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Abstract. We present an exact method for integer linear program-
ming problems that combines branch and bound with column genera-
tion at each node of the search tree. For the case of models involving
binary column vectors only, we propose the use of so-called geometrical
cuts to be added to the subproblem in order to eliminate previously
generated columns. This scheme could be applied to general integer
problems without specific structure. We report computational results
on a successful application of this approach to a telecommunications
network planning problem.
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1. Introduction

The techniques of column-generation were first presented in the early sixties as
part of methods to solve linear programming (LP ) problems with a huge number
of variables. When the size of the problem does not allow one to store the entire
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matrix of a LP problem, columns to enter the basis in the Simplex Method are
generated by means of an auxiliary problem. Of course this is only possible for
some problems with a special structure. In [15] Dantzig and Wolfe introduced
those techniques in the context of their very well known decomposition algorithm,
developed originally to deal with the limited storage capacity computers had at
that time.

In their seminal works [27,28], Gilmore and Gomory used this approach to solve
the cutting stock problem. They generate columns by solving in each step a knap-
sack subproblem. The original problem is an Integer Programming (IP ) problem;
column generation was used to solve the linear programming relaxation. This re-
laxation has shown to provide very good lower bounds in practice. Two decades
later, Marcotte [37] showed that the optimal value is very often the rounded opti-
mal (LP ) relaxation.

Since then several other applications of column generation to obtain tighter
relaxations to (IP ) problems have been developed, which can be found in the
literature.

Column generation methods to solve integer programming problems exactly
appeared more recently. So called Branch-and-price methods combine Branch and
Bound with column generation methods to solve the (LP ) relaxation at each node.
Some ad-hoc branching rules have been designed to keep the original structure of
the pricing problem tractable, all along the branch and bound tree. Sometimes
exact methods derive into heuristics when only a subset of the feasible columns in
the nodes of the branch and bound tree is used or only the ones generated in the
root node are kept.

Pioneering work in this sense was carried out in the eighties by Desrosiers
et al. [24], Desrochers and Soumis [23], and Ribeiro et al. [48]. In these initial
works they mentioned the difficulties of combining branching rules with column
generation, and gave two possible ways of getting rid of some of them. One of
the first Branch-and-price methods to appear in the literature was the one pre-
sented in [24] for the vehicle routing problem with time windows. Desrosiers et al.
modeled the problem as a set partitioning problem where columns were generated
using a modified shortest path algorithm which takes into account time windows.
Branching rules that preserve this shortest path structure of the subproblem were
used. When it was not possible to enumerate the entire branch and bound tree,
they were able to obtain good lower bounds. A similar column generation approach
to the Crew Scheduling Problem in Urban Transit that uses the set covering and
constrained shortest path problems as subproblems was presented in [23].

In [48] an algorithm for a traffic assignment problem arising in a satellite switch-
ing system which can be modeled as a large scale set partitioning problem is pre-
sented. The algorithm combines column generation at each node with a ranking
procedure of the columns that prevents regeneration of an already generated col-
umn at the subproblem. Optimality of the final integer solution is thus ensured.
This ranking procedure is based on the particular structure of the subproblem,
and it is based on an algorithm for obtaining the sequence of best assignments of
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a linear assignment problem. Since then numerous applications of column genera-
tion, to these and other combinatorial problems appeared in the literature. Several
other successful applications of column generation techniques to vehicle routing
problems are described in [7, 21, 22, 36, 49].

Ribeiro and Soumis [49] also presented a column generation approach for solv-
ing the linear programming relaxation of the multiple depot vehicle scheduling
problem. They obtained a better bound than those appearing in the literature till
then.

Loebel [36] developed a column generation method for the LP relaxation of
vehicle scheduling problems in public transit that provides very good solutions for
huge real cases.

In their comprehensive survey on constrained scheduling and vehicle routing
problems Desrosiers et al. [22] stated that optimal algorithms based on Dantzig–
Wolfe decomposition and column generation schemes have been shown to be the
most powerful solution methodologies for that kind of problems.

Bramel and Simchi–Levi [7] intend to formalize an empirical conclusion that
comes out of applications to VRPTW (vehicle routing problem with time windows)
problems: when column generation techniques are applied to problems modeled as
set covering ones, the method works well when the gap between the (LP ) relaxation
and the (IP ) solution is small. They show that with some assumptions about the
distribution of the customers, in the case of VRPTW this gap decreases to zero as
the number of customers increases. In [57] Vance et al. present a decomposition
algorithm for airline crew scheduling problem that improved bounds provided in
previous works. Gamache et al. [26] present also a column generation heuristic
method for solving a aircrew rostering problem. This method was able to obtain
very good results on real large scale problems.

Vance et al. [56] implemented an exact algorithm for the one dimensional binary
cutting stock problem. They propose branching rules that keep the structure of
the subproblem tractable at each node (those rules had been previously proposed
by Ryan and Foster [47]). In [55] Vance compares two algorithms for the same
problem based on two different formulations of the master problem, and presents
appropriate branching rules for each one.

Carvalho presents in [16] a different approach for the general, not necessary
binary, case of the cutting stock problem. An arc-flow formulation with side con-
straints is proposed and solved by column generation techniques. The author
claims that the algorithm works well when the gap between the first (LP ) relax-
ation and the optimal integer value is less than one. He also concludes that it is
sensitive to the width of the rolls. In [58] Vandeberck shows results of a column
generation algorithm for the bin packing and cutting stock problems.

Mehrotra and Trick [41] developed a method for solving the graph coloring
problem using the independent set formulation, which avoids some extended sym-
metry. They use customized branching rules that are similar to the ones in [56].
This approach leads to a heuristic when columns are generated only in the root
node.
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In [33] column generation was used in order to produce heuristics based on
linear programming relaxations for the graph partitioning problem.

Bourjolly et al. [5] obtain lower bounds for the maximum stable set problem
by means of column generation in the framework of a branch and bound method
that does not use linear programming explicitly.

Savelsbergh [50] presents a branch-and-price algorithm to obtain optimal integer
solutions for the generalized assignment problem using again a set partitioning
formulation. He also shows that truncating the search tree in his procedure yields
very good approximation algorithms.

In [60] Van Den Akker et al. describe a column generation method for solving
the (LP ) relaxation of a parallel machine scheduling problem. They obtain a very
good lower bound and are able to solve some problems to optimality. Hansen
et al. [29] propose primal and dual algorithms for mixed integer programming and
their use to solve the probabilistic maximum satisfability problem.

Barnhart et al. [3] present an overview of column generation techniques for
solving integer problems to optimality and a review of several classes of problems
that were successfully solved in this way. They intend to generalize ideas that
were successful in solving special problems by column generation. Vanderbeck and
Wolsey [54], and [61], present an exact method that combines branch and bound
with column generation. They develope an ad-hoc branching scheme and test the
algorithm in three types of problems. In [52] the same approach is used to solve a
problem arising in the design of telecommunications networks. In [59] Vanderbeck
goes further in this direction and proposes a Dantzig–Wolfe decomposition based
on the discretization of the integer polyhedron associated to a group of constraints.
Furthermore, he proposes appropriate branching schemes. He tests his ideas on
the cutting stock and cutting strip problems.

Although the list of articles on column generation mentioned above is by no
means exhaustive, it is representative enough to conclude, as several authors al-
ready did [3, 42, 61], that most successful applications of column generation tech-
niques happen in (IP ) problems which can be modeled as set partitioning (or set
covering) ones. In most of the quoted examples columns of the set partitioning
problem have a well defined structure and it has been possible to develop pricing
algorithms (exact or heuristic) to identify them. This formulation also enables
one usually to handle good branching rules compatible with pricing algorithms
and keeping the search tree balanced.

Some articles are also found in the literature that report methods that com-
bine column generation with branch and cut. In [44] Nemhauser and Park use
a matching formulation of the edge coloring problem and propose an algorithm
which combines a simple separation routine for recognizing odd circuit constraints
with a pricing algorithm for the weighted matching problem.

In [2] a multicommodity flow problem is solved by combining column and row
(cuts) generation. An algorithm is described which combines a pricing algorithm,
branching rules and cut generation that are mutually compatible along the branch
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and bound tree. Column generation and branching rules stem from a generaliza-
tion of previous works, and lifted cover inequalities are added to the (LP ) in each
node.

In this work we present a general scheme that proved to be successful in solving
two problems appearing in network design, and can be applied to other combina-
torial problems for which the subproblem has no particular structure. We propose
a special way of getting rid of columns that we do not want to enter the basis
when working with bounded variables, and we show how the columns generated
at the previous nodes of the branch and bound tree can be reused.

We also propose, for the binary case, a geometric cut to be added to the sub-
problem to avoid a column to be regenerated in one of the branchs of the tree when
the clasical 0-1 branching rule is used. Although this approach could be used to
solve any binary problem it looks particularly suitable for a problem for which
there are not apparent branching rules compatible with the subproblem structure,
or for problems where we cannot generate the k-best solutions of the subproblem
easily, as it is done in [48]. This cut has been implemented in branch-and-price
methods for a network design problem [40] and for the Steiner tree packing prob-
lem [51]. In the next section we describe how to use a column-generation technique
in the framework of the simplex algorithm for linear programming problems with
bounding variable constraints following the ideas of the COLGEN algorithm pre-
sented in [39]. Section 2 presents a linear inequality that can be used, when the
matrix of the linear problem is binary, to avoid forbidden columns to be generated.
A branch-and-bound scheme using this column-generation algorithm is presented
in Section 3. In Section 4 we briefly report computational results of the network
design problem we solved with this method. The last section is devoted to some
conclusions.

2. A column-generation method for linear programming

with bounded variables

In order to solve IP problems by a branch and bound method, we need to solve
a LP problem at each node of the branch and bound tree. We assume that this
LP problem is suitable to be solved using column generation. We consider the
following linear programming problem:

(LP ) : minimize z =
p∑

j=1

cjxj (1)

subject to:
p∑

j=1

ajxj = b, (2)

0 ≤ xj ≤ dj , j = 1, 2, ..., p (3)
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where aj ∈ Rm, b ∈ Rm, b ≥ 0, d = (d1 ... dp)T ∈ Rp, cj ∈ R. When all cj , aj

and dj are known a priori, this problem can be solved using the very well known
upper bounding method proposed by Dantzig [10, 13, 14, 35]. We consider that aj

belongs to a finite set K, and |K| = p. To write explicitly all this (LP ) problem
can be prohibitive for problems with a huge integer number p of columns. As
an exemple we can consider K the set of 0-1 vectors associated with all spanning
trees of a complete graph with n vertices, in this case |K| = nn−2. In this case
we would like to solve (LP ) using column-generation techniques in the context of
the simplex method. For that we have to suppose cj = f(aj) and dj = g(aj),
where f : K → R and g : K → Z+. Following the usual notation, see [10],
let B = (aB(1) aB(2) ... aB(m)) be an m by m matrix with det(B) 6= 0 and
N a m by p − m matrix formed with the aj columns which are not in B. Let
xB = (xB(1) xB(2) ... xB(m))T and xN be the vector associated with the columns
of N. Thus (2) can be written as follows: BxB + NxN = b, then we have

xB = B−1b−B−1NxN . (4)

Now let N2 be the matrix whose aj columns of N are associated with xj = dj , and
N1 the matrix whose columns of N are associated with xj = 0. We can present (4)
as follows:

xB = B−1b−B−1N1xN1 −B−1N2xN2 . (5)

Let x̄B = B−1b, and x̂B = x̄B − B−1N2x̄N2 , where x̄N2 = dT
N2

. If 0 ≤ x̂B(i) ≤
dB(i), i = 1, 2, ..., m, then B is a feasible basic solution to (LP ). Let u = cT

BB−1,

where cB = (cB(1) cB(2) ... cB(m))T ∈ Rm , zj = uaj, and z̄j = zj − cj . We will
assume that z̄j ≥ 0, for such j associated with xj = dj . It is always possible to
have this situation if (LP ) has a not empty solution set. If we have z̄j < 0 for
xj = dj , then solving (LP ) without the columns in N1, we obtain a new N2 for
which z̄j ≥ 0 for all xj = dj .

We know that at each iteration of the simplex method, we need to solve the
following pricing subproblem (oracle or pricing algorithm) in order to recognize an
optimal basic solution of (LP ), or to determine a column to enter the basis:

(SP ) : maximize ua− f(a)

subject to:

a ∈ K.

Using this scheme we may need to find not only the optimal solution to this
subproblem but the second one, third one, and so on, because we do not want
columns in N2 to be chosen. Let ak be an optimal solution for (SP ), that is
val(SP ) = uak − f(ak), where val(.) denotes the optimum value of the objetive
function in (·). We will need to be able to compute the s−best solution of (SP ) for
s = 1, 2, ... such that val(s−best) ≥ val([s+1]−best). Thus val(1−best) = val(SP ).
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Let I = {1, 2, ... , p}, IN1 = {j | aj ∈ N1}, IN2 = {j | aj ∈ N2}, and
IB = {j | aj ∈ B}. We will solve our LP problem by means of solving iteratively:

(LP, B, N2) : minimize ub−
∑

j∈N2

(zj − cj)xj

subject to:
xB = x̄B −

∑

j∈N2

yjxj ,

0 ≤ xB(i) ≤ dj , i = 1, 2, ..., m

0 ≤ xj ≤ dj , j ∈ N2

where u = cT
BB−1, zj = uaj, cj = f(aj), dj = g(aj) and yj = B−1aj .

So given a feasible basic solution B for (LP ), the COLGEN algorithm for this
problem can stated as:

BEGIN
solve (LP, B, IN2);
s := 0;

1 s := s + 1;
t := val(s− best) := uā− f(ā); (oracle)
if ā ∈ N2, goto 1;
if t ≤ 0, an optimal solution found STOP;
ā ∈ IN1 will enter B or N2; (simplex pivot rule)
solve (LP, B, IN2);
s := 0;
goto 1;

END.

3. An inequality to avoid regenerating forbidden

columns when matrix A is binary

When the set of all a in K can be described by:

Ka ≤ h, (6)

a ∈ {0, 1}m, (7)

where K ∈ Rq×m is a known matrix and h ∈ Rq is a given vector, we propose a
special way to avoid to generate a forbidden column to enter the basis.

We will use a linear inequality that eliminates a given point of {0, 1}m. Let
ā ∈ {0, 1}m, we wish to construct an inequality to eliminate just ā in (6) and (7).
That is given B = {0, 1}m−{ā} how to find a facet of the convex hull of B, which
keeps out ā?. All points of a sphere centered in ā with radius equal to 1 satisfy
the following equation:

∑m
j=1(aj − āj)2 = 1. All the neighbors of ā in the cube
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whose vertices are all points of {0, 1}m belong to the surface of this sphere. If we
want to consider all points of B we will write:

m∑

j=1

(aj − āj)2 ≥ 1. (8)

As we have a2
j = aj ,

m∑

j=1

(aj − āj)2 ≥ 1

implies
m∑

j=1

(a2
j − 2ājaj + ā2

j) ≥ 1

then
m∑

j=1

(1− 2āj)aj ≥ 1−
m∑

j=1

āj . (9)

It is easy to see that (9) is a facet of the convex hull of B, which keeps out ā.
We include this inequality in the COLGEN algorithm which in this case can be

presented as follows:

BEGIN
1 solve(LP, B, IN2);

solve(SP ), including
∑m

j=1(1− 2āj)aj ≥ 1−∑m
j=1 āj , ∀ā ∈ N2;

val(SP ) := uâ− f(â); (oracle)
if val(SP ) ≤ 0, an optimal solution is found STOP;
â will enter B or N2; simplex pivot rule
goto1;

END.

4. Solving integer programming with COLGEN

We define an integer program as follows:

(IP ) : minimize
p∑

j=1

cjxj

subject to:
p∑

j=1

ajxj = b,

0 ≤ xj ≤ dj , j = 1, 2, ..., p,

xj ∈ Z, j = 1, 2, ..., p,
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where cj , aj , b and dj are defined as in (1) to (3). We solve (IP ) using branch-and-
bound techniques, see [12] and [45] and at each node of the enumerative scheme
the column-generation algorithm will be applied.

We consider (LP ) the linear relaxation of (IP ), that is, we do not consider in
(LP ) constraints xj ∈ Z, j = 1, 2, ..., p.

At the initial node we solve (LP ) if its optimal solution is integer then we have
solved (IP ), otherwise we have a k such that x̂B(k) is not integer. Thus we will
branch this node solving two linear programming problems:

• (LP ) ∩ {xB(k) ≤ bx̂B(k)c}, and
• (LP ) ∩ {xB(k) ≥ bx̂B(k)c+ 1},

where brc is the largest integer ≤ r.
We suppose to be at node i of the branch-and-bound tree and its associated

linear programming problem is under the following form

(LPi) : minimize
p∑

j=1

cjxj

subject to:
p∑

j=1

ajxj = b,

αj ≤ xj ≤ βj , j ∈ Si,

0 ≤ xj ≤ dj , j ∈ I − Si,

where Si is the set of the indices associated with all generated columns along the
current branch, including the columns in B at node i. We can have αj = 0 or
βj = dj for some j ∈ Si. An initial feasible basic solution for (LPi) is a matrix B
for which αB(i) ≤ x̄B(i) ≤ βB(i), i = 1, 2, ..., m, x̄j = αj or x̄j = βj , j ∈ Si − IB,
and x̄j = 0, j ∈ I − Si.

We consider now a feasible basic solution of (LPi) associated with an optimal
basic solution of

(LXPi) : minimize
∑

j∈Si

cjxj

subject to: ∑

j∈Si

ajxj = b,

αj ≤ xj ≤ βj , j ∈ Si,

where z̄j = 0, j ∈ IB ; z̄j ≤ 0 for x̄j = αj and j ∈ Si − IB ; z̄j ≥ 0 for x̄j = βj and
j ∈ Si − IB .

If (LPi) is a leaf of the branch-and-bound tree then we resort to backtracking,
otherwise we choose a k ∈ IB such that x̂B(k) is not integer, and we branch as
follows:

• (LPi+1) := (LPi) ∩ {xB(k) ≤ bx̂B(k)c}, and
• (LPi+2) := (LPi) ∩ {xB(k) ≥ bx̂B(k)c+ 1}.
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We can take linear programming problems considering just the columns generated
up to reach node i.

• (LXPi+1) := (LXPi) ∩ {xB(k) ≤ bx̂B(k)c}, and
• (LXPi+2) := (LXPi) ∩ {xB(k) ≥ bx̂B(k)c+ 1}.

It is important to note that an optimal basic solution of (LXPi) is still a dual
feasible basic solution for (LXPi+1) and (LXPi+2).

Starting the (dual) simplex algorithm using an optimal basic solution of (LXPi)
we can solve easily (LXPi+1) and (LXPi+2), see [10, 17] or [38]. Unfortunately
(LXPi+1) can be empty and (LPi+1) is not. The same can be assumed for
(LXPi+2) with respect to (LPi+2).

When (LXPi+1) is not empty we have an optimal basic solution for it, and this
optimal solution will be the initial feasible basic solution for (LPi+1). Then we use
COLGEN algorithm to solve (LPi+1). The same can be done for (LPi+2), from an
optimal basic solution for (LXPi+2).

If (LXPi+1) has no feasible solution we have to solve (LPi+1) starting the
simplex algorithm using an artificial solution. We introduce an artificial variable
r in the k-row as follows:

xB(k) + r = x̄B(k) −
∑

j∈IN1

ykjxj −
∑

j∈IN2

ykjxj .

We put xB(k) = bx̂B(k)c, then

r̄ = x̄B(k) −
∑

j∈IN1

ykjαj −
∑

j∈IN2

ykjβj − bx̂B(k)c > 0.

As aB(k) is in the basis B we have yB(k) = B−1aB(k) = ek. If we consider
IN2 := IN2 ∪ {B(k)}, and βB(k) = bx̂B(k)c, then we can solve the following linear
programming problem using COLGEN algorithm:

(AP1) : minimize r

subject to:
p∑

j=1

ajxj + aB(k)r = b,

αj ≤ xj ≤ βj , j ∈ Si,

0 ≤ xj ≤ dj , j ∈ I − Si, and r ≥ 0.

Let B a primal feasible basic solution for (AP1). If val(AP1) = 0 we have an initial
feasible basic solution for (LPi+1). Otherwise (LPi+1) is empty and the (i+1)-node
is closed, and backtracking takes place.

For solving (LPi+2) when (LXPi+2) is empty we proceed the same way.
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5. Computational results for a network design problem

The above-described techniques were successfully applied to a problem that
arises in telecommunications network planning which was presented in detail
in [40, 46] and [6].

In recent years, studies about network dimensioning and survivability focused
mainly on ring based and mesh based architectures. Most works treated both
models separately. But several companies deploy networks based on rings, and
at the same time they have many meshed networks in operation and even some
curently being built. In large metropolitan centers it is easy to identify clusters of
nodes generating big data traffic among themselves. Meanwhile peripheral areas
of the same network may present reduced traffic. If the area under study is already
served by a meshed network it is possible to deal with the growth of traffic demands
by superimposing self-healing rings on the existing mesh. This is called the two-
level architecture network design solution.

The mesh part of the problem can be modeled quite well as a capacitated
multicommodity flow problem with expandable arc capacities. This will be the
initial master problem. The other way the flow can circulate on the net is on an
additional net of rings. Only flow between nodes on each ring is allowed on it.

The complete formulation of the problem is a large mixed integer linear pro-
gramming one and includes a column associated with each possible ring (see [40]
for details). As it is not possible to have all the columns available since the begin-
ning, a column generation procedure (SP ) was chosen to solve the problem. The
problem of generating each column can be modeled as an integer programming
problem.

Initially in [40], four instances of the problem were solved this way, two real
problems corresponding to 7-nodes and two corresponding to 10-node networks.
The program was written in C, and the XPRESS-MP library was used. All ex-
periments have been carried on a Pentium III 450 MHz computer. These results
are summarized in Tables 1 and 2; problems with 20, 30, 40 and 50 nodes were
also artificially generated. The number of traffic requirements and the values of
the requirements were randomly generated. The maximum rings capacities were
taken as 16. Detailed results for these new problems and one of the previous 10
node problems (with capacities of rings equal to 16) are presented in Table 3. In
all cases the exact optimum was found.

The characteristics of each problem, the cost of the solution of the problem that
only consider the mesh architecture and the number of generated support cycles
are first shown in the three tables. The next lines correspond to the Branch and
Bound solution of the problem where only a subset of the rings is considered. Then
the total number of generated columns, active columns (columns whose associated
variables have positive values at the optimal solution), open nodes used in the
complete branch-and-price procedure are then shown as well as the number of the
geometric cuts proposed in Section 3 which were necessary to add in each problem.
We also show the gap between the optimum and the linear and Branch and Bound
solutions. Looking at Table 2, we can see that using column generation for the
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Table 1. Results on the 7 node network.

Ring capacity 12 16
Edges 11 11
Demands 10 10
Cost of the mesh network 50 50
Support cycles generated 15 15
Linear solution with Colgen 10.067 8.740
CPU time (sec.) 9 8
B&B Integer solution 12 10
Generated columns 25 24
Active columns 2 2
ring cost 10 10
mesh cost 2 0
CPU time (sec.) 1 1
Optimum (branch-and-price) 11 10
Generated columns 43 50
Active columns 3 2
Open nodes 3 5
CPU time (sec.) 10 7
Max depth in Branch Bound tree 2 1
Geometric cuts 2 1
GAP(%): Optimum and linear solution 9.27 14.42
GAP(%): BB Integer solution and optimum 9.09 0.00
Master problem
Number of constraints 65 65
Number of columns 231 231
Slave problem
Number of constraints 65 65
Number of columns 44 44

linear relaxation of the problem with ring capacity 12, we generated 88 columns,
and we obtain a solution cost equal to 24.403. Using only these columns we started
a branch-and-bound procedure and we obtain a solution with a value of 29 that
provides an upper bound for the solution of the original problem. Among these
88 generated columns, 7 were related to nonzero variables, which means that only
7 rings with capacity 12 were used in the final solution of this branch and bound
procedure. Then starting from the linear relaxed solution mentioned above, a
branch-and-price method as the one described in Section 4 was used.
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Table 2. Results on the 10 node network.

Rings capacities 12 16
Edges 22 22
Demands 36 36
Cost of the mesh network 152 152
Support cycles generated 169 169
Linear solution with Colgen 24.403 21.958
CPU time (sec.) 48 57
B&B Integer solution 29 27
Generated columns 88 78
Active columns 7 6
CPU time (sec.) 6 3
Optimum (branch-and-price) 27 24
Generated columns 4450 11104
Active column 6 6
Open nodes 540 685
CPU time (hours) 2 2.5
Max depth in Branch Bound tree 39 48
Geometric cuts 154 466
GAP(%): Optimum and linear solution 10.64 9.30
GAP(%): BB Integer solution and optimum 7.41 12.50
Master problem
Number of constraints 291 291
Number of columns 1606 1606
Slave problem
Number of constraints 201 201
Number of columns 128 128

6. Conclusions

The solution of combinatorial optimization problems for which the columns of
the constraint matrix belong to a huge finite set can be found using the techniques
we described in this paper. Solving (SP ) problem may be difficult. The use of
(LXPi) instead of (LPi) may accelerate the branch-and-bound implementation as
was the case in the application mentioned in Section 5. We observe that, when
the matrix A of the problem is binary, the inequality presented in Section 3 may
be used in the context of a branch-and-price method to avoid a column to reenter
the successors of the node where it has been deleted.
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Table 3. Results on the 10, 15, 20, 30, 40 and 50 node networks.

Nodes 10 15 20 30 40 50
Edges 22 25 40 58 60 80
Demands 36 20 25 50 45 70
Rings capacities 16 16 16 16 16 16
Cost of the mesh network 152 108 142 252 230 380
Support cycles generated 169 1408 13694 12083 78543 145117

Linear solution with Colgen 21.96 18.33 25.74 46.71 46.64 72.27
CPU (time secs) 67 46 61 507 401 1099

B&B Integer solution 27 20 27 52 50 75
Generated columns 78 73 84 224 225 494
Active columns 6 4 5 8 8 13
CPU (time secs) 3 1 1 8 6 457

Optimum (branch-and-price) 24 19 26 48 48 74
Generated columns 11104 105 124 1098 2471 7021
Active columns 6 4 5 8 8 13
Open nodes 685 6 4 55 140 327
CPU (time secs) 9000 22 32 1704 5128 36345
Max depth in Branch Bound tree 48 3 2 4 10 18
Geometric cuts 466 3 2 28 75 170

GAP(%)
Optimum and linear solution 9.30 3.64 1.03 2.75 2.91 2.39
B&B Int. solution and optimum 12.50 5.26 3.85 8.33 4.17 1.35

Master problem
Number of constraints 291 280 481 1414 1762 3417
Number of columns 1606 1353 2550 5858 8281 17202

Slave problem
Number of constraints 201 132 166 311 306 451
Number of columns 128 90 115 210 215 310
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