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OPTIMAL POLICIES FOR A DATABASE SYSTEM
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Abstract. This paper considers two backup schemes for a database
system: a database is updated at a nonhomogeneous Poisson process
and an amount of updated files accumulates additively. To ensure the
safety of data, full backups are performed at time NT or when the
total updated files have exceeded a threshold level K, and between
them, cumulative backups as one of incremental backups are made at
periodic times iT (i = 1, 2, · · · , N − 1). Using the theory of cumulative
processes, the expected cost is obtained, and an optimal number N∗

of cumulative backup and an optimal level K∗ of updated files which
minimize it are analytically discussed. It is shown as examples that
optimal number and level are numerically computed when two costs of
backup schemes are given.

Keywords. Database, full backup, cumulative backup, cumulative
process, expected cost.

1. Introduction

A database in a computer system is frequently updated by adding or deleting
data files, and is stored in floppy disks or other secondary media. Even high reliable
computers might sometimes break down eventually by several errors due to noises,
human errors and hardware faults. It would be possible to replace hardware and
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software when they fail, but it would be impossible to do a database. One of
important things for using computers is to backup data files regularly, i.e. to copy
all files in a secondary medium. Fukumoto et al. [5] discussed optimal checkpoint
generations for a database recovery mechanism. Qian et al. [9] considered the
backup policy where a database fails according to a probability distribution and
derived the optimal time of full backup.

Cumulative damage models in reliability theory, where a system suffers damage
due to shocks and fails when the total amount of damage exceeds a failure level K,
generate a cumulative process [2]. Some aspects of damage models from reliability
viewpoints were discussed by Esary et al. [3]. It is of great interest that a system
is replaced before failure as preventive maintenance. The replacement policies
where a system is replaced before failure at time T [11], at shock N [7], or at
damage Z [4, 6] were considered. Nakagawa and Kijima [8] applied the periodic
replacement with minimal repair [1] at failure to cumulative damage models and
obtained optimal values T ∗, N∗ and Z∗ which minimize the expected cost. Satow
et al. [10] applied the cumulative damage model to garbage collection policies for
a database system.

In this paper, we apply the cumulative damage model to the backup of files for
database media failures, by putting shock by update and damage by updated files :
a database is updated at a nonhomogeneous Poisson process and an amount of
updated files accumulates additively. To lessen the overhead of backup processing,
cumulative backups with small overhead are adopted between full backups [11].
The mean time to full backup and the expected costs are derived, using the theory
of cumulative processes. Further, an optimal number of cumulative backup and an
optimal level of updated files which minimize the expected costs are analytically
derived. Numerical examples are finally shown when two costs of backup schemes
are given.

2. Model description

Backup frequencies of a database would usually depend on the factors such as
its size and availability, and sometimes frequency in use and criticality of data.
The simplest and most indispensable method to ensure the safety of data would
be always to shut down a database, and to make the backup copies of all data,
log and control files in other places, and to take them out immediately when some
data in the original secondary media are corrupted. This is called total backup.
But, such backup has to be made while a database is off-line and unavailable to
its users, and would take more hours and costs as data become larger.

To overcome these disadvantages, incremental backup has been developed
because only a small percentage of files changes in most applications between
successive backups [9,11]: incremental backup makes the copies of only files which
have changed or are new since a prior backup. The resources required for such
backup are proportional to the transactional activities which have taken place in
a database, and not to its size. This can shorten backup times and can decrease
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the required resources, and would be more useful for larger databases. On the
other hand, the type of backups, in which the copies of all files are made in a
storage area and the attributes of archives while backing up only modified files
are updated, is called full backup. Incremental backup cannot take the place of
full backup, however, it can reduce the frequency of full backup which is required.
For failures, a database can recover from these points by log files and restore a
consistent state by the last full backup and incremental backups.

Cumulative backup has been well-known as one of incremental backups: it makes
all copies of modified files since the last full backup, however, does not update the
attributes of archives. The list of files is growing up each day until the next full
backup which will clear all attributes of archives. We can restore all data by the
last full backup and the last cumulative backup. From the above point of view,
we can reduce the frequency of full backups by cumulative backups. The problem
is to decide the interval of full backups.

3. Expected cost

Suppose that a database should be operating for an infinite time span. Cu-
mulative backups are performed at periodic time iT (i = 1, 2, · · · ), e.g. daily or
weekly, and make the copies of only updated files which have changed or are new
since the last full backup. But, because the time and resources required for cumu-
lative backups are growing up every time, full backup is performed at iT , when the
total updated files have exactly exceeded a threshold level K during the interval
((i − 1)T, iT ], or NT (i = 1, 2, · · · , N − 1; N = 1, 2, · · · ), whichever occurs first,
and makes the copies of all files. A database returns to an initial state by such
full backups.

Taking the above considerations into account, we formulate the following sto-
chastic model of the backup policy for a database system: suppose that a database
is updated at a nonhomogeneous Poisson process with an intensity function λ(t)
and a mean-value function R(t), i.e., R(t) ≡ ∫ t

0
λ(u)du. Then, the probability

that the j-th update occurs exactly during (0, t] is

Hj(t) ≡ [R(t)]j

j!
e−R(t) (j = 0, 1, 2, · · · ), (1)

where R(0) ≡ 0 and R(∞) ≡ ∞.
Further, let Yj denote an amount of files, which changes or is new at the

j-th update. It is assumed that each Yj has an identical probability distribu-
tion G(x) ≡ Pr{Yj ≤ x} (j = 1, 2, · · · ). Then, the total amount of updated files
Zj ≡∑j

i=1 Yi up to the j-th update where Z0 ≡ 0 has a distribution

Pr{Zj ≤ x} ≡ G(j)(x) (j = 0, 1, 2, · · · ), (2)

and G(0)(x) ≡ 1 for x ≥ 0, 0 for x < 0, where G(j)(x) (j = 1, 2, · · · ) is the j-fold
convolution of G(x) with itself. Then, the probability that the total amount of
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updated files exceeds exactly a threshold level K at j-th update is G(j−1)(K) −
G(j)(K). Let Z(t) be the total amount of updated files at time t. Then, the
distribution of Z(t) is [3]

Pr{Z(t) ≤ x} =
∞∑

j=0

Hj(t)G(j)(x). (3)

Since the probability that the total amount of updated files does not exceed a
threshold level K at time iT is, from (3),

Fi(K) ≡
∞∑

j=0

Hj(iT )G(j)(K) (i = 1, 2, · · · ), (4)

where F0(K) ≡ 1, the probability that its total amount exceeds exactly a level K
during ((i − 1)T, iT ] is Fi−1(K) − Fi(K).

Suppose that full backup cost is c1, and cumulative backup cost is c2 + c0(x)
when the total amount of updated files is x (0 ≤ x < K). It is assumed that the
function c0(x) is continuous and strictly increasing with c0(0) ≡ 0 and c2 < c1

≤ c2 + c0(K). Then, from (4), the expected cost of cumulative backup, when it is
performed at time iT , is

CI(i, K) ≡
∞∑

j=0

Hj(iT )
∫ K

0

[c2 + c0(x)]dG(j)(x)/Fi(K) (i = 1, 2, · · · ), (5)

where CI(0, K) ≡ 0. Further, the mean time to full backup is

N−1∑
i=1

(iT )[Fi−1(K) − Fi(K)] + (NT )FN−1(K) = T
N−1∑
i=0

Fi(K), (6)

and the total expected cost to full backup is

N−1∑
i=1


c1 +

i−1∑
j=0

CI(j, K)


 [Fi−1(K) − Fi(K)] +


c1 +

N−1∑
j=0

CI(j, K)


FN−1(K)

= c1 +
N−1∑
i=1

CI(i, K)Fi(K). (7)

Therefore, the expected cost per unit time in the steady-state is

C(K, N) ≡ c1 +
∑N−1

i=1 CI(i, K)Fi(K)

T
∑N−1

i=0 Fi(K)
· (8)
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4. Optimal policy

We discuss optimal values K∗ and N∗ which minimize the expected cost C(K, N)
in (8). We have that C(0, N) ≡ limK→0 C(K, N) = c1/T for all N , C(K, 1) = c1/T
for any K and C(∞,∞) ≡ limK→∞,N→∞ C(K, N) = [c2 + c0(∞)]/T , when
M(K) ≡ ∑∞

j=1 G(j)(K) < ∞. Thus, there exists a positive pair (K∗, N∗)
(0 < K∗, N∗ ≤ ∞) which minimizes C(K, N).

Differentiating C(K, N) with respect to K and setting it equal to zero, we have

N−1∑
i=0

[c2 + c0(K) − CI(i, K)]Fi(K) = c1 − c2. (9)

Forming the inequalities C(K, N + 1) ≥ C(K, N) and C(K, N) < C(K, N − 1),
we have

L(N, K) ≥ c1 − c2 and L(N − 1, K) < c1 − c2, (10)

where

L(N, K) ≡
N−1∑
i=0

[CI(N, K) − CI(i, K)]Fi(K). (11)

Noting that CI(N, K) < c2 + c0(K) from (5) scine the cost function c0(x) is
continuous and strictly increasing, we have that there does not exist a positive
pair (K∗, N∗) (0 < K∗, N∗ < ∞) which satisfies (9) and (10), simultaneously.
Thus, if such a positive pair (K∗, N∗) exists which minimizes C(K, N) in (8),
then K∗ = ∞ or N∗ = ∞.

4.1. Optimal level

Consider an optimal level for full backup, i.e., a database undergoes full backup
at time iT (i = 1, 2, · · · ) only when the total updated files have exceeded exactly
a level K during ((i − 1)T, iT ]. Putting N = ∞ in (8), the expected cost is

C1(K) ≡ lim
N→∞

C(K, N)

=
c1 +

∑∞
i=1[c2Fi(K) +

∑∞
j=0 Hj(iT )

∫K

0 c0(x)dG(j)(x)]
T
∑∞

i=0 Fi(K)
· (12)

A necessary condition that an optimal K∗ minimizes C1(K) is

∞∑
i=0

∞∑
j=0

Hj(iT )
∫ K

0

G(j)(x)dc0(x) = c1 − c2. (13)
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In particular, suppose that c0(x) = a (1 − e−sx) (a, s > 0). Letting Q(K) be the
left-hand side of (13), we have

Q(K) = a
∞∑

i=0


 ∞∑

j=0

Hj(iT )
∫ K

0

e−sxdG(j)(x) − e−sKFi(K)


 . (14)

It can be easily seen that Q(K) is a strictly increasing function from 0 to Q(∞) =
a
∑∞

i=0 e−R(iT )[1−g(s)], where g(s) ≡ ∫∞
0 e−sxdG(x) denotes the Laplace–Stieltjes

transform of G(x).
Therefore, we have the following optimal policy:

(i) if Q(∞) > c1 − c2 then there exists a finite and unique K∗ (0 < K∗ < ∞)
which minimizes C1(K), and it satisfies (13). In this case, the resulting
expected cost is

C1(K∗) =
c2 + a

(
1 − e−sK∗)
T

; (15)

(ii) if Q(∞) ≤ c1 − c2 then K∗ = ∞ and C1(∞) = (c2 + a)/T .

Example 1. Suppose that a database system is updated according to a Poisson
process with rate λ, i.e., λ(t) = λ. Further, it is assumed that G(x) = 1 − e−µx,
i.e., G(j)(x) = 1 −∑j−1

i=0 [(µx)i/i!]e−µx and M(K) = µK. Then, equation (13) is
simplified as

a

∞∑
i=0

∞∑
j=0

(iλT )j

j!
e−iλT

∞∑
m=j

[µj(s + µ)m−j − µm]Km

m!
e−(s+µ)K = c1 − c2. (16)

The left-hand side of (16) is a strictly increasing function of K from 0 to
a/
(
1 − e−

sλT
s+µ

)
. Noting that c1 ≤ c2 + a, there exists a finite and unique K∗

(0 < K∗ < ∞) which satisfies (16).
Table 1 gives the optimal level K∗ for full backup, and the resulting cost

C1(K∗)T for s = 2 × 10−2, 2 × 10−3, 2 × 10−4 and 2 × 10−5 when c1 = 3,
c2 = 1, a = 2, µ = 1 and λT = 100.
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Table 1. Optimal level K∗ and the resulting cost C1(K∗)T .

s 2 × 10−2 2 × 10−3 2 × 10−4 2 × 10−5

K∗ 133 337 1064 3180
C1(K∗)T 2.859 1.979 1.375 1.123

4.2. Optimal number

Next, consider an optimal number when a database undergoes full backup only
at time NT (N = 1, 2, · · · ). Putting that K = ∞ in (8), the expected cost is

C2(N) ≡ lim
K→∞

C(K, N)

=
c2

T
+

c1 − c2 +
∑N−1

i=1

∑∞
j=0 Hj(iT )

∫∞
0

c0(x)dG(j)(x)
NT

· (17)

From the inequality C2(N + 1) − C2(N) ≥ 0, we have

N−1∑
i=0

∞∑
j=0

[Hj(NT ) − Hj(iT )]
∫ ∞

0

c0(x)dG(j)(x) ≥ c1 − c2. (18)

In particular, suppose that c0(x) = a (1 − e−sx) (a, s > 0). Letting L(N) be the
left-hand side of (18), we have

L(N) = a

N−1∑
i=0

{
e−R(iT )[1−g(s)] − e−R(NT )[1−g(s)]

}
, (19)

which is strictly increasing to L(∞) = a
∑∞

i=0 e−R(iT )[1−g(s)]. Note that L(∞)
= Q(∞) in Section 4.1.

Therefore, we have the following optimal policy:
(iii) if L(∞) > c1 − c2 then there exists a finite and unique minimum N∗

(1 ≤ N∗ < ∞) which satisfies (18);
(iv) if L(∞) ≤ c1 − c2 then N∗ = ∞.

Example 2. Suppose that λ(t) = λ and G(x) = 1 − e−µx. Then, an N∗ is given
by a finite and unique minimum such that

a

(
1 − e−

NsλT
s+µ

1 − e−
sλT
s+µ

− Ne−
NsλT
s+µ

)
≥ c1 − c2. (20)

Table 2 gives the optimal number N∗ and the resulting cost C2(N∗)T for s =
2 × 10−2, 2 × 10−3, 2 × 10−4 and 2 × 10−5 when c1 = 3, c2 = 1, a = 2, µ = 1 and
λT = 100.
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Table 2. Optimal number N∗ and the resulting cost C2(N∗)T .

s 2 × 10−2 2 × 10−3 2 × 10−4 2 × 10−5

N∗ 2 4 11 32
C2(N∗)T 2.859 1.980 1.375 1.123

Compared with Tables 1 and 2, two expected costs C1(K∗) and C2(N∗) are
almost the same, i.e., C1(K∗) ≤ C2(N∗). Thus, if two costs of backups are
the same, we should adopt the level policy in Section 4.1 as full backup scheme.
However, it would be generally easier to count the number of backups than to
check the amount of updated files. From this point of view, the number policy
would be better than the level policy. Therefore, how to select among two policies
would depend on actual mechanism of a database system.

5. Conclusions

We have considered two schemes of cumulative and full backup for a database
system, and have analytically discussed optimal backup policies which minimize
the expected cost, using the theory of cumulative processes. It would be of interest
that if two expected cost rates are almost the same, we should select the number
policy rather than the level one as full backup scheme. These results would be
applied to the backup of a database, by estimating the costs of two backups and the
amount of updated files from actual data. However, backup schemes become very
important and much complicated, as database systems have been largely used in
most computer systems and information technologies have been greatly developed.
These formulations and techniques used in this paper would be useful and helpful
for analyzing such backup policies.
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