of parametric
scalar convex optimization problems.

For scalar optimization problems, the theory of well-posedness has a long his-
tory, and has been extensively studied. See [10] for surveys of the results up to
1993, and [14,22] and references therein for recent developments on the subject.
Well-posedness properties play an important role in optimization theory because
of their links to several basic issues in optimization as well as the usefulness in
the convergence analysis of many algorithms. For vector optimization problems,
“local” properties of well-posedness have been studied in [9,13,17], among others.
But it has not been studied in a “global” sense, which will be carried out in this
paper. We say that problem (P) is well-posed if, F(E,) is closed, and for any
sequence {z(n)} C C,

[dist (F(z(n)) | F(Ey)) — 0 asn — oo] = [dist (z(n) | Ey) — 0 as n — o0,
(3)
where dist (xz | Ey,) and dist (y | F(E,)) denote the Euclidean distances between
the vector z and E,,, and the vector y and F(E,,) respectively. This notion of
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well-posedness is an extension of Tikhonov’s well-posedness in scalar optimization.
The generalization amounts to removing the uniqueness assumption on solution
sets.

In view of (2) and (3), we observe that there are two basic questions to be asked:

(a) Suppose that (P) is a CVOP, that the parametric problem (P())) is well-
posed over A (formal definition to follow), and that F(E,) is closed. Is (P)
well-posed in the sense of (3)7

(b) When is F(E,,) closed?

Resolutions for question (a) will enable us to study well-posedness of a CVOP in
terms of that of the parametric problem (P())). As noted above, well-posedness of
scalar optimization problems have been well studied. Question (b) has an affirma-
tive answer when FE,, is compact, and F' is continuous. This is a straightforward
consequence of the fact that the image of a compact set under a continuous map-
ping is compact. Apart from the compactness assumption, to our knowledge, this
issue has not been very well studied in the vector optimization literature. The
closeness of F(E,), however, is a natural requirement in view of well-posedness
defined by (3), and serves as a type of regularity condition for (P). The aim of
this paper is to study questions (a) and (b).

The paper is organized as follows. In Section 2, we show that (P) is well-
posed under the level-coercivity assumption regardless of whether (P) is a CVOP
or not. Moreover, our analysis reveals that the level-coercivity of an associated
function for (P) yields certain error bounds, which is potentially useful for the
convergence analysis of algorithms to solve (P). When (P) is a CVOP, we do
obtain some very useful conditions under which (P) is well-posed. In particular,
we give an affirmative answer for question (a) (see Sect. 3). Section 4 is devoted to
study question (b). By establishing a result on the closeness of F/(C) first, which
is interesting in its own right, we are able to obtain some verifiable conditions
under which F(E,) is closed without the boundedness assumption on E,,. As
a consequence, we show that a well-known relative interior (or weak coercivity)
condition, which is shown to be fundamental in scalar convex optimization [1, 3],
is sufficient for well-posedness of (P). We note that it is possible to replace F(E,)
by cl(F(Ey)) when F(E,) is not necessarily closed. But we will not pursue this
approach in this work.

The following notation will be used throughout the paper. We denote
by [1,m] the set {1,2,...,m}. For problem (P), let the level set
L(q)={x € C| F(q) — F(x) € W}, where g € C. It is easy to see that

Ew = quC L(Q)
The above observation implies in particular that F,, is a closed set since each L(q)
is a closed set, and E,, is the intersection of closed sets L(q).
For any given closed nonempty set X C IR"™, we write Ix for the indicator

function of set X, and we define the recession (horizon) cone of X [20, Def. 3.3] as

X% = {v |3 sequences {v(n)} in X and A(n) | 0 with lim,,—, 1o A(n)v(n) = v} -
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For any proper lower semi-continuous function h : R" — IR U {400}, we say
that h is level-bounded if {x | h(z) < a} is either empty or bounded for any real
number «, and h is level-coercive if h°°(z) > 0 for all  # 0 where the recession
(horizon) h% [20, Th. 3.21] is defined as follows

h*(v) = lim inf M(A L) Yv e R™, (4)
310 zeB(v,5),A€(0,6)

where IB(v,d) denotes the closed ball with radius 6 and centered at v. The level
boundedness of h corresponds to having h(z) — oo as |z| — oo, and the level-
coercivity of h is equivalent to the following: for some « > 0, there exists a
B € (—o0,00) such that

h(z) > a|z| + 8 Vz € R™.

For the parametric problem (P()\)), we denote inf,ec ATF(z) by p(\), and
argmingc AT F(z) by Sy respectively.

2. COERCIVITY, LEVEL BOUNDEDNESS AND ERROR BOUNDS

The level-coercivity and level boundedness of a given function are important
notions in optimization. They describe the growth behavior of the given function.
For a given scalar optimization problem, these growth properties are often used
as sufficient conditions for the existence of optimal solutions as well as for the
convergence analysis of many iterative algorithms for finding these solutions. The
following theorem illustrates the level-coercivity and level boundedness properties
also play an important role in vector optimization.

Theorem 2.1. For problem (P), assume that (1) holds, and that F(E,,) is closed.
Let g(x) = dist (F(x) | F(Ey)). Consider the following statements:

(1) fi + Ic is level-coercive for each i € [1,m)].

(2) The set F(E,) is compact, and g+ Ic is level-coercive.

(3) The set F(E,) is compact, and the function g(x) has the property that
g(xz(n)) — oo whenever {x(n)} C C and ||z(n)|| — oo, i.e., g+Ic is level-bounded.

(4) The set Ey, is nonempty and compact.
Then the following holds:

Statement (1) implies statement (2), statement (2) implies statement (3), and
statement (3) implies statement (4). When (P) is a CVOP, statements (1)
through (4) are equivalent.

Proof. [(1) = (2)]: It is easy to see that E,, is nonempty. If E,, were unbounded,
then there would exist some unbounded sequence {z(n)} C E,. By the level-
coercivity of f;+ Ic for each i € [1,m], f;(x(n)) — oo asn — co. Let Z be a given
point in C. Then F'(Z) — F(x(N)) € —int (RY") for some N sufficiently large. This
shows that 2(N) cannot be in E,,. The contradiction proves that E,, is compact.
This in turn implies that F(E,,) is nonempty and compact by the continuity of F.
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By the hypothesis, f1 + I¢ is level-coercive in particular. Since F(E,,) is bounded,
a simple calculation shows that g(x) > |f1(x)| + 3 for some 5 € R. Hence g + Ic
is level-coercive since |fi| + I¢ is.

[(2) = (3)]: This is evident since the level-coercivity implies the level bounded-
ness.

[(3) = (4)]: If B were unbounded, there would exist an unbounded sequence
{z(n)} ¢ E, C C. By the hypothesis, F(z(n)) is bounded since F(E,,) is
bounded. This in turn implies that g(x(n)) is bounded and |z(n)| — oo asn — oo,
which contradicts statement (3).

When (P) is a CVOP, we have proved in [6] that (4) and (1) statements are
equivalent. Therefore, all statements are equivalent. O

Remark. When (P) is not a CVOP, it is easy to see that (4) does not imply (3).
The following example shows that (3) does not imply (2): let F((z) : R — R be
given by F(z) = y/]z], and C' = R. Then (2) fails but (3) holds. To illustrate that
statement (2) does not imply statement (1) in general, we consider the following
example: let F(x) : R2 — R? be given by F(z) = (fi(z1,22), f2(z1,72)) =
(22 + /|z2], /]71] + 23), and C = R2%. Since f1 and fy are level-bounded, but
not level-coercive, (1) fails. We now show that (2) holds. To see this, we observe
first that the level-boundedness of fi; and fo implies that F,, is nonempty. The
boundedness argument for F,, follows the same line as for the boundedness of E,,
in the proof of the implication [(1) = (2)]. Secondly, for any (y1,y2) € F(Ew),
which is a bounded set since F,, is, we have

9le) = in V(i w2) = y1)? + (a2, 22) — y2)?
(y1,y2)EF(Eyw)
1
> — lnf Ty, _ + T, o
— 2 (ylyyz)eF(Ew)ﬂfl( 1,22) — y1| + [fa(z1,22) — y2l)
1
> (2% +a3) -

for some real number 3. This is enough to show that ¢ is level-coercive.

When (P) is a CVOP, various characterizations of the nonemptiness and com-
pactness can be found in [6]. For generalizations of these characterizations and
applications, see [7,11,12].

The level-coercivity property is closely related to certain error bounds as been
illustrated by the author [8] for scalar optimization problems. We now give a conse-
quence of statement (2) in Theorem 2.1 in terms of error bounds and well-posedness
for vector optimization (P). In [8] results were also given under conditions weaker
than those of level-coercivity in the presence of the convexity of certain residual
functions. However, it is very unlikely that g in Theorem 2.1 will be convex for
vector optimization problems. The proof follows the same line of the arguments
used by the author in [8]. For completeness, we include a proof. We begin with a
lemma first.



200 S. DENG

Lemma 2.2. Assume that F(E,) is nonempty and closed, and that the sequence
{z(n)} C C satisfies dist (F(z(n)) | F(Ey)) — 0 as n — oo. If {F(x(n))}
converges to y, then y € F(E,,). If it is further assumed that {x(n)} is a bounded
sequence, then any cluster point of {x(n)} is in E,.

Proof. Let y(n) € F(E,) be such that dist (F(z(n)) | F(Ey)) = ||F(z(n))—y(n)||
for each n. By the triangular inequality for a norm, we have

ly —y()| < [F(x(n) =yl + [F(z(n)) —y(n)].

This shows that y is the limit of {y(n)}. Since F(FE,,) is closed, y € F(E,).

Suppose now that {z(n)} is a bounded sequence. Let & be a cluster point of the
sequence. Then there is a subsequence of {z(n)} converging to . Without loss
of generality, suppose {z(n)} is a convergent sequence. By the continuity of F,
F(z(n)) converges to F'(&). So F(&) € F(E,), which means

F(z)— F(#) e W vz € C.

This shows that € E,, by definition. O
The main result on error bounds and well-posedness of (P) follows.

Theorem 2.3. For problem (P), suppose that the basic assumptions in state-
ment (2) of Theorem 2.1 hold. Then the following error bound holds: for any
€ > 0, there is some T(€) > 0 such that

dist (z | Ey) < 7(€)g(x), Vee{yeC |dist(y| Ey,) > €} (5)
As a consequence, the error bound (5) implies (P) is well-posed in the sense of (3).

Proof. Suppose that (5) does not hold for some e > 0. Then there is a sequence
{z(n)} C C with

dist (z(n) | Ey) > €Vn, and g(z(n))/dist (z(n) | Ey) — 0 as n —oo.  (6)

If {x(n)} is bounded, then g(z(n)) — 0 by (6). So any cluster point of {z(n)}
must be in F,, by Lemma 2.2. Again by (6), this is impossible. We conclude that
any subsequence of {z(n)} must be divergent. Without loss of generality, we may
assume that |z(n)| — oo as n — oo, and z(n)/|z(n)| — d # 0. Let Z(n) € E,,
such that dist (£(n) | Ew) = |z(n) — Z(n)|. Since E,, is bounded, z(n)/|z(n) —

Z(n)] — d € C*. Tt follows that % — 0 as n — oo, which is

equivalent to saying that lim, W = 0 since {#(n)} is bounded.
This implies that g + I is not level-coercive. The contradiction establishes (5).
For the second part, suppose that (P) is not well-posed. Then for some e > 0,
there is a sequence {z(n)} C C with g(z(n)) — 0 and dist (z(n) | Ey) > € for all
n=1,2,.... In view of (5), there is some 7(¢) > 0 such that dist (z(n) | Ey) <
7(€)g(x(n)). But this would imply that, for n — oo, dist (z(n) | E,) — 0 as
g(z(n)) — 0. The contradiction completes the proof. O
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3. WELL-POSEDNESS

When (P) is a CVOP, E,, is not convex in general. However, thanks to (2),
the structure of E,, can be explored by a family of convex optimization prob-
lems (P(A\)). To understand (P) better, we need to examine (P(X)) carefully.
Generally speaking, the parametric problem (P())) can be studied in a para-
metric optimization setting. The references on parametric optimization are vast.
The lower semi-continuity property of the value function has been extensively
studied in the literature under the boundedness assumption on the solution set
at a reference point as well as certain convexity assumptions on problem data,
see [5,20, Chap. 3] and references therein. Due to the special structures of (P(X)),
we are able to sharpen the results by weakening some of the underlying assump-
tions. The following result gives a sufficient condition for the lower semi-continuity
of the value functions. Our contribution is that we are able to establish the lower
semi-continuity of value functions without either the boundedness assumption on
solution sets or the convexity assumption on problem data.

Theorem 3.1. For the parametric problem (P(\)), assume that, for each X € A,
Sy is nonempty. Then p(-) is continuous on A.

Proof. We first show the easy part that p is upper semi-continuous. For any
A € A, let {\(n)} C A be any sequence converging to A, then there exists x(n) €
argminxec)\(n)TF(ac) such that p(A(n)) = A(n)" F(z(n)) < A(n)" F(&), where
z € argmin, AT F(z). From A(n)" F(z) — ATF(z) as n — oo, it follows that p(-)
is upper semi-continuous at A.

We now proceed to show that p(-) is lower semi-continuous at . Suppose
that p(-) is not lower semi-continuous at A\. Then there exist sequences {\(n)}
with A(n) — A, {z(n)} C C, and some € > 0 such that

M) Fz(n)) = p(A(n)) < p(X) —€ Vn. (7)

Let I = {i € [1,m]| \; # 0}, and I" = [1,m]\I. Since argmin, ¢ f;(x) is nonempty
for each i € [1,m], f; is bounded below on C' for each i € [1,m]; that is, for some
a € R,

filz) > « Vi e [l,m], VzeC. (8)
This implies that, for any x € C,

D oA fi(@) = a Y Ni(n). (9)

iel’ icl’

From (7) and (9), we have, for all n,

@Y i)+ () filz(n) < D Nin)fi(z(n) <p(A) —e. (10)

icl’ icl ie[1,m]
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Since Ai(n) — A; > 0 for each i € I, and ad>,.; Ai(n) — 0 as n — oo, (10)
implies there is some § > 0 such that fi( (n)) < g for all i € I. This observation
along with (8) implies that

{fi(z(n))} is a bounded sequence for each ¢ € I and all n. (11)

Choose N such that

QZM(N + Z()‘i(N)_S\i)fi(x(N)) <e/2.

el icl
Again, it follows from (10) that
SORSV) — /22 SRS + a0 DA + F6N) - A fia(N))
icl icl el icl
SAN)TF(x(N) <p() e (12)

Since Y, Aifi(z(N)) > p(X), the inequality (12) implies that p(A) < p(X) — €/2,
which is impossible. This completes the proof. O

Definition 3.2. For a given A € A, (P ()\)) is well-posed if, S5 # 0, and for any
sequence {z(n)} C C with
NF(z(n)) — p(A) asn — oo] = [dist (z(n) | S3) — 0 asn — od].

We say that the parametric problem (P(X)) is well-posed over A if (P(X)) is well-
posed for every A € A.

The main result of this section follows.
Theorem 3.3. Assume that (P) is a CVOP, that (1) holds, and that F(E,) is
closed. Then (P) is well-posed in the sense of (3) if

(P())) is well-posed over A. (13)

Proof. Let {z(n)} C C be a sequence with dist (F'(x(n)) | F(E,)) — 0. We note
that the following holds without (13). Since F(E,,) is closed, for each x(n), there
is an &(n) € E,, such that

dist (F(z(n)) | F(Ew)) = ||[F(z(n)) — F((n))[| = 0 asn —oo.  (14)

A
Z(n) € arg minxec)\(n)TF(m). By the compactness of A, {A(n)} is a bounded
sequence. Without loss of generality, suppose that A(n) — A € A. By (14), and
the boundedness of A(n),

Since (P) is a CVOP, there is some A(n) € such that
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If (13) holds, by Theorem 3.1,

An)TF(3(n)) = p(A(n)) — p(A) as A(n) — X. (16)

Relations (15) and (16) imply that A(n)” F(z(n)) — p()) as n — co. We claim
that
NTF(x(n)) — p(A).

To see this, let I = {i € [I,m] | \i # 0}, and I’ = [1,m]\I as in the proof
of Theorem 3.1. Since f; is bounded below on C for i € [1,m], the sequence
{fi(x(n))} is bounded below in particular. For each i € I, since p(A(n)) — p(A),
we have the sequence { f;(Z(n))} is bounded by a similar argument used in the proof
of Theorem 3.1 (see (11)). This in turn implies that, for each ¢ € I, {fi(z(n))} is
bounded by (14). So for any € > 0, there is an N such that, for all n > N,

D (i = Ailn)) fi(w(n))| < /2,

icl

and
YA file(n)) > —e/2
el
since A(n) — X and \;(n) | 0 for i € I'. Tt follows that, for all n > N,

0 < XTF(z(n)) - p(A)

el

= > i) fi(z(n)) = p(A) + Y- (A = Xi(n)) fila(n))
el i€l

< > ) filz(n) = p(\) +¢/2 = Niln) fi(z(n)
i=1 icl’

< A(n)"F(z(n)) —p(A) + <.

Since )\(n)TF(xgn)) — p(A) and e is arbitrary, we proved the claim that
M F(x(n)) — p()). It follows that dist (x(n) | Sy) — 0 since (P())) is well-posed.
By UxeaSx = Eu,

dist (z(n) | By) < dist (z(n) | S5) — 0. O
4. CLOSENESS CRITERIA FOR F(E,)
As noted before, F(E,) is closed whenever E,, is compact, and F' is continu-

ous. For the convex case, this is equivalent to the level-coercivity of each f; + I¢
(see Th. 2.1). When E,, is unbounded, we can easily construct examples such
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that F(E,,) is not closed. This is a distinct feature for vector optimization prob-
lems. The following lemma gives a sufficient condition under which F(E,) is
closed. This result was given in [16, Cor. 1.2, p. 136]. For completeness, we
include an elementary proof.

Lemma 4.1. For problem (P), assume that F(E,) is nonempty, and F(C) is
closed. Then F(E,) is closed.

Proof. Let {y(n)} C F(FE,) such that y(n) — § as n — oco. Since F(C) is closed,
ge F(C). Ifg ¢ F(E,), then there is some x € C such f;(x) < g; for all i € [1,m)].
Let € = minjeq1,,,)(%: — f(x)). Since y(n) — ¥, there is some natural number N
such that y;(N) > g; — 5 > fi(z) for i € [1,m]. But y(N) = F(z(N)) for some
z(N) € E,. This shows that 2(N) cannot be in E,,. The contradiction completes
the proof. O

Lemma 4.1 indicates that we can prove the closeness of F(C') instead. In the
presence of the convexity on C' and on each f;, the closeness of F/(C) can be proved
under weaker conditions. The closeness of images of sets under operations is an
important issue in optimization. It has been mainly studied for the image of a
closed convex set under a linear transformation [18, Th. 9.1] as well as [2,15], and
for the image of a closed set under linear or nonlinear mappings in the presence
of coercivity conditions [20, Th. 3.10, exercise 3.16].

Recall that, for a nonempty convex set C, the linearity space of C is, by defini-
tion [18, p. 65], (—C°)NC°; for a proper lower semi-continuous convex function
h, the constancy space is

My ={xeR"|h>*(x) <0, h™®(—z)<0},

which is the largest subspace contained in the recession cone of h. The recession
cone of h, by definition, is the set {x € IR™ | h*°(z) < 0}. The following theorem
provides a general sufficient condition for the closeness of the image of a convex
set under R''- convex mappings. This result is interesting in its own right.

Theorem 4.2. Let C is a nonempty convez set, and F = (f1, fa, -, fmsl1,12, - - -,
lp), where each f; is a finite convex function, and each ly(x) = afx + oy is an
affine function. If

d ()TN (N, {z e R™ |f(x) <0}) N (NY_,ai) is a subspace, (17)
then cl (F(C)) = F(cl (C)).

Proof. The inclusion ¢l (F(C)) D F(cl (C)) follows easily from the continuity
of F.

We now show the reverse inclusion. Denote the subspace in (17) by L+, where
L* is the orthogonal complement of the subspace L C IR". Let y € cl (F(C))
and let {z(n)} C cl (C) be a sequence with F(z(n)) — y as n — oo. By (17),
L+ C (—d (C_')oo) Nl (C_’)oo. Write z(n) = zp(n) + xp.(n) with zp(n) € L
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and zp1(n) € LY. Since —zp1(n) € Lt C (—c (C)F)ne (C)F, zr(n) =

z(n) —zp1(n) € c (C) by [18, Th. 8.1]. By [18, Cor. 8.6.1], f;(z(n)) = fi(zr(n))
for each i € [1,m] since zj1(n) € My,. The same argument also implies that
le(z(n)) = lk(xr(n)) for each k € [1,p]. We claim that

{zr(n)} is a bounded sequence.

To see this, suppose that {z1(n)} is unbounded. Without loss of generality, sup-
pose that

zr(n)/[|zr(n)|] — d e L.

It is clear that d € cl (C’)Oo. Since {F(zr(n))} = {F(z(n))} is a convergent
sequence, it follows that d is a direction of recession for each f; with ¢ € [1,m].
So ff°(d) < 0 for each i € [1,m]. We can refine this observation for each I by
the hypothesis. For each k € [1,p], a simple computation shows that d € aj
since Iy (xz(n)) is convergent and [y, is affine. This shows that d € L. Therefore
0+#de LNL*+={0}. The contradiction shows that {z(n)} must be a bounded
sequence. Without loss of generality, suppose that zr(n) — T € cl (C_’) By the
continuity of F at z, y € F(cl (C)). This completes the proof. O

Remark. (1) We remark that the above theorem is an extension of [18, Th. 9.1]
on the closeness of the image of a convex set under linear transformation to that
of a convex set under R convex mappings. For a linear transformation Az =
(aTx,...,al x), by letting l;(z) = alz, we observe that NJ*ai = ker(A). When
F(z) = Az, we recover Theorem 9.1 under the assumption (17). As well-known,
F(cl(C)) may not be closed even for F'(r) = Az where A is a linear transformation
from R™ to R™ if (17) is violated. See [18, p. 73] for such an example.

(2) We note that the image of a convex set under R convex mappings may not
be convex.

Example 4.3. Let F(r,72) = (22,23), and C = c0{(0,0),(0,1),(1,0)}.
Then F(C) is not convex.

Recall that, for a given nonempty convex set C' C IR™, the relative interior of C,
denoted by ri(C), is defined as the interior which results when C is regarded as
a subset of its affine hull. When F' in Theorem 4.2 is a scalar convex function,
condition (17) is actually a characterization of a well-known relative interior (or
weak coercivity) condition, which has found many applications in convex opti-
mization. We record this observation as the following proposition, which could
also be derived from [18, Th. 27.1(b)].

Proposition 4.4. Let C' C IR™ be a nonempty closed convex set, and f be a finite
convex function. Then 0 € ri[ dom (f + Ic)*], where (f + Ic)* is the convex
conjugate function of f + Ic, if and only if

C>*N{z e R™ |f*(z) <0} is a subspace. (18)
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Proof. We observe that 0 € ri[ dom (f + I¢)*] if and only if the convex cone
generated by dom (f + Ic)* is a subspace [4, Prop. 2.1, Lem. 2.2]. This is
equivalent to saying that the polar of such a cone is a subspace. By [18, Th. 14.2],
this subspace is

{z e R" | f*(z) + Ice(z) < 0} (19)
But f*°(x) > —oo for any = € IR™. So the set in (19) is the same one in (18). O

The above observations yield the following verifiable conditions for well-posedness
of CVOPs.

Corollary 4.5. Assume that (P) is a CVOP, and that
0 €ri[ dom (fi + Ic)"] Vie|[l,m]. (20)

Then F(E,) is closed and (P) is well-posed in the sense of (3).
In addition, if it is further assumed that

C*n{zeR"| f(x)<0y=L*+ Vie[l,m], (21)

where L is the orthogonal complement of the subspace L C IR™, then F(E,) is
bounded.

Proof. We note first that (20) implies (1) holds [18, Th. 27.1(b)]. By the hypothesis
and Proposition 4.4, for each i € [1,m], C°N{z € R™ | f?°(x) < 0} is a subspace.
It follows that C>°N(NZ,; ({x € R™ | f°(x) < 0})) is a subspace. By Theorem 4.2
and Lemma 4.1, both F(C) and F(E,,) are closed. This proves the first part. For
each A € A, let fa(z) = AT F(z). We claim that

0 € ri [dom(fx+ Ic)*]. (22)

To see this, let I = {i € [L,m] [A\; > 0}. Then A"F(z) = > ..; Xifi(z). Let
d € IR™ be a member of the set

Cmm{xelR”

dONifR (@) < 0} : (23)

icl

If there is an i € I such that f>°(d) > 0, then there is an j € I such that
J7°(d) <0 by (23). This would imply that d € > N{z € R" | f{*(z) < 0} and
f32(d) + Ic=(d) < 0, which contradicts the hypothesis that 0 € ri[dom(f; + Ic)*].
So we must have f°(d) = 0 for each ¢ € I. Consequently, for each i € I, by
Proposition 4.4, —d € C* N {zx € R" | f(z) < 0} since 0 € ri[dom(f; +
Ic)*]. Therefore, —d is a member of the set in (23). The claim then follows from
Proposition 4.4. As well known, (22) implies that the problem: minimize f(z)
subject to x € C, is well-posed [1, 3]. Since the parametric problem P(\) is well-
posed over A, (P) is well-posed by Theorem 3.3.
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When (21) holds, consider the following CVOP:
(Q) minimize (f1(x),..., fm(x)) subject to x € CN L.
Denote the optimal solution set of (Q) by E,. We claim that
C=L*"+(CnL).

For z € O, write = 2y + oy, with 7 € L and 2. € L*+. By [18, Th. 8.1],
z, = x —axp. € C since —zp. € L+ C (—C*°) N C*. This shows that C C
L+ +(CNL)and CN L is nonempty. On the other hand, for any 2 € CNL C C,
by [18, Th. 8.1] again, 4+ z € C for all z € L*. This establishes the claim. Since
(CNL)y>*=C>*NL,

(CnD)y>*n{zeR"| f°(x) <0} =LNLt={0} Vie[l,m)]

So each f; + Iicnr) is level-coercive. By Theorem 2.1, E,, is nonempty and
bounded. By the hypothesis, f°(z) < 0 and f°(—z) < 0 for each i € [1,m] and
z € L+ since Lt is contained in the recession cone of f;. It follows
from [18, Cor. 8.1] that

filx 4 2) = fi(x) Vie[l,m],Vz € R",Vz € L*.

So B, = By + L+, and F(E,) = F(E,) is bounded. O

We note that condition (20) does not imply that F(E,) is bounded. In partic-
ular (20) does not imply (21). The following example illustrates this:

Example 4.6. Let m =2 ,n =2, C = IR?, fi(x) = 23, and fa(z) = 23. Then
2°(0) = By () and £5°(u) = g0} (1) Clearly By = ({0} x R)U(Tx {0}).
and F(E,) = ({0} x R4+) U (R4 x {0}).

We also note that (21) can not be weaken to a general subspace assumption
on the recession cone of E,, to ensure the boundedness of F(E,). Consider the
following example:

Example 4.7. Let C = R?, and F(z) = (fi(z), f2(z)) where f1(z1,22) = 2% + 23,
and fa(z1,22) = 2%. Then E, = E° = {0} x R, which is a subspace. But
F(E,) = R4+ x {0}.
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