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Abstract. In this paper we consider a like-queue production system
in which server startup and breakdowns are possible. The server is
turned on (i.e. begins startup) when N units are accumulated in the
system and off when the system is empty. We model this system by
an M[x]/M/1 queue with server breakdowns and startup time under
the N policy. The arrival rate varies according to the server’s status:
off, startup, busy, or breakdown. While the server is working, he is
subject to breakdowns according to a Poisson process. When the server
breaks down, he requires repair at a repair facility, where the repair time
follows the negative exponential distribution. We study the steady-
state behaviour of the system size distribution at stationary point of
time as well as the queue size distribution at departure point of time
and obtain some useful results. The total expected cost function per
unit time is developed to determine the optimal operating policy at a
minimum cost. This paper provides the minimum expected cost and
the optimal operating policy based on assumed numerical values of the
system parameters. Sensitivity analysis is also provided.
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1. Introduction

In this paper we consider the modeling of a production system in which the pro-
duction does not start until some specified number of units, say N , are accumulated
during the server off period. Units request for service usually arrive in batches with
varying arrival rate. The server needs a startup time before providing the service;
i.e., he must perform certain pre-service work to gear up the machinery for oper-
ation. When the server is working, he may meet unpredictable breakdowns but is
immediately repaired. This production system can be modeled by an M[x]/M/1
queue with server breakdowns and startup time under the N policy.

In this system, units arrive following a compound Poisson process where the
arrival size is a random variable and the arrival rate varies according to the server’s
status: off, startup, busy, or breakdown. The server is turned off as soon as the
system becomes empty. When N units are accumulated in the system, the server
is immediately turned on but is temporarily unavailable to the waiting units. He
needs a startup time before starting his each service period. After the server
finishes his startup, he starts to serve the waiting units until the system becomes
empty. Whenever the server is working, it is assumed that the server can break
down at any time. Whenever the server fails, it is immediately repaired at a repair
facility.

The concept of N policy was first introduced by Yadin and Naor [23]. The
so-called N policy means that the server does not start to provide service until
there are N units waiting in the system. Batch arrival queues with N policy was
first studied by Lee and Srinivasan [9]. Later, Lee et al. [10] concentrated on the
interpretation of the system characteristics of the M[x]/G/1 queueing system under
the N policy.

Past work regarding queueing systems under N policy may be divided into two
categories: (i) the case of server startup, and (ii) the case of server breakdowns.
In the case of server startup, Baker [1] first proposed the N policy M/M/1 queue-
ing system with exponential startup time. Borthakur et al. [2] extended Baker’s
results to the general startup time. The N policy M/G/1 queueing system with
startup time was first studied by Minh [15] and was investigated by several re-
searchers such as Medhi and Templeton [14], Takagi [18], Lee and Park [13], Hur
and Paik [8], and so on. In the case of server breakdowns, Wang [20] first proposed
the N policy Markovian queueing system with server breakdowns. Wang [21] and
Wang et al. [22] extended Wang’s model [20] to the N policy M/Ek/1 and M/H2/1
queueing system cases, respectively. They developed the analytic closed-form so-
lutions and provided a sensitivity analysis.

The purpose of this paper is threefold. Firstly, the state equations are estab-
lished to get the steady-state probability distribution as well as the departure
point queue size distribution and some probability interpretations of the system
characteristics are made. Secondly, we formulate the system’s total expected cost
in order to determine the optimal operating N policy numerically at the minimum
cost for various values of system’s parameters. Thirdly, we perform a sensitivity
analysis.
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Figure 1. A queueing model with the busy cycle consisting of
the idle period and complete period.

2. The system and assumptions

One busy cycle begins right when the system becomes empty and the server is
off. The server remains off until there are N units in the system. We call this the
off period. The startup period begins when the server performs startup as soon
as the number of waiting units reach N and terminates when he starts providing
the service. In the startup period, the units arriving while the server is performing
startup as well as those arriving during the off period are not served yet. The
busy period is initiated when the server completes his startup and starts serving
the waiting units. During the busy period, the server may break down and starts
his repair immediately. This is called the breakdown period. As soon as the server
is repaired, he returns and provides service until there are no units in the system.
Since the complete period starts when the startup period is over and terminates
when there are no units in the system, the complete period is represented by the
sum of the busy period and the breakdown period. We illustrate our model with
a typical sample path shown in Figure 1. Furthermore, our model is considered
under the following specifications:

1. The arrival process is a compound Poisson process with batch size X and
various rates λi,(i = 0, 1, 2, 3) where λ0, λ1, λ2, and λ3 denote the group
arrival rates during the server off, startup, busy, and breakdown periods,
respectively. Define that bk = Pr(X = k) is the probability that the arrival
size X is k (k ≥ 1). Arriving units within batches at the server form a
single waiting line and are served in the order of their arrivals. The units
within a batch are served one at a time by a single server. The service
time for an individual unit is exponentially distributed with mean 1/µ.

2. The server is turned off when the system becomes empty. As soon as the
number of units in the system reaches N , the server is immediately turned
on but is temporarily unavailable to the waiting units. He needs to take
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an exponential startup time with parameter r. As soon as the startup
period is over, he serves the waiting units immediately.

3. When the server is working, the server can break down at any time with
a Poisson breakdown rate α.

4. When the server fails, it is immediately repaired at a repair rate β, where
the repair times are exponentially distributed.

5. If the server fails or one unit is in service, then the arriving units or
waiting units have to wait in the queue until the server is free. The service
is allowed to be interrupted if the server breaks down. Nevertheless, the
server is immediately repaired. When the repair of a server is completed,
the server immediately begins serving a unit.

2.1. Practical justifications of the model

A number of practical problems may be formulated as one in which the arrivals
are in batches with arrival rate depending on system’s state or server’s state, and
the server needs a startup time before providing the service and it may break down
when working.

One particular problem where this model is applicable is in the study of a
production line system. Consider a production line in manufacturing system of
job-shop type, where the arrival stream of job orders follows a compound Poisson
process with heterogeneous rates λi (i denotes the server’s status, i = 0, 1, 2, 3) and
each job order often requires the manufacture of a random number X (X ≥ 1; that
is, each job has more than one item). For economic efficiency, it is required that the
production does not start until a specified number of orders, say N , is accumulated
during an idle period. Each item within a job requires an exponentially distributed
production time with mean 1/µ. As the size of job orders reaches N , the operator
needs a startup time to operate machine before starting production and after the
production is started, the production may be interrupted because of emergent
events. But the production must immediately resume whenever the emergency
is solved. The emergent event occurs according to a Poisson process with rate
α and the time spent to recover an emergent event is exponentially distributed
with mean 1/β. We can interpret the emergent events as server breakdowns. The
startup time is a random variable, which has an exponential distribution with
mean 1/r; it is corresponding to extra operations (for example, setup, warm up,
etc.) before starting production.

In real-life situations it is not unusual to encounter that the arrivals join the
queue in batches with different arrival rate, the server may perform some pre-
service work to gear up the machinery, and the service may be interrupted. One
may try to incorporate more realism in the model by considering that (i) batch
arrivals occurs with different rate depending on the arrival time, system’s state and
server’s state; (ii) the server performs the preparatory work before starting each
service period; and (iii) the server is subject to breakdowns due to unpredictable
or uncontrollable factors. Therefore, one may consider it necessary to investigate
the heterogeneous arrival queue with server startup and breakdowns.
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3. System steady probability

Let the state i = 0 represent the server is idle, while the state i = 1 represents
the server is turned on and is in operation, and the state i = 2 represents the
server is in operation but found to be broken down. In steady-state, the following
notations are used.

P0(n) ≡ the probability that there are n units in the system when the server is idle.
There are two situations when the server is idle: (i) the server is turned
off if n ≤ N − 1, and (ii) it is turned on and performing startup if n ≥ N ;

P1(n) ≡ the probability that there are n units in the system when the server is
turned on and is in operation, where n = 1, 2, . . . ; and

P2(n) ≡ the probability that there are n units in the system when the server is in
operation but found to be broken down, where n = 1, 2, . . .

It is easy to set up the following steady-state system equations:

λ0P0(0) = µP1(1), (1)

λ0P0(n) = λ0

n−1∑
k=0

bn−kP0(k), 1 ≤ n ≤ N − 1 (2)

(λ1 + r)P0(n) = λ0

N−1∑
k=0

bn−kP0(k) + λ1

n−1∑
k=N

bn−kP0(k), n ≥ N (3)

(λ2 +µ+α)P1(n) = λ2

n−1∑
k=1

bn−kP1(k)+µP1(n+1)+βP2(n), 1 ≤ n ≤ N −1 (4)

(λ2+µ+α)P1(n) = λ2

n−1∑
k=1

bn−kP1(k)+µP1(n+1)+βP2(n)+rP0(n), n ≥ N (5)

(λ3 + β)P2(n) = λ3

n−1∑
k=1

bn−kP2(k) + αP1(n), n ≥ 1 (6)

where a > b in the
∑ b

j=a notation indicates that the term is zero.
The results for the N policy M/M/1 queueing system with an unreliable server

are obtained by setting λ0 = λ1 = λ2 = λ3, b1 = 1, and r = ∞ in (1)–(6).
Equations (1)–(6) for Pi(n) then correspond to the existing results in the literature
(Wang [19]). The results for the ordinary M[x]/M/1 queueing system with a reliable
server are obtained by setting N = 1, λ0 = λ1 = λ2 = λ3, r = ∞, α = 0, and
β = ∞ in (1)–(6). Equations (1)–(6) for Pi(n) then correspond to the existing
results in the literature (Gross and Harris [7], p. 157).
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3.1. Derivations of P0(n)

Solving (2)–(3) recursively, we finally get

P0(n) =




P0(0)Ψ(n), n = 1, 2, . . . N − 1

P0(0)Ψ(N)
λ0

λ1 + r
, n = N

P0(0)
n−N−1∑

k=0

[Λ(n− k) Θ(k)], n = N + 1, N + 2, . . . ,

(7)

where

Ψ(n) =




1, n = 0∑
1≤k≤n

∑
`1+`2+...+`k=n

`1,`2,...,`k∈{1,2,··· ,n}
b`1b`2 . . . b`k

, n = 1, 2, . . .

0, otherwise,
(8)

Λ(n) =
λ0

λ1 + r

[
Ψ(n) +

λ1bn−NΨ(N)
λ1 + r

−
n−N∑
k=1

bkΨ(n− k)
]
, n = N + 1, N + 2, . . . ,

and

Θ(n) =




1, n = 0∑
1≤k≤n

∑
`1+`2+...+`k=n

`1,`2,...,`k∈{1,2,··· ,n}

h`1h`2 . . . h`k
, n = 1, 2, . . .

0, otherwise,

(9)

with hj = λ1bj

λ1+r ·
Remark 1. As b1 = 1 (single unit arrival), we have Ψ(n) = 1, for n = 0, 1, 2 . . . ,
N − 1.

Remark 2. The meaning of (8) is sum up all possible products of k bi’s in which
the total of subscript values of b equals n. As

Ψ(4) = b4 + b3b1 + b2b2 + b1b3 + b1b1b2 + b1b2b1 + b2b1b1 + b1b1b1b1

= b4 + 2b3b1 + b2
2 + 3b2

1b2 + b4
1.

The meaning of (9) is the same as (8).

3.2. Probability generating function

Probability generating function (p.g.f.) technique may be used to obtain an-
alytic solution P0(0) in neat closed-form expression as there is no way of solv-
ing (1)–(6) in a recursive manner. Define the respective probability generating
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functions (p.g.f.) of P0(n), P1(n), and P2(n) as follows:

H0(z) =
N−1∑
n=0

znP0(n),

H1(z) =
∞∑

n=N

znP0(n),

Q(z) =
∞∑

n=1

znP1(n),

and

R(z) =
∞∑

n=1

znP2(n),

where |z| ≤ 1.
Further, define the p.g.f. of the arrival size X as X(z) =

∑∞
k=1 zkbk, It is found

that E(X) = X ′(1) and E[X(X − 1)] = X ′′(1).
From (7), H0(z) is expressed in term of P0(0):

H0(z) = P0(0)
N−1∑
n=0

znΨ(n) = I(z)P0(0), (10)

where I(z) =
∑N−1

n=0 znΨ(n) with I(1) =
∑N−1

n=0 Ψ(n) and I ′(1) =
∑N−1

n=0 nΨ(n).
In (2)–(3), (2)–(3) is multiplied by zn (n = 1, 2, . . . ) and then the equations are

added terms by terms (see Appendix 1). We finally obtain

H1(z) =
λ0P0(0) + λ0[X(z)− 1]H0(z)

λ1 + r − λ1X(z)
· (11)

In (1), and (4)–(5), (1) is multiplied by z, (4)–(5) (n = 1, 2, . . . ) by zn+1. Similarly,
we get

[
λ2zX(z)− (λ2 + α + µ)z + µ

]
Q(z) + βzR(z) = λ0zP0(0)− rzH1(z). (12)

From (6), we use the same procedure as above to obtain

αQ(z) +
[
λ3X(z)− λ3 − β

]
R(z) = 0. (13)
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We solve Q(z) and R(z) from (12)–(13) and use (10)–(11) yielding

Q(z) = zλ0

(
rI(z) + λ1

)(
X(z)− 1

)(
λ3 + β − λ3X(z)

)

×P0(0)
/{{

λ1 + r − λ1X(z)
}{[

1−X(z)
][

zλ2

[
λ3

(
1−X(z)

)
+ β

]

+µλ3

(
z − 1

)
+ zαλ3

]
+ µβ

(
z − 1

)}}
, (14)

R(z) = zαλ0

(
rI(z) + λ1

)(
X(z)− 1

)

×P0(0)
/{{

λ1 + r − λ1X(z)
}{[

1−X(z)
][

zλ2

[
λ3

(
1−X(z)

)
+ β

]

+µλ3

(
z − 1

)
+ zαλ3

]
+ µβ

(
z − 1

)}}
· (15)

Let G(z) represent the p.g.f. of the number of units in the system; thus

G(z) = H0(z) + H1(z) + Q(z) + R(z). (16)

Evaluating H0(1), H1(1), Q(1), and R(1) in (10)–(11) and (14)–(15), the numerator
and denominator are both 0 in (14)–(15). We apply L’Hopital’s rule once and
finally obtain

H0(1) = I(1)P0(0), (17)

H1(1) =
λ0

r
P0(0), (18)

Q(1) =
λ0β[rI(1) + λ1]E(X)

rµβ − r[λ2β + αλ3]E(X)
P0(0), (19)

R(1) =
λ0α[rI(1) + λ1]E(X)

rµβ − r[λ2β + αλ3]E(X)
P0(0). (20)

To determine P0(0), using the normalizing condition finally yields

P0(0) =
[
I(1) +

λ0

r
+

λ0(α + β)[rI(1) + λ1]E(X)
rµβ − r[λ2β + αλ3]E(X)

]−1

, (21)

with 0 < P0(0) < 1 is sufficient for stationary.
From equations (10)–(11) and (14)–(16), we can see that the stochastic decom-

position property by Fuhrmann and Cooper [6] doesn’t holds for the heterogeneous
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arrival queues. As setting λ0 = λ1 = λ2 = λ3 = λ, G(z) can be simplified as

G(z) =

[λ+rI(z)]
(
1−z

)[
λ(X(z)−1)−β

]
P0(0)[

λ+r−λX(z)
]{

ρ0

[
1−X(z)

]{
z
[
λ
(
1−X(z)

)
+β

]
+µ

(
z−1

)
+zα

}
+β(z−1)

} ·

It is clear that the p.g.f. of the number of units in the M[x]/M/1 queueing system
with server breakdowns and startup can be decomposed into two independent
terms as

G(z) = ζ(z)×Go(z; M[x]/M/1), (22)

where

ζ(z) =
[λ + rI(z)]P0(0)

(1− ρ1)[λ + r − λX(z)]
=

r[λ + rI(z)]
(λ + rI(1))[λ + r − λX(z)]

, (23)

and

Go(z; M[x]/M/1)

=
(1− ρ1)

(
1− z

)[
λ(X(z)− 1)− β

]
ρ0

[
1−X(z)

][
z
(
λ
(
1−X(z)

)
+ β

)
+ µ

(
z − 1

)
+ zα

]
+ β(z − 1)

, (24)

with ρ0 = λ/µ, ρ = ρ0E[X ] and ρ1 = ρ(1 + α/β).
From equation (22), we observe the p.g.f. of the number of units in the M[x]/M/1

queueing system with server breakdowns and startup is the convolution of the p.g.f.
of two independent random variables one of which is the number of units in the
system corresponding to an ordinary M[x]/M/1 queueing system with an unreliable
server (second term) and the other is the number of arrivals during the residual
life of the startup period (first term).

For vacation queues, Lee et al. [11,12] have shown that the stochastic decomposi-
tion property holds for the homogeneous arrival in the N policy M/G/1 queueing
systems with a reliable server. Based on the earlier discussion, It is easily seen
that the stochastic decomposition property holds for the homogeneous arrival in
the N policy M[x]/M/1 queueing system with an unreliable server and startup,
too.

4. Departure point queue size distribution

In this section we derive the p.g.f. of the limiting queue size distribution at
departure point of time. Following the argument of PASTA (see Chaudhry and
Templeton [3]) we state that a departing customer will see ′i′ units in the queue
just after his departure if and only if there were ′i + 1′ units in the system just
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before the departure. Thus we may write

πi = θP1(i + 1), i = 0, 1, 2, . . . ,

where πi = Pr[ ′i′ units in the queue just after a departure], the definition of P1(i)
was given in the Section 3, and θ is a constant to be evaluated.

Let Πq(z) be the p.g.f. of {πi; i = 0, 1, 2, . . .}, then

Πq(z) =
θ

z
Q(z),

where Q(z) is given in (14).
Now using the normalizing condition; i.e., limit of Πq(z) as z → 1 is unity,

we get

θ =
{ λ0β[rI(1) + λ1]E(X)

rµβ − r[λ2β + αλ3]E(X)
P0(0)

}−1

·

Thus the p.g.f. of the departure point queue size distribution is given by

Πq(z) = θλ0

(
rI(z) + λ1

)(
X(z)− 1

)(
λ3 + β − λ3X(z)

)

×P0(0)
/{{

λ1 + r − λ1X(z)
}{[

1−X(z)
][

zλ2

[
λ3

(
1−X(z)

)
+ β

]

+µλ3

(
z − 1

)
+ zαλ3

]
+ µβ

(
z − 1

)}}
· (25)

4.1. Some remarks

In particular, if we take λ0 = λ1 = λ2 = λ3 = λ, θ = 1/ρ and Πq(z) can be
simplified as

Πq(z) = ρ0

(
rI(z) + λ

)(
X(z)− 1

)(
λ + β − λX(z)

)
P0(0)

/{
ρ

{
λ + r − λX(z)

}

×
{

ρ0

[
1−X(z)

][
z
[
λ
(
1−X(z)

)
+ β

]
+ µ

(
z − 1

)
+ zα

]
+ β

(
z − 1

)}}
·

(26)

Now from equation (26) we observe that Πq(z) decomposes into three independent
terms:

Πq(z) = ζ(z)T (z)Πq(z; M[x]/M/1), (27)
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where ζ(z) is given by (23), and

T (z) =
1−X(z)

E(X)(1− z)
,

and

Πq(z; M[x]/M/1) =

(1 − ρ1)
(
z − 1

)[
λ(1 −X(z)) + β

]
ρ0

[
1−X(z)

][
z
(
λ
(
1−X(z)

)
+ β

)
+ µ

(
z − 1

)
+ zα

]
+ β(z − 1)

·

It is important to be noted that the departure point queue size distribution given
by (27) decomposes into three independent random variables: one (the first term)
is that the number of units arrive during the residual life of the startup period.
Particularly, we may call it queue size distribution due to residual startup period.
Another (the second term) is the number of units placed before an arbitrary test
unit (tagged unit) in a batch in which the tagged unit arrives (see Takagi [17],
p. 46), and the last one (the third term) is the departure point queue size of the
ordinary M[x]/M/1 queueing system with an unreliable server.

The above discussions tell us that, the stochastic decomposition property of
the departure point queue size holds for the homogeneous arrival in the N policy
M[x]/M/1 queueing system with an unreliable server and startup.

If α = 0 and β = ∞, equation (26) can be simplified as

Πq(z) =
λ(λ + rI(z))(X(z)− 1)P0(0)

ρ(λ + r − λX(z))
[
zλ(1−X(z)) + µ(z − 1)

] ,

which verifies the p.g.f. of the departure point queue size distribution for the N
policy M[x]/M/1 queueing system with a reliable server and startup.

Suppose that we have α = 0 and β = ∞; then if we put N = 1 and Pr[X = 1]=1,
X(z) = z and E(X) = 1 and therefore T (z) = 1. Hence (26) becomes

Πq(z) =
(λ + r)P0(0)

(1 − ρ0z)(λ + r − λz)
,

which furnishes the p.g.f. of the departure point queue size distribution for an
ordinary M/M/1 queueing system with a reliable server and startup (see
Choudhury [4]).

From earlier inferences we have

G0(z; M[x]/M/1) = Πq(z; M[x]/M/1),

which verifies the results by Cooper [5].
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Further, the result by Choudhury [4] as

Gq(z; M[x]/M/1) = Πq(z; M[x]/M/1)[1 + ρ0(1−X(z))],

where Gq(z; M[x]/M/1) is the p.g.f. of the number of units in the queue at station-
ary point in time equilibrium state for the ordinary M[x]/M/1 queueing system
with an unreliable server.

5. Expected number of arrivals in the system

Using (10)–(11), and (14)–(16), we compute the mean queue length

LN =
dG(z)

dz
|z=1

=

{
I ′(1) +

λ0E(X)
r2

[
I(1) + λ1 +

λ1[α + β][rI(1) + λ1][E(X)]
µβ − (λ2β + αλ3)E(X)

]

+
λ0

2r[µβ − (λ2β + αλ3)E(X)]

[[
rI(1) + λ1

][
α + β

]
E[X(X + 1)]

+2rI ′(1)(α + β)E(X)− 2λ3

[
rI(1) + λ1

]
[E(X)]2

]

+
λ0

2r[µβ − (λ2β + αλ3)E(X)]2

[[
rI(1) + λ1

][
α + β

]
E(X)

×
[(

λ2β + αλ3

)
E[X(X + 1)] + 2λ3

[
µ− λ2E(X)

]
E(X)

]]}
P0(0), (28)

where P0(0) is given is (21).

5.1. Special cases

In this section, we present some existing results in the literature which are
special cases of our model.

Case A: If N = 1, λ0 = λ1 = λ2 = λ3, b1 = 1, r = ∞, α = 0, and β = ∞,
the ordinary M/M/1 queueing system with a reliable server case. When N = 1,
λ0 = λ1 = λ2 = λ3, b1 = 1, r = ∞, α = 0, and β = ∞, expression (14) for Q(z)
reduces to a special case of expression (2.14) of Gross and Harris ([7], p. 67).

Case B: If N = 1, λ0 = λ1 = λ2 = λ3, r = ∞, α = 0, and β = ∞, the
ordinary M[x]/M/1 queueing system with a reliable server case. When N = 1,
λ0 = λ1 = λ2 = λ3, r = ∞, α = 0, and β = ∞, expression (14) for Q(z) reduces
to a special case of expression (3.3) of Gross and Harris [7].

Case C: If N = 1, λ0 = λ1 = λ2 = λ3, b1 = 1, and r = ∞, the ordinary M/M/1
queueing system with an unreliable server case. When N = 1, λ0 = λ1 = λ2 = λ3,
b1 = 1, and r = ∞, expressions (14) for Q(z) and (15) for R(z) reduce to a special
case of expressions (16) and (17) of Wang [19], respectively.
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Case D: If λ0 = λ1 = λ2 = λ3, b1 = 1, r = ∞, α = 0, and β = ∞, the N policy
M/M/1 queueing system with a reliable server case. When λ0 = λ1 = λ2 = λ3,
b1 = 1, r = ∞, α = 0, and β = ∞, expression (14) for Q(z) reduces to a special
case of expression (4.62) of Sivazlian and Stanfel ([16], p. 255).

Case E: If λ0 = λ1 = λ2 = λ3, b1 = 1, and r = ∞, the N policy M/M/1
queueing system with an unreliable server case. When λ0 = λ1 = λ2 = λ3, b1 = 1,
and r = ∞, expressions (14) for Q(z) and (15) for R(z) reduce to a special case
of expressions (18) and (19) of Wang [20], respectively.

Case F: If λ0 = λ1 = λ2 = λ3, b1 = 1, α = 0, and β = ∞, the N policy M/M/1
queueing system with a reliable server case. When λ0 = λ1 = λ2 = λ3, b1 = 1,
α = 0 , and β = ∞, expression (28) for LN reduces to a special case of expression
L(n) of Baker ([1], p. 72).

6. Optimal design of the N policy

Let O, S, B, and D denote the lengths of the server off, startup, busy, and
breakdown periods, respectively. Applying the memoryless property of the Poisson
process, we find that the mean length of the off period is

E[O] = N/λ0. (29)

The expected length of the off period, the startup period, the busy period, and
the breakdown period, are denoted by E[O], E[S], E[B] and E[D], respectively.
The expected length of a busy cycle is given by

E[C] = E[O] + E[S] + E[B] + E[D].

From (17)–(20), we obtain the following long-run fraction of time the server is off,
startup, busy, and broken down, respectively:

E[O]
E[C]

= H0(1) = I(1)P0(0), (30)

E[S]
E[C]

= H1(1) =
λ0

r
P0(0), (31)

E[B]
E[C]

= Q(1) =
λ0β[rI(1) + λ1]E(X)

rµβ − r[λ2β + αλ3]E(X)
P0(0), (32)

E[D]
E[C]

= R(1) =
λ0α[rI(1) + λ1]E(X)

rµβ − r[λ2β + αλ3]E(X)
P0(0). (33)

Thus, we have the expected number of busy cycles per unit time

1
E[C]

=
λ0I(1)P0(0)

N
· (34)
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6.1. Determining the optimal policy

We develop the total expected cost function per unit time for the M[x]/M/1
queue under the N policy with server breakdowns and startup time, in which N
is a decision variable. Following the cost structure is constructed, our objective is
to determine the optimal operating N policy so as to minimize this function. Let

Ch ≡ holding cost per unit time for each unit present in the system;
Cf ≡ setup cost per busy cycle;
Co ≡ cost per unit time for keeping the server off;
Cs ≡ startup cost per unit time for the preparatory work of the server before

starting the service;
Cb ≡ cost per unit time for keeping the server on and in operation;
Cd ≡ breakdown cost per unit time for a broken server.
Using the definitions of each cost element and its corresponding system charac-

teristics, the total expected cost function per unit time is given by

Tcost(N) = ChLN +
Cf

E[C]
+ Co

E[O]
E[C]

+ Cs
E[S]
E[C]

+ Cb
E[B]
E[C]

+ Cd
E[D]
E[C]

· (35)

Using (28), (30)–(34), the results of (35) can be explicitly expressed which is a
very long and complex formula for Tcost(N). This is due to the fact that there are
many parameters (e.g., X , λ0, λ1, λ2, λ3, r, µ, α, and β) involved in our model.
We obtain the optimal value N which minimizes the cost function, Tcost(N), by
differentiating it with respect to N and setting the result to be zero, i.e.,

∂Tcost(N)
∂N

= 0. (36)

The solution N to (36) may not be integer, and the optimal positive integer value
of N is one of the integers surrounding N∗ which gives a smaller cost Tcost. Here, it
should be pointed out explicitly that the solution really gives the minimum value,
and the ∂2Tcost(N)

∂2N |N=N∗ is greater than 0 when the values of system parameters
satisfy suitable conditions. However, it is quite tedious to present the explicitly
expression. Therefore, we will perform the numerical experiments to demonstrate
that the function is really convex and the solution gives a minimum.

6.2. Numerical studies

We now perform a sensitivity analysis on the optimum value N∗ based on
changes in specific values of the system parameters. Let the batch size X be a
geometric distribution with parameter p, and employ the following cost elements:

Case 1: Ch = 5, Co = 10, Cb = 100, Cd = 200, Cs = 125, Cf = 500.
Case 2: Ch = 5, Co = 20, Cb = 200, Cd = 400, Cs = 250, Cf = 500.
Case 3: Ch = 5, Co = 20, Cb = 200, Cd = 400, Cs = 500, Cf = 500.
Case 4: Ch = 5, Co = 20, Cb = 200, Cd = 400, Cs = 500, Cf = 1000.
Case 5: Ch = 10, Co = 20, Cb = 200, Cd = 400, Cs = 500, Cf = 1000.
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Table 1. The optimal value of N and its minimum expected cost
for geometric batch size (X ∼ Geo(p)) and (p, λ0, λ1, λ2, λ3, µ,
β) = (0.55, 0.3, 0.4, 0.5, 0.2, 1.2, 3.0).

(r, α) (0.3, 0.05) (0.5, 0.05) (0.7, 0.05) (0.5, 0.1) (0.5, 0.2) (0.5, 0.3)

Case 1 N∗ 5 5 5 5 5 5
Tcost(N

∗) 137.064 126.850 122.909 129.199 133.976 138.878

Case 2 N∗ 7 6 6 6 6 6
Tcost(N

∗) 216.592 203.671 198.293 207.772 216.012 224.323

Case 3 N∗ 10 8 8 8 8 8
Tcost(N

∗) 230.151 213.355 206.096 217.315 225.279 233.321

Case 4 N∗ 11 9 9 9 9 9
Tcost(N

∗) 234.343 218.423 211.721 222.311 230.132 238.033

Case 5 N∗ 7 6 6 6 6 6
Tcost(N

∗) 290.849 265.334 254.811 269.839 279.014 288.447

Table 2. The optimal value of N and its minimum expected cost
for geometric batch size (X ∼ Geo(p)) and (p, λ0, λ1, λ2, λ3, r,
α) = (0.55, 0.3, 0.4, 0.5, 0.2, 0.2, 0.05).

(µ, β) (1.0, 3.0) (1.2, 3.0) (1.4, 3.0) (1.2, 2.0) (1.2, 4.0) (1.2, 5.0)

Case 1 N∗ 3 5 6 5 5 5
Tcost(N

∗) 218.097 151.310 139.592 152.317 150.811 150.514

Case 2 N∗ 4 7 9 7 7 7
Tcost(N

∗) 314.058 234.154 213.320 235.991 233.239 232.691

Case 3 N∗ 6 11 13 11 11 11
Tcost(N

∗) 323.686 251.901 234.812 253.609 251.050 250.542

Case 4 N∗ 6 11 14 11 11 11
Tcost(N

∗) 325.875 255.511 239.096 257.174 254.684 254.189

Case 5 N∗ 4 7 9 7 7 7
Tcost(N

∗) 447.726 325.534 307.626 327.344 324.640 324.107

The optimal value of N , N∗, and its minimum expected cost Tcost(N∗) for
the above five cases are shown in Table 1 for (p, λ0, λ1, λ2, λ3, µ, β) = (0.55,
0.3, 0.4, 0.5, 0.2, 1.2, 3.0) and for various values of (r, α). One observes from Table 1
that (i) Tcost(N∗) increases as r decreases or α increases for any cases; (ii) for a
large value r, N∗ does not change at all when r changes from 0.5 to 0.7 for any
cases; and (iii) N∗ does not change at all when α changes from 0.1 to 0.3 for any
cases. Intuitively, N∗ is insensitive to changes in α.

The optimal value of N , N∗, and its minimum expected cost Tcost(N∗) for
five cost cases are shown in Table 2 for (p, λ0, λ1, λ2, λ3, r, α) = (0.55, 0.3, 0.4,
0.5, 0.2, 0.2, 0.05) and for different values of (µ, β). From Table 2, we observe
that (i) Tcost(N∗) increases as µ and β decrease for any cases; (ii) N∗ increases
as µ increases for any cases; and (iii) N∗ does not change at all when β changes
from 2.0 to 5.0 for any cases. Intuitively, N∗ is insensitive to changes in β.
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Table 3. The optimal value of N and its minimum expected cost
for geometric batch size (X ∼ Geo(p)) and (p, λ2, λ3, r, µ, α, β)
= (0.45, 0.6, 0.2, 0.2, 2.0, 0.05, 3.0).

(λ0, λ1) (0.2, 0.5) (0.3, 0.5) (0.5, 0.5) (0.3, 0.3) (0.3, 0.4) (0.3, 0.6)

Case 1 N∗ 7 6 5 6 6 6
Tcost(N

∗) 136.445 154.447 172.548 146.156 150.230 158.787

Case 2 N∗ 10 9 8 9 9 10
Tcost(N

∗) 200.510 228.795 258.891 218.824 223.787 233.729

Case 3 N∗ 14 14 13 14 14 14
Tcost(N

∗) 219.954 252.381 288.762 245.011 248.641 256.222

Case 4 N∗ 15 15 14 15 15 15
Tcost(N

∗) 223.307 256.363 293.649 249.311 252.780 260.050

Case 5 N∗ 9 9 8 9 9 9
Tcost(N

∗) 298.267 339.986 384.818 327.165 333.388 346.918

Table 4. The optimal value of N and its minimum expected cost
for geometric batch size (X ∼ Geo(p)) and (p, λ0, λ1, r, µ, α, β)
= (0.45, 0.3, 0.4, 0.2, 2.0, 0.05, 3.0).

(λ2, λ3) (0.4, 0.1) (0.6, 0.1) (0.8, 0.1) (0.6, 0.4) (0.6, 0.5) (0.6, 0.6)

Case 1 N∗ 7 6 4 6 6 6
Tcost(N

∗) 140.846 150.082 209.148 150.537 150.698 150.863

Case 2 N∗ 10 9 6 9 9 9
Tcost(N

∗) 205.135 223.541 299.140 224.293 224.554 224.819

Case 3 N∗ 16 14 9 14 14 14
Tcost(N

∗) 233.780 248.438 314.849 249.060 249.276 249.498

Case 4 N∗ 17 15 10 15 15 15
Tcost(N

∗) 238.461 252.583 317.663 253.188 253.398 253.614

Case 5 N∗ 10 9 6 9 9 9
Tcost(N

∗) 320.243 333.159 437.816 333.871 334.125 334.387

The optimal value of N , N∗, and its minimum expected cost Tcost(N∗) for five
cases are shown in Table 3 for (p, λ2, λ3, r, µ, α, β) = (0.45, 0.6, 0.2, 0.2, 2.0, 0.05, 3.0)
and for various values of (λ0, λ1). One observes from Table 3 that (i) Tcost(N∗)
increases as λ0 and λ1 increase for any cases; (ii) N∗ slightly changes when λ0

changes from 0.2 to 0.5 for any cases; and (iii) N∗ does not change at all when λ1

changes from 0.3 to 0.6 for any cases. Intuitively, N∗ is insensitive to changes
in λ1.

The optimal value of N , N∗, and its minimum expected cost Tcost(N∗) are
shown in Table 4 for (p, λ0, λ1, r, µ, α, β) = (0.45, 0.3, 0.4, 0.2, 2.0, 0.05, 3.0) and for
different values of (λ2, λ3). From Table 4, we find that (i) Tcost(N∗) increases
as λ2 and λ3 increase for any cases; (ii) N∗ increases as λ2 decreases for any cases;
and (iii) N∗ and Tcost(N∗) do not change at all when λ3 changes from 0.1 to 0.6
for any cases. Intuitively, N∗ is insensitive to changes in λ3.
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Table 5. The optimal value of N and its minimum expected cost
for geometric batch size (X ∼ Geo(p)) and (p, λ0, λ3, r, µ, α, β)
= (0.35, 0.3, 0.2, 0.2, 2.0, 0.05, 3.0).

(λ1, λ2) (0.4, 0.4) (0.4, 0.5) (0.4, 0.6) (0.3, 0.6) (0.5, 0.6) (0.6, 0.6)

Case 1 N∗ 6 5 4 4 4 5
Tcost(N

∗) 161.506 173.806 219.092 211.378 226.704 234.165

Case 2 N∗ 9 8 6 5 6 7
Tcost(N

∗) 237.573 256.366 310.400 302.102 318.490 326.327

Case 3 N∗ 14 12 9 9 9 10
Tcost(N

∗) 266.163 280.927 327.880 321.434 334.412 340.982

Case 4 N∗ 15 13 10 10 10 10
Tcost(N

∗) 269.987 284.291 330.458 324.249 336.777 343.189

Case 5 N∗ 9 8 6 6 6 6
Tcost(N

∗) 360.776 379.384 459.573 446.811 472.565 485.740

Table 6. The optimal value of N and its minimum expected
cost for uniform batch size (X ∼ U(1, 4)) and (λ0, λ3, r, µ, α, β)
= (0.3, 0.2, 0.2, 2.0, 0.05, 3.0).

(λ1, λ2) (0.4, 0.4) (0.4, 0.5) (0.4, 0.6) (0.3, 0.6) (0.5, 0.6) (0.6, 0.6)

Case 1 N∗ 5 5 4 4 5 5
Tcost(N

∗) 147.944 152.052 162.036 156.705 167.367 172.774

Case 2 N∗ 9 8 7 7 8 8
Tcost(N

∗) 217.720 227.281 244.349 238.449 250.257 255.937

Case 3 N∗ 13 12 11 11 11 11
Tcost(N

∗) 237.603 246.785 262.955 258.645 267.367 271.875

Case 4 N∗ 13 12 11 11 11 11
Tcost(N

∗) 243.437 252.142 267.433 263.250 271.726 276.121

Case 5 N∗ 9 8 7 7 7 7
Tcost(N

∗) 335.049 340.409 355.476 347.682 363.753 372.442

The optimal value of N , N∗, and its minimum expected cost Tcost(N∗) are
shown in Table 5 for (p, λ0, λ3, r, µ, α, β) = (0.35, 0.3, 0.2, 0.2, 2.0, 0.05, 3.0) and for
different values of (λ1, λ2). Table 5 depicts that (i) Tcost(N∗) increases as λ1 and λ2

increase for any cases; (ii) N∗ increases as λ2 decreases for any cases; and (iii) N∗

slightly changes when λ1 changes from 0.3 to 0.6 for any cases.
Furthermore, we choose the uniform batch size (set X ≡ U(1, 4)). The numeri-

cal results for the optimal value N , N∗, and its minimum expected cost Tcost(N∗)
are shown in Table 6 for (λ0, λ3, r, µ, α, β) = (0.3, 0.2, 0.2, 2.0, 0.05, 3.0) and for dif-
ferent values of (λ1, λ2). Table 6 shows that (i) Tcost(N∗) increases as λ1 and λ2

increase for any cases; (ii) N∗ increases as λ2 decreases for any cases; and (iii) N∗

slightly changes when λ1 changes from 0.3 to 0.6 for any cases.
It can be easily see from Table 1 through 6 that (i) N∗ increases as Cs increases

or Ch decreases (see Case 2–3 and Case 4–5); and (ii) Ch and Cs have a larger
effect on N∗ than Cf (see Case 3–4). Tables 5 and 6 indicate that X affects N∗.
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From our numerical investigations, it appears that (i) α, β, and λ3 do not
affect N∗; (ii) r, λ0 and λ1 rarely affect N∗; and (iii) λ2 and µ affect N∗ signifi-
cantly. It is interested that Ch and Cs have much stronger effect on N∗ than X ,
λ0, λ1, λ2, λ3, r, µ, α, and β.

7. Conclusions

In this paper, we have developed the analytic closed-form solutions for the
M[x]/M/1 queueing system with server breakdowns and startup time under the
N policy. More especially, the stochastic decomposition property of state-steady
probabilities and departure point queue size distribution has been investigated
and some important remarks have been given. The model is very useful for real
systems since the behavior of arriving units is considered. Usually, the problems
related to the Markovian queueing systems are treated as special cases of this
model. We also have performed a sensitivity analysis among the optimal value
of N , specific values of system parameters, and the cost elements. Through the
numerical results, we were able to analyze the complex but exact solutions for
a practical and general queueing system, make an intelligent decision based on
quantitative measures.

Appendix 1. The derivations of H1(z)

Equation (2) is multiplied by zn(n = 1, 2, . . . , N − 1) and are expanded as
follows:

zλ0P0(1) = zλ0b1P0(0),

z2λ0P0(2) = z2λ0b2P0(0) + z2λ0b1P0(1),

z3λ0P0(3) = z3λ0b3P0(0) + z3λ0b2P0(1) + z3λ0b1P0(2),

...

zN−1λ0P0(N − 1) = zN−1λ0bN−1P0(0) + zN−1λ0bN−2P0(2) + . . .

+ zN−1λ0b1P0(N − 2).

The equations listed above are added terms by terms. Thus we have

λ0

N−1∑
n=1

znP0(n) = λ0P0(0)
N−1∑
n=1

znbn + λ0zP0(1)
N−2∑
n=1

znbn + λ0z
2P0(2)

N−3∑
n=1

znbn

+ · · ·+ λ0z
N−2P0(N − 2)

1∑
n=1

znbn,
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or equivalently

λ0H0(z)−λ0P0(0) = λ0P0(0)
N−1∑
n=1

znbn +λ0zP0(1)
N−2∑
n=1

znbn +λ0z
2P0(2)

N−3∑
n=1

znbn

+ · · ·+ λ0z
N−2P0(N − 2)

1∑
n=1

znbn. (A.1)

Similarly, equation (3) is multiplied by zn(n = N, N + 1, . . . ) and are expanded
as follows:

zN(λ1 + r)P0(N) = zNλ0bNP0(0) + zNλ0bN−1P0(1) + zNλ0bN−2P0(2) + · · ·
+ zNλ0b1P0(N − 1),

zN+1(λ1+r)P0(N +1) = zN+1λ0bN+1P0(0)+zN+1λ0bNP0(1)+zN+1λ0bN−1P0(2)

+ · · ·+ zN+1λ0b2P0(N − 1) + zN+1λ1b1P0(N),

zN+2(λ1+r)P0(N +2) = zN+2λ0bN+2P0(0)+zN+2λ0bN+1P0(1)+zN+2λ0bNP0(2)

+ · · ·+ zN+2λ0b3P0(N − 1) + zN+2λ1b2P0(N) + zN+2λ1b1P0(N + 1),

...
The equations listed above are added terms by terms. Thus we have

(λ1 + r)
∞∑

n=N

znP0(n) = λ0P0(0)
∞∑

n=N

znbn + λ0zP0(1)
∞∑

n=N−1

znbn

+ λ0z
2P0(2)

∞∑
n=N−2

znbn + · · ·+ λ0z
N−2P0(N − 2)

∞∑
n=2

znbn

+ λ0z
N−1P0(N − 1)

∞∑
n=1

znbn + λ1z
NP0(N)

∞∑
n=1

znbn

+ λ1z
N+1P0(N + 1)

∞∑
n=1

znbn + . . . ,
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or equivalently

(λ1 + r)H1(z) = λ0P0(0)
∞∑

n=N

znbn + λ0zP0(1)
∞∑

n=N−1

znbn

+ λ0z
2P0(2)

∞∑
n=N−2

znbn + · · ·+ λ0z
N−2P0(N − 2)

∞∑
n=2

znbn

+ λ0z
N−1P0(N − 1)

∞∑
n=1

znbn + λ1z
NP0(N)

∞∑
n=1

znbn

+ λ1z
N+1P0(N + 1)

∞∑
n=1

znbn + . . . . (A.2)

Adding (A.1) to (A.2) and rearranging some terms, it finally yields

[(λ1 + r)− λ1X(z)]H1(z) = λ0[X(z)− 1]H0(z) + λ0P0(0),

which gets (11).
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