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Abstract. This paper is concerned with scheduling when the data
are not fully known before the execution. In that case computing a
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mances. Some flexibility must be added to the scheduling process. We
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delays: in our model an estimation of the delay is known at compile
time; but disturbances due to network contention, link failures, ... may
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show the interest of this approach compared with fully on-line sched-
uling.
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63177 Aubière Cedex, France; e-mail: Eric.Sanlaville@math.univ-bpclermont.fr
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1. Introduction

The classical m machine scheduling problem is central for parallel computing
issues. However it is essential to introduce the communication delays between
tasks executed on different processors. Several models including communication
delays for both shared and distributed memory multiprocessor systems have been
proposed [1, 16]. If two tasks Ti and Tj are executed by two different processors,
there is a delay between the end of Ti and the beginning of Tj due to data transfer
between the two processors. The problem is NP-complete even for unit execu-
tion and communication times (the UECT problem), on an arbitrary number of
processors or on an unlimited number of processors (see the pioneering work of
Rayward–Smith [17], or the survey of Chrétienne and Picouleau [3]). However,
some problems were found to be polynomial, especially for tree-like precedence
constraints (see for instance [2, 9]).

In many models the communication delays only depend on the source and des-
tination tasks, not on the communication network. The general assumption is that
this network is fully connected, and that the lengths of the links are equal [7, 18].
This is rarely the case for a real machine: the network topology and the conflict
of the communication links, may largely influence the delays, not to speak of com-
munication failures. Some scheduling methods take into account the topology as
in [11]. It is also possible to use more precise models (see [15, 19] for simultane-
ous scheduling and routing) but the performance analysis is then very difficult.
In general, building an accurate model of the network is much complicated and
entails a very intricate optimization problem.

A possible answer is to add an element of uncertainty in the model concerning
the communication delays. This is the chosen approach in this paper: an estima-
tion of the communication delays is known at compile time, allowing to compute a
schedule. But the actual delays are not known before the execution. Building the
complete schedule before the execution is then inadvisable. Conversely, postpon-
ing it to the execution time proves unsatisfactory, as we are then condemned to
somewhat myopic algorithms. The method presented is a trade-off between these
two approaches.

Scheduling with uncertainties on the data was not studied until recently. There
is however a large amount of work concerning operations research problems with
uncertain data, but it is mainly concerned with sensitivity analysis as introduced
for linear programming. Recently, Kouvelis and Yu [13] proposed a unified ap-
proach for coping with uncertainty. For scheduling, we are concerned with robust-
ness (or stability) and flexibility. A scheduling algorithm is robust, or stable, if
its performances are not too much affected by disturbances on the data (see [8]
and [20]). Flexibility means it is acceptable to modify a previously computed
schedule to adapt it to the real data.

To our knowledge, there is no previous work fully devoted to dealing with
uncertainties in parallel machine scheduling. However, in [8], the authors give some
preliminary sensitivity results concerning the maximum performance degradation
of any algorithm, depending on the maximum and minimum ratios between real
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and estimated communication delays. Kolen et al. [12] measure the sensitivity
of some list schedules for parallel machines case without communications. Their
sensitivity criterion is the number of task assignment changes. By contrast, there
are numerous works on workshop environments. Kouvelis and Yu [13] might be a
good introduction. Remark that Wu et al. [21] apply to the job shop (criterion:
weighted tardiness) ideas similar to those we independently present in this paper,
that is fixing off line a partial order among the tasks.

The paper is organized as follows. In Section 2, the model is stated precisely,
and the different algorithmic approaches are presented. The choice of two phase
methods, processor assignment then sequencing, is justified. Section 3 presents
a new partially on-line sequencing policy adapted to on-line disturbances. It is
coupled with an assigment algorithm from the deterministic case to provide a
flexible scheduling algorithm, what we call a stabilization scheme. Sensitivity
analyses for special cases are presented in Section 4 (fork and join graphs) and in
Section 5 (tree, unlimited number of processors). An experimental comparison is
conducted and interpreted in Section 6: for a fixed assignment, our approach is
compared with on-line scheduling.

2. Preliminaries

2.1. Model and definitions

We consider the schedule of a set of n tasks V = {T1, . . . , Tn} subject to prece-
dence relations denoted Ti ≺ Tj , on m identical processors. G = (V,≺) is the
task graph. Its height h(G) is the number of arcs in its longest path. Preemption
(the execution of a task may be interrupted) and task duplication are not allowed.
One processor may not execute more than one task at a time but can perform
computations while receiving or sending data. The duration of task Ti is pi. If
two tasks Ti and Tj verify Ti ≺ Tj and are executed on two different processors,
there is a minimum delay between the end of Ti and the beginning of Tj. The
communication delay between tasks executed on the same processor is neglected.
At compile time, the communication delays are estimated as c̃ij time units. It
is expected however (see Sect. 6) that these estimations are well correlated with
the actual values cij (communication delays at execution time). The goal is to
minimize the maximum task completion time, or makespan.

A schedule is composed of the assignment of each task to one processor and of
the sequencing (or ordering) of the tasks assigned to one processor. A schedul-
ing algorithm provides a schedule from a given task graph and a given processor
network. We shall distinguish between off-line algorithms and on-line algorithms.
An algorithm is off-line if the schedule is determined before the execution begins.
An algorithm is on-line if the schedule is built during the execution; the set of
rules allowing to build the final schedule is then called a policy. In our model, the
communication delays cij are only known at execution time, once the data transfer
is completed. Hence, for a given schedule, the beginning times of the tasks are not
known before the execution.
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In order to take into account the estimated delays a trade-off between off-line
and on-line scheduling consists in partially on-line scheduling, that is, after some
off-line processing, the schedule is built on-line.

Note that we are not within the framework of (strong) on-line scheduling (see for
instance [6]) where nothing is known about the task durations themselves before
their execution. Then all policies, even for independent tasks, will have bad worst
case performance ratios.

2.2. Different approaches for scheduling with communication delays

Basically, there are two types of methods, one phase methods that compute the
assignment and the sequencing simultaneously, and two phase methods that first
compute the assignment, then the sequencing for each processor.

2.2.1. List-scheduling approaches

Without communication delay the so called List Schedules (LS) are often used as
they provide good average performances, even as the worst case performance ratios
are bad. Remember LS schedules are obtained from a complete priority order of
the tasks. In most cases the choice is based upon Critical Paths (CP ) computation.
When a processor is idle, the ready task (all its predecessors are already executed)
of top priority is executed on this processor. A way to tackle scheduling with
communication delays is to adapt list scheduling. Then the concept of ready task
must be precised. A task is ready on processor π at time t if it can be immediately
executed on that processor at that time (all data from its predecessors have arrived
to π). This extension is called ETF for Earliest Task First scheduling, following
the notation of Hwang et al. [11]. The algorithm of Coffman and Graham [4] has
been adapted in [10] and its performances analyzed.

2.2.2. Clustering approaches

Another proposed method is the clustering of tasks to build a pre-
assignment [7, 18]. The idea is to cluster tasks between which the communi-
cation delays would be high. Initially, each task forms a cluster. At each step two
clusters are merged, until another merging would increase the makespan. When
the number of processors m is limited, the merging must continue until the number
of clusters is less than or equal to m. The sequencing for each processor is then
obtained by applying the CP rule.

More recently, Djordjevic and Tosic [5] proposed a new approach called chaining,
trying to combine modified list scheduling and clustering. It is a one phase method
as ETF. But for each processor, the position of a task in the sequencing is not
determined before the algorithm termination. The time complexity of this method
is significantly large.
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2.2.3. Limits of these approaches

The above methods suppose the complete knowledge of the communication
delays. Now if unknown disturbances modify these durations, one may question
their efficiency. ETF schedules might be computed fully on-line, at least for simple
priority rules derived from the critical path. But the first drawback is the difficulty
to build good priority rules before the assignment. Moreover, fully on-line policies
meet additional problems: if the communication delays are not known precisely at
compile time, the ready time of a task is not known before the communication is
achieved. But if this task is not assigned yet, the information relevant to that task
should be sent to all processors, to guaranty its earliest starting time. This is of
course very costly in time and memory space, and may lead to network contention.

The clustering approach would better fit our needs since the assignment might
be computed off-line, and the sequencing on-line. But it suffers from other limita-
tions. The merging process will result in large makespans when m is small. It is
also poorly suited to different distances between processors.

It follows from the above discussion that the best idea is to compute the assign-
ment off-line by one method or another (anyway, finding the optimal assignment
is known to be NP-complete [18]). Then the sequencing is computed on-line so
that the impact of communication delay disturbances is minimized. The on-line
computation should be very fast to remain negligible with regard to the process-
ing times and communication delays themselves. But it can be distributed, thus
avoiding fastidious information exchanges between any processor and some “mas-
ter” processor. Note that finding the optimal schedule when the assignment is
fixed is NP-hard even for 2 processors and UECT hypotheses [3].

3. An algorithm for scheduling with on-line

disturbances on communication delays

3.1. Stabilization scheme

For a fixed assignment, the natural way to deal with on-line disturbances on
communication delays is to apply a fully on-line sequencing policy based on ETF.
After all communication delays between tasks executed on a same processor are
zeroed, relative priorities between tasks may be computed much more accurately.

It is expected however that this approach will result in bad choices. Suppose a
communication delay is a bit larger than expected, so that at time t a task with
high priority, say Ti, is not yet available. A fully on-line policy will not wait. It
will instead, schedule some ready task Tj that might have much smaller priority.
If Ti is ready for processing at t + ε, for ε arbitrarily small, its execution will
nonetheless be postponed until the end of Tj.

We propose the following general approach. It aims at stabilizing, that is,
reducing the effect of disturbances on, the schedule computed off-line.

Step 1. Compute an off-line schedule based on the c̃ij ’s.
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Step 2. Compute a partial order ≺p including ≺, by adding precedences between
tasks assigned to a same processor.

Step 3. At execution time, use some ETF policy to get a complete schedule
considering assignment of Step 1 and partial order of Step 2.

The choices done for each step in the rest of the paper are now detailed.

3.2. Detailed partially on-line algorithm

The schedule of Step 1 is built by an ETF algorithm, based on Critical Path
priority. We said that Critical Path based policies seemed best suited, as shown by
empirical tests with known communication delays [22], and also by bound results
(see [11] and [10]). These empirical tests, and ours, show that the best priority
rule is the following: for each task Ti compute L∗(i), the longest path that starts
at Ti, including processing times and communication delays, the processing time
of the task without successor in the path but not the processing time of Ti. The
priority of Ti is proportional with L∗(i). The heuristic that sequences ready tasks
using the above priority is called RCP ∗ in [22] (RCP if the processing time of Ti

is included).
The partial order of Step 2 is obtained as follows. Suppose two tasks Ti and Tj

are assigned to the same processor. If the two following conditions are respected:
(1) Ti has larger priority than Tj for RCP ∗;
(2) Ti is sequenced before Tj in the schedule of step 1;

then a precedence relation is added from Ti to Tj . This will avoid that a small
disturbance leads to execute Tj before Ti at execution time.

In Step 3, RCP ∗ is again used as sequencing on-line policy to get the complete
schedule.

The resulting algorithm is called PRCP ∗ for Partially on-line sequencing with
RCP ∗. The algorithm for which the sequencing is obtained Fully on-line by RCP ∗

is denoted by FRCP ∗.

3.3. Example

Figures 1 and 2 show how our approach can outperform both fully off-line and
fully on-line sequencing computations. A set of 11 unitary tasks is to be scheduled
on two processors. All estimated communication delays are 1. Schedule a) is
obtained at compile time by RCP ∗. The resulting assignment is kept for scheduling
with the actual communication delays. Schedule b) supposes the sequencing is
also fixed, regardless of on-line disturbances (fully off-line schedule). Schedule c)
is obtained by PRCP ∗, and schedule d) by FRCP ∗.

After zeroing the internal communication delays, only c̃24, c̃45, and c̃49 remain
(bold arcs). The following precedences are added by our algorithm: for processor
P1, T4≺pT7, T4≺pT11, and for processor P2, T8≺pT5, and T8≺pT10 (dashed arcs).
Consider now the following actual communication delays: c24 = 1.25, c45 = 1.50,
and c49 = 0.70. At time 2, task T4 is not ready for processing, but T7 is. FRCP ∗

executes T7 whereas PRCP ∗, due to the partial order ≺p, waits for T4. At time 4
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Figure 1. RCP ∗ schedule at compile time and associated com-
pletely off-line schedule.
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Figure 2. PRCP ∗ and FRCP ∗ schedules.

for PRCP ∗, processor P1 is available, and T9 is ready. No additional precedence
was added between T5 and T9 as they have the same priority, hence T9 is executed
and then T5 is ready, so that P2 has no idle time. For FRCP ∗, exchanging T7 and
T4 results in idleness for P1, as T4 is indeed critical.
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Figure 3. PRCP ∗ versus PRCP for a fork graph

In what follows we consider the merits of the different strategies for sequencing,
once the assignment has been fixed. Hence optimality is to be understood within
that framework: minimum makespan among all sequencing policies, for a fixed
assignment. There is little hope to obtain theoretical results (optimality, bounds)
for anything but very special cases. Some of them are presented in Sections 4
and 5.

4. Optimality of PRCP ∗
for fork and join graphs

4.1. Fork graphs

Fork task graphs are considered (see Fig. 3). One task T1 is the immediate pre-
decessor of all the others, which are final tasks. In the case of fixed communication
delays, RCP or RCP ∗ find the minimum makespan (see [22]).

Adding disturbances do not much complicate. After the assignment a group
of final tasks is to be sequenced on the same processor as T1, say P1. All com-
munication delays are zeroed, hence the completion time on P1 is the sum of the
completion times of all these tasks, and is independent of the chosen policy. Con-
sider now a group of final tasks executed on another processor. Each has a ready
time (or release date), ri = p1 + c1i, and a processing time pi. Minimizing the
completion time on this processor is equivalent to minimizing the makespan of a
set of independent tasks subject to different release dates on one machine. This
easy problem may be solved by sequencing the tasks by increasing release dates
and processing them as soon as possible in that order. If a fully on-line policy is
used, it will do precisely that, whatever priority is given to the tasks. On the other
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hand, a partially off-line algorithm may add some precedence relations between
these tasks. This may lead to unwanted idleness. Indeed, suppose it is used with
RCP . It may enforce a precedence between Ti and Tj if c̃1i ≤ c̃1j , and pi > pj .
During the execution you may have c1i > c1j , and the processor may remain idle,
waiting for Ti to be ready. But if RCP ∗ is used, all priorities of the final tasks are
equal, hence no precedence will be added, which guaranty optimality. This result
is stated as a theorem below:

Theorem 1. A PRCP ∗ sequencing is optimal for a fixed assignment when the
task graph is a fork graph.

The difference between PRCP ∗ and PRCP is illustrated in Figure 3: suppose
c13 = 3 and c14 is unchanged, then exchanging T4 and T3 is allowed by PRCP ∗,
not by PRCP .

4.2. Join graphs

RCP ∗ is optimal for join task graph (simply reverse the fork graph, see Fig. 4)
and fixed communication delays, whereas RCP is optimal only if all tasks have
the same duration (see [22]). However this is no longer true if the communication
delays are allowed to vary. In fact in that case there is no optimal policy. The
sequencing of the initial tasks must be done using the c̃in’s. During the execution
the respective order of these communication delays may change, thus implying
a task exchange to keep optimality; but of course the initial tasks are already
processed. This remains true even if restrictive hypotheses are done on the size of
the disturbances, and is illustrated in the example of Figure 4: all initial durations
are 1, but during the execution one communication delay increases, c45 = 2. Only
a “lucky guess” can find the optimal schedule.

However if some local monotonicity property is verified by expected and actual
communication delays, PRCP ∗ is optimal. Indeed consider the following property
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on the disturbances (task Tn is final):

(Ti and Tj are assigned to the same processor and c̃in ≤ c̃jn) ⇒ cin ≤ cjn.

Theorem 2. If the communication delays respect the local monotonicity property,
then PRCP ∗ sequencing is optimal for a fixed assignment.

Proof. Any sequencing respecting the non increasing order of the c̃in’s on all pro-
cessors is optimal, as the induced release date for Tn is then minimized. PRCP ∗

respects this order for the c̃ij ’s, hence for the cin’s because of the property. �

This property may hold when, for instance, the disturbances depend only on
the source and target processors.

A natural extension of fork and join graphs is the trees. However the problem
is already NP-complete in the UECT case and an arbitrary number of processors
(see [14]). As mentionned earlier, things are more encouraging when the number
of processors is supposed to be infinite.

5. Tree-like precedence constraints and unlimited

number of processors

In this section, we consider an unlimited number of processors. The precedence
graph G is an in-tree.

For any off-line schedule S of G computed with the estimated communication
delays c̃ij , we will denote by ω̃(S) the makespan of S and ω(S) the makespan
computed with the actual communication delays cij of the schedule determined
by our algorithm PRCP ∗ based on the off-line schedule S. ω∗ (resp. ω̃∗) will
denote the optimal makespan of G with the actual communication delays (resp.
estimated communication delays).

In this section some additionnal definitions are used.

size of the disturbance: ε = max
i,j

(cij − c̃ij)

number of leaves of G: l(G), the number of tasks without predecessor in G
where G is an in-tree.

communicating arc for S: an arc of G whose extremities are not executed on
the same processor in S.

linear schedule: it assigns two independent tasks to different processors.

First, we will establish a result that is valid for any precedence graph.

Proposition 1. Let G be a task graph with arbitrary estimated and actual com-
munication delays. Then, for any linear schedule S, there exists a path C such
that

ω(S) − ω̃(S) ≤ hC × ε

where hC designates the number of communicating arcs in C.
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Proof. Let G be a precedence graph with arbitrary estimated and actual commu-
nication delays and let S be a linear schedule. Denote HC the set of communicating
arcs of a path C.

As the number of processors is unlimited, there exists a path C such that

ω(S) =
∑

i∈C
pi +

∑

(i,j)∈HC

cij .

Now considering estimated delays we have:

ω̃(S) ≥
∑

i∈C
pi +

∑

(i,j)∈HC

c̃ij .

And finally:
ω(S) − ω̃(S) ≤

∑

(i,j)∈HC

(cij − c̃ij) ≤ hC × ε. �

When the task graph G is an in-tree with Small Communication Times
(max

i,j
c̃ij ≤ min

i
pi), Chrétienne (see [2]) shows that linear schedules are dominant,

and proposes a polynomial time algorithm to determine an optimal schedule S∗.
Suppose the in-tree is denoted by 〈r; G1, ..., Gq〉 where r is the root of G and the
Gk’s are the subtrees of G whose roots are the tasks that immediately preceed r.
Initialy, distinct processors are assigned to the leaves of G. Then, the algorithm
proceeds recursively as follows: assuming that an optimal schedule is constructed
for the different subtrees Gk(k = 1, ..., q), the algorithm executes the root r af-
ter the root of a subtree Gk∗ (on the same processor) such that the makespan is
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minimum. One can immediately deduce the following properties of the resulting
optimal schedule:

1. S∗ is linear;
2. the number of processors that are used to obtain S∗ is equal to l(G);
3. each processor executes exactly a path of G that starts with a leaf.

Remark that this algorithm is in fact the application of ETF algorithm: each task
is executed as soon as possible; there is no need for a priority rule as the number of
available processors is unlimited. Now suppose S∗ is used as the off-line schedule
for PRCP ∗. As it is linear, no precedence relation is added in step two of our
stabilization scheme: the assignment and sequencing are fixed on-line.

Theorem 3. Let G be an intree with estimated communication delays that are SCT
(Small Communication Times). Then, the schedule S∗ computed by Chretienne’s
algorithm is such that

ω(S∗) − ω̃∗ ≤ min(h(G), l(G) − 1) × ε.

Proof. Remember first that ω̃∗ = ω̃(S∗).
From Proposition 1, there is a path C such that

ω(S∗) − ω̃∗ ≤ hC × ε.

It follows from Property 3 and the fact that G is an intree that there is at most one
communicating arc between any two processors. Therefore, for any path of G, the
number of communicating arcs is strictly less than the number of used processors
l(G) (Property 2). It follows according to Proposition 1 that

ω(S∗) − ω̃∗ ≤ (l(G) − 1) · ε.

Of course hC ≤ h(G), and the result holds. �
Two examples (see Fig. 5 and Fig. 6) show that this bound is tight. G1 and G2

are two intrees where we have associated next to each task its processing time and
next to each arc the estimated communication delay. The actual communication
delays for G1 are such that cij = c̃ij for any arc (i, j) except that c58 = c89 = 1.5.
h(G1) = 2, l(G1) = 5, ω̃∗ = 13, ω(S∗) = 14 and ε = 0.5.

The actual communication delays for G2 are such that cij = c̃ij for any arc (i, j)
except that c45 = 2.5. h(G2) = 2, l(G2) = 2, ω̃∗ = 5, ω(S∗) = 6.5 and ε = 1.5.

Note that in the second example, actual communication delays are no more
SCT. The theorem includes that case.

The above theorem bounds the makespan increasing of Chretienne schedule
by a function of the perturbation and the graph sizes. In the important case
where actual communication delays are larger than estimated ones (e.g., in case
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of network contention), the following absolute bound holds:

Corollary 1. Let G be an SCT-tree. If cij ≥ c̃ij for any arc (i, j), then

ω(S∗) − ω∗ ≤ min(h(G), l(G) − 1) · ε.

Proof. In that case, ω∗ ≥ ω̃∗ which entails the result. �
The bound is tight. For instance if all processing times are equal to 1 in exam-

ple 2, and c45 = 1 + ε = 2.5, then ω(S∗) = 5.5, and ω∗ = 4 = ω(S∗) − ε.

6. Experimental results for arbitrary task graphs

In this section, PRCP ∗ and FRCP ∗ are compared. The fully off-line approach
is not considered, as it leaves no way to cope with disturbances.

As said previously, if the c̃ij ’s are too poor approximations of the actual commu-
nication delays, the policy of choosing any ready task for execution might prove as
good as another. We chose to make the following assumptions: cij is obtained as
cij = c̃ij +πij , where πij , the disturbance, is null in fifty percent of the cases (after
all, the communication delay might be correctly estimated sometimes!). When non
zero, it is positive three times more often than negative (a disturbance being usu-
ally the result of a problem or a conflict during the message routing). Finally, its
size is chosen at random and uniformly between 0 and 0.5. This insures that any
disturbance is twice smaller than all execution times and communication delays,
see below.

500 task graphs are randomly generated, half relatively wide with respect to
the size of sets of independent tasks (wide graphs), half strongly connected, thus
having small antichains and long chains. The results for the first case are presented.
The mean numbers of edges are 103, 222, 335, 462, and 586 for graphs with
respectively 50, 100, 150, 200 and 250 vertices. The durations are generated
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Table 1. Results for wide task graphs, 3, 4 and 10 processors.

LCT SCT UECT

n m Mean nb Max Mean nb Max Mean nb Max
50 3 0.93 28 5.65 0.07 4 2.2 1.83 50 9.42
50 4 0.59 28 5.00 1.71 38 11.9∗ 2.64 50 9.13
50 10 0.44 22 4.83 0.11 12 1.25 0.23 6 4.40
100 3 1.35 68 5.17 0.04 16 1.50 1.17 50 8.01
100 4 0.77 48 7.10 2.16 66 7.79 2.26 76 5.33
100 10 0.24 20 2.61 0.47 34 3.04 0.87 38 4.91
150 3 0.75 54 5.47 0.34 48 1.39 0.99 60 4.87
150 4 0.85 52 3.44 2.45 86 6.57 1.88 90 4.36
150 10 0.18 16 1.72 0.25 20 1.69 0.47 24 5.33
200 3 0.53 66 4.32 0.14 34 1.57 1.01 72 3.83
200 4 0.85 62 3.37 1.23 92 5.38 2.13 84 5.01
200 10 0.39 36 2.73 0.63 48 3.90 0.90 62 3.20
250 3 1.14 68 5.01 0.28 64 1.00 0.46 44 5.19
250 4 0.37 56 3.03 1.73 92 4.68 2.15 96∗ 5.13
250 10 0.69 58 3.29 0.34 46 1.29 0.98 76 4.23

three times for a given graph to obtain LCT, SCT and UECT durations (Large
and Small estimated Communications Times, and Unit Execution and estimated
Communication Times, respectively). In the first case processing times are chosen
uniformly in [1, 5] and communication delays in [5, 10], in the second case it is the
opposite, in the third all durations are set to 1. For each graph, 5 duration sets of
each type are tested.

The table displays the mean percentage of improvement of PRCP ∗ with respect
to FRCP ∗, the number of times (in percentage) PRCP ∗ was better, and the
maximum improvement ratio obtained by PRCP ∗.

PRCP ∗ is always better in average. The number of times PRCP ∗ is strictly
better may reach 96% of the cases (example given, UECT, n = 250, m = 4).
The mean improvements are significant, as the assignment is the same for both
algorithms. Indeed an improvement of 5% is frequent and might be worth the
trouble. A randomly generated case with improvement of 11.9% is reported.

The results are more significant in the UECT case. Note that it may be in-
teresting to wait for a task with large priority, instead of immediately executing
a ready task (no-wait schedules are no more dominant when on-line disturbances
occur).

In the case of strongly connected graphs, the differences are less significant, as
more often as not, there is only one ready task at a time per processor. Hence
the full results are not presented. However when there are differences they are in
favor of PRCP ∗.
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7. Conclusion

In this paper we considered a way to build schedules when the data are un-
certain. This domain has been little investigated: most works consider a fixed
schedule and study its performance degradation; they propose a sensitivity anal-
ysis of existing algorithms. The goal of the approach proposed here for the m
machine problem with uncertain communication delays is to introduce flexibility.
It consists in a three step scheme: compute a first schedule with estimated de-
lays, fix partially this schedule (assignment plus partial order), and determine the
complete sequencing on each machine during execution. This stabilization scheme
gives interesting results for arbitrary task graphs. We then considered tree-like
precedence constraints. The scheme builds optimal schedules for fork graphs and
join graphs when communication delays have some monotonicity property. When
the number of processors is unlimited, Chrétienne’s algorithm, optimal for fixed
delays, is used in the first step of our scheme. As it is linear, the full schedule is
in fact fixed off-line. Some sensitivity bounds are then proved.

Scheduling with uncertain data is a very promising research field. Similar sta-
bilization schemes may be used for other scheduling problems, for instance when
processing times also are uncertain, or when the machines are not identical, or not
parallel (flow shops, job shops, . . . ).
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