
RAIRO Operations Research
RAIRO Oper. Res. 36 (2002) 129-148

DOI: 10.1051/ro:2002010

REFINED NON-HOMOGENEOUS MARKOVIAN MODELS
FOR A SINGLE-SERVER TYPE OF SOFTWARE SYSTEM

WITH REJUVENATION

Hiroyuki Okamura
1
, S. Miyahara

1
and T. Dohi

1

Communicated by Naoto Kaio

Abstract. Long running software systems are known to experience
an aging phenomenon called software aging, one in which the accu-
mulation of errors during the execution of software leads to perfor-
mance degradation and eventually results in failure. To counteract this
phenomenon a proactive fault management approach, called software
rejuvenation, is particularly useful. It essentially involves gracefully ter-
minating an application or a system and restarting it in a clean internal
state. In this paper, we reconsider the non-homogeneous
Markovian models for a single-server type of software system with re-
juvenation in Garg et al. (1998), and revisit them from the theoretical
view point. More precisely, it is assumed in these models that soft-
ware failures can occur with positive probability during idle periods in
transaction systems, but we exclude this unreasonable situation in our
refined models.

Keywords: Preventive maintenance, aging, rejuvenation, software
system, dependability, Markovian analysis, queue.

Received June, 2002.

1 Department of Information Engineering, Graduate School of Engineering, Hiroshima
University, 1–4–1 Kagamiyama, Higashi-Hiroshima 739–8527, Japan;
e-mail: okamu@rel.hiroshima-u.ac.jp

c© EDP Sciences 2002



130 H. OKAMURA, S. MIYAHARA AND T. DOHI

1. Introduction

It has been recognized for a long time that the software system does not deteri-
orate in the operational phase. However, the phenomenon called software aging is
observed by some authors [1, 13], especially in operating systems and widely-used
applications like Netscape and Internet Explorer. The software aging will affect the
performance of the application and eventually cause it to fail. Huang et al. [10] re-
port this phenomenon in telecommunications billing applications where over time
the application experiences a crash or a hang failure. Avritzer and Weyuker [2]
discuss aging in a telecommunication switching software where the effect manifests
as gradual performance degradation. Of course, the software aging phenomenon
is caused by some software faults which induce the performance degradation such
as the memory leak and the fragmentation. Hence, software users may avoid the
degradation if they can detect and fix the faults. However, these works are not
always possible because the application developer prohibits accessing to the source
code directly in many cases. Furthermore, even if the accessing was permitted,
it would be almost impossible for software users to detect the faults causing the
degradation in the software in which various programs are entangled intricately.
In addition, common experience suggests that most software failures caused by
the software aging are transient in nature [7]. Since the transient failure will dis-
appear if the same operation as one at the failure occurrence is retried later in
slightly different context, it is also difficult to detect their roots. Therefore, the
software aging phenomenon and the transient software failure have to be tolerated
in the operational phase. Usual strategies to deal with the transient failure in the
operational phase are passive in nature; they consist of action taken after failure.

Recently, a complementary approach to handle transient software failures, called
software rejuvenation, is proposed [10]. Software rejuvenation is a preventive so-
lution that is particularly useful for counteracting the phenomenon of software
aging. It involves stopping the running software occasionally, cleaning its internal
state and restarting it. Cleaning the internal state of a software might involve
garbage collection, flushing operating system kernel tables, reinitializing internal
data structures, etc. An extreme, but well-known example of rejuvenation is a
hardware reboot. Apart from being used in an ad-hoc manner by almost all soft-
ware users, the software rejuvenation has been used in high availability and mission
critical systems [14,15]. Although the fault in the program still remains, perform-
ing the rejuvenation occasionally or periodically prevents severe failures due to
that fault.

Rejuvenation has the same motivation, advantages and disadvantages as pre-
ventive maintenance policies in hardware systems. Any rejuvenation typically
involves an overhead, but, on the other hand, prevents more severe failures to oc-
cur. The application will of course be unavailable during rejuvenation. However,
since this is a scheduled downtime, the cost is expected to be much lower than the
cost of an unscheduled downtime caused by failure. Hence, an important issue is
to determine the optimal schedule to perform software rejuvenation in terms of
dependability measures.



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 131

Huang et al. [10] analyze a continuous-time Markov chain model with software
rejuvenation. Garg et al. [4] introduce the idea of periodic rejuvenation and extend
the original Huang et al. model [10]. To deal with deterministic interval between
successive rejuvenations the system behavior was represented through a Markov
regenerative stochastic Petri net. Dohi et al. [3] develop semi-Markov models to
estimate the cost-optimal rejuvenation schedule from the empirical failure data.
As an alternative modeling approach, the work in Garg et al. [5] involves arrival
and queueing of transactions or jobs in the system, and computes load and time
dependent rejuvenation policy. The above models consider the effect of aging as
crash/hang failure, referred to as hard failures, which result in unavailability of the
software. However, due to the aging the software system can exhibit soft failures,
that is, performance degradation. Both effects of aging, hard failures that result
in an unavailability and soft failures that result in performance degradation, are
considered in the model of transaction based software system. In particular, Garg
et al. [6] propose the time based software rejuvenation scheme for a server type
of software system, where the rejuvenation starts at any timing measured by the
cumulative operation time. Recently, an alternative control policy, the workload
based policy, is proposed in the same modeling framework [12].

In this paper, we revisit the seminal software rejuvenation schemes by Garg
et al. [6] and Okamura et al. [12] from the theoretical view point. Garg et al. [6]
consider the time based rejuvenation policy for the typical transaction based soft-
ware system, but deal with only the case where the server may fail even during
idle periods. As expected easily, most types of software systems can fail in the
operative time, but seldom does during idle periods. In other words, the model by
Garg et al. [6] fails to describe such a delicate behavior of the transaction based
software system. This paper reformulates the single-server type of software system
and derive the dependability measures under the plausible assumption that the
server cannot fail during idle periods. Further, we also deal with the alternative
control policy for the software rejuvenation, which is not based on the cumulative
operation time but on the number of completed transactions. This new control
scheme is proposed by the authors [12]. The difference between these two models
is quite similar to that between T-policy and N-policy in the classical queueing
theory [8,9]. Finally, numerical examples are presented to quantitatively examine
the effect on the failure during idle periods.

2. Software rejuvenation scheme

Let us consider a software rejuvenation scheme for a single-server type of soft-
ware system. The original model is proposed by Garg et al. [6]. The arrival stream
of transactions follows the homogeneous Poisson process with parameter λ (>0).
The transaction is served at the rate of µ(·) (>0) per unit time and under the first-
come first-served discipline. The server has a buffer, whose capacity is K (>1).
The transactions while the server processes another transactions can be always
stored in the buffer, but, if the number of transactions in the buffer is larger than



132 H. OKAMURA, S. MIYAHARA AND T. DOHI

the capacity, the transactions that arrive later may be lost. The server exhaus-
tively processes the transactions while at least one transaction is in the buffer. By
contrast, only when the buffer becomes empty, the server may be idle and wait for
a new transaction. The time period is called an idle period.

The server may fail at the rate of ρ(·) (>0) per unit time. The failure is
caused by the software aging phenomenon such as memory leaking, data corrup-
tion and fragmentation. Taking account of the software aging, we assume that
the failure rate is an increasing function of time. Note that, in our modeling
framework, the service rate deceases and the failure rate increases as the opera-
tion time elapses. After the server fails, the system starts the recovery operation
where the recovery time (recovery overhead) is a non-negative random variable Yr

with E[Yr] = γr (>0). Before starting the recovery operation, all the transactions
stored in the buffer may be lost. In addition, all the transactions arriving at the
system during the recovery operation may be also lost.

The deterioration of the system performance, increase of the failure rate and
decrease of the service rate, motivates the software rejuvenation [6, 10]. In this
paper, the software rejuvenation is executed under the following policies [6, 12]:

Policy I [6]: Rejuvenate the system when the operation time becomes the
threshold time T (>0). The system is forced to execute the software rejuve-
nation at that time, even if there exist transactions in the buffer. Thus all
the transactions stored in the buffer will be lost.

Policy II [6]: Rejuvenate the system after the operation time becomes T (>0)
but the software rejuvenation is executed only when the buffer becomes
empty.

Policy III [12]: Rejuvenate the system when the number of completed trans-
actions becomes the threshold level N (>1). The software rejuvenation is
executed immediately. Then all the transactions stored in the buffer will be
lost.

Policy IV [12]: Rejuvenate the system after the number of completed trans-
actions is N (>1), but the software rejuvenation is executed only when the
buffer is empty.

Let YR be the preventive maintenance time to rejuvenate the system (rejuvenation
overhead) with mean E[YR] = γR (>0). In the software rejuvenation as well as
the recovery operation, all the transactions arriving at the system may be lost.

Figures 1 and 2 depict the possible behavior of the single-server type of soft-
ware system with rejuvenation. Since Policies I and II are essentially based on
the operation time, both of them are called T-policy. On the other hand, since
Policies III and IV depend on the number of completed transactions, we thus call
them N-policy. The essential difference between T and N policies is the timing
to execute the software rejuvenation. The rejuvenation timings under Policies I
and II are deterministic, by contrast, the rejuvenation timings under Policies III
and IV are random.

In the above modeling framework with four kinds of rejuvenation policies, we
make a plausible assumption that the server never fails during the idle period. In



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 133

Figure 1. Possible behavior of a single-server type of software
system with rejuvenation under Policies I and II.

the same framework, Garg et al. [6] and Okamura et al. [12] make the assumption
that the server can fail during the idle period, but this is a questionable assump-
tion. Strictly speaking, the server has nothing to do in the idle period. In the idle
period, the important task of the server is to monitor arrivals of requests. It does
not usually cause the system failure. Therefore the assumption that the server
never fails during the idle period will be validated.

3. Dependability measures

Consider three dependability measures; steady-state availability, probability of
transaction loss and mean response time on transactions. The behavior of trans-
action system can be modeled by the discrete time Markov chain (DTMC) with
three states (see Fig. 3).

State A: available state;
State B: failure/recovery state;
State C: rejuvenation state.

With the above states, we consider a coupled stochastic process {(Xt, St); t ≥ 0}
consisting of both the number of transactions stored in the buffer and the state
of the software system. The decomposed stochastic process {Xt; t ≥ 0} is de-
scribed by a non-homogeneous Markov process (NHMP). However, the Markovian
property does not hold for the other process {St; t ≥ 0}, since the recovery
and the rejuvenation overheads are generally distributed random variables. In
fact, the coupled stochastic process (Xt, St) is the Markov regenerative process
(MRGP) [4, 11]. The difference on the rejuvenation polices and the model as-
sumption will influence this coupled stochastic process.

Our analysis for the dependability measures contains two steps. In the first
step, by using the hidden Markovian analysis, the dependability measures are
formulated with probabilistic quantities, transition probability from State A to



134 H. OKAMURA, S. MIYAHARA AND T. DOHI

Figure 2. Possible behavior of a single-server type of software
system with rejuvenation under Policies III and IV.

State B, expected sojourn time in State A and expected number of transaction
loss at the time points of state changes. In the second step, the probabilistic
quantities above are calculated by using the well-known Markovian state space
method.

3.1. Formulation

In order to derive the dependability measures, we will apply the well-known
hidden Markovian method. At the time points of state changes, the software
system can be described as a DTMC with the following transition probability
matrix,

P =


 0 PAB PAC

1 0 0
1 0 0


 ,

where PAB and PAC denote the respective transition probabilities from State A
to State B and State A to State C. The steady-state probabilities for the DTMC
can be easily derived by

πA = 1/2, (1)



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 135

Figure 3. The transition diagram of the DTMC.

πB = PAB/2 (2)

and

πC = PAC/2. (3)

Define the following random variables in the steady state:
U : the length of sojourn time in State A;
Un: the length of sojourn time in State A with n (= 0, . . . , K) transactions

stored in the buffer, namely,

U =
K∑

n=0

Un, with probability one; (4)

Nl: the number of lost transactions at the time points of the state changes from
State A to State B or State A to State C.

3.1.1. Steady-state availability

From the renewal reward argument, the steady-state availability is formulated as

Ass =
πAE[U ]

πAE[U ] + πBγr + πCγR
· (5)

Substituting equations (1–3) into equation (5), it can be seen that

Ass =
E[U ]

E[U ] + PABγr + PACγR
· (6)

3.1.2. Probability of transaction loss

The transaction loss occurs if

(a): transactions arrive at the system during the recovery operation;
(b): transactions arrive at the system during the software rejuvenation;
(c): transactions overflow the buffer;
(d): the server fails;
(e): the software rejuvenation is executed under Policies I and III.



136 H. OKAMURA, S. MIYAHARA AND T. DOHI

In the cases (d) and (e), all the transactions stored in the buffer may be lost, and
the expected number of lost transactions is expressed by E[Nl]. Since the arrival
stream follows the homogeneous Poisson process, the expected numbers of lost
transactions in the cases (a) and (b) are given by λγr and λγR, respectively. In
the case (c), the expected number of lost transactions is λE[UK ]. Therefore, the
probability of transaction loss is given by

Ploss =
λ(PABγr + PACγR + E[UK ]) + E[Nl]

λ(E[U ] + PABγr + PACγR)
· (7)

3.1.3. Mean response time on transactions

Let Ws be the expected total amount of response time for the completed trans-
actions. When C denotes the expected number of completed transactions, it can be
derived that C = λ(E[U ]−E[UK ]). Thus the mean response time on transactions
is given by

Tres =
Ws

C − E[Nl]
· (8)

Here, since the expected total amount of response time for all transactions,

W =
K∑

n=0

nE[Un], (9)

is always larger than Ws, an upper bound of the mean response time is given by

Tres <
W

C − E[Nl]
= T res. (10)

In this way, we formulate implicitly the steady-state availability, the probability
of transaction loss and the upper bound of the mean response time on transac-
tions, based on the simple DTMC. In the subsequent section, these dependability
measures are represented as the functions of the decision variable, T or N .

3.2. Analysis for T -policy

Consider a continuous-time NHMP with the following states and corresponding
probabilities:

State 0, . . . , K: the system is in State A, where 0, . . . , K means the number
of transactions in the buffer;

State 0′, . . . , K ′: the server fails and 0, . . . , K transactions are lost at the
failure point (absorbing states);

pn(t): probability that n transactions are in the buffer at time t;
pn′(t): probability that the server fails and that n transactions are lost at the

failure.



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 137

Figure 4. Modified state diagram under the Policy I.

3.2.1. Policy I

Applying the Markovian state space method to the NHMP, Garg et al. [6]
formulate the difference-differential (Kolmogorov’s forward) equations on pn(t)
and pn′(t) as follows:

dp0(t)
dt

= µ(·)p1(t) − {λ + ρ(·)}p0(t), (11)

dpn(t)
dt

= µ(·)pn+1(t) + λpn−1(t) − {µ(·) + λ + ρ(·)}pn(t),

n = 1, . . . , K − 1, (12)
dpK(t)

dt
= λpK−1(t) − {µ(·) + ρ(·)}pK(t), (13)

dpn′(t)
dt

= ρ(·)pn(t), n = 0, · · · , K. (14)

The formulation by Garg et al. [6] includes the case where the server fails during
the idle period. Hence, we reformulate the difference-differential equations by
reducing the failure rate in idle periods to zero. The resulting difference-differential
equations are expressed in the following forms (see Fig. 4):

dp0(t)
dt

= µ(·)p1(t) − λp0(t), (15)

dpn(t)
dt

= µ(·)pn+1(t) + λpn−1(t) − {µ(·) + λ + ρ(·)}pn(t),

n = 1, . . . , K − 1, (16)
dpK(t)

dt
= λpK−1(t) − {µ(·) + ρ(·)}pK(t), (17)

dpn′(t)
dt

= ρ(·)pn(t), n = 1, · · · , K. (18)



138 H. OKAMURA, S. MIYAHARA AND T. DOHI

Figure 5. State diagram under Policy II (t > T ).

Solving the difference-differential equations yields

PAB =
K∑

n=1

pn′(T ), (19)

E[Un] =
∫ T

t=0

pn(t)dt, n = 0, . . . , K, (20)

E[Nl] =
K∑

n=1

n {pn(T ) + pn′(T )} · (21)

From equations (19–21), the dependability measures are calculated under Policy I.

3.2.2. Policy II

In a fashion similar to Policy I, the difference-differential equations on pn(t)
and pn′(t) are derived under Policy II. In Policy II, the software rejuvenation is
executed at the beginning of the first idle period after the operation time reaches
the threshold time T . Thus the difference-differential equations for Policy II during
0 ≤ t ≤ T are equivalent to those for Policy I. On the other hand, the equations
for t > T can be obtained as follows (see Fig. 5).

dp0(t)
dt

= µ(·)p1(t), (22)

dp1(t)
dt

= µ(·)p2(t) − {µ(·) + λ + ρ(·)}p1(t), (23)

dpn(t)
dt

= µ(·)pn+1(t) + λpn−1(t) − {µ(·) + λ + ρ(·)}pn(t),

n = 2, . . . , K − 1, (24)
dpK(t)

dt
= λpK−1(t) − {µ(·) + ρ(·)}pK(t), (25)

dpn′(t)
dt

= ρ(·)pn(t), n = 1, . . . , K. (26)



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 139

The above formula is the same as Garg et al. [6]. In fact, one does not need to re-
formulate the difference-differential equations under Policy II, because the system
does not become idle without the software rejuvenation for t > T .
Equations (22–26) lead to the following probabilistic quantities:

PAB =
K∑

n=1

pn′(∞), (27)

E[U0] =
∫ T

t=0

p0(t)dt, (28)

E[Un] =
∫ ∞

t=0

pn(t)dt, n = 1, . . . , K, (29)

E[Nl] =
K∑

n=1

npn′(∞). (30)

3.3. Analysis for N-policy

Consider a continuous-time NHMP with the following (N + 2)× (K + 1) states
and their corresponding probabilities,

State 0(i), . . . , K(i): The system completes i (= 0, . . . , N − 1) transactions
when 0, . . . , K transactions remain in the buffer;

State 0(N), . . . , K(N): The system completes N or more transactions when
0, . . . , K transactions remain in the buffer;

State 0′, . . . , K ′: The system fails with 0, . . . , K transactions stored in the
buffer (absorbing states);

p
(i)
n (t): probability that the system completes i transactions until time t and

that n transactions remain in the buffer at time t;
pn′(t): probability that the system fails and loses n transactions until time t.

3.3.1. Policy III

Figure 6 illustrates the Markovian state diagram in the case of Policy III. Since
the system executes the software rejuvenation just after N transactions are com-
pleted, the states 0(N), . . . , K(N) are the absorbing states and therefore the number
of states indicates the number of lost transactions. The difference-differential equa-
tions on p

(i)
n (t) and pn′(t) consist of four types of difference-differential equations

in respective cases.



140 H. OKAMURA, S. MIYAHARA AND T. DOHI

Figure 6. Modified state diagram under Policy III.

Case (i): no transaction is completed,

dp
(0)
0 (t)
dt

= −λp
(0)
0 (t), (31)

dp
(0)
n (t)
dt

= λp
(0)
n−1(t) − {λ + µ(·) + ρ(·)}p(0)

n (t), n = 1, . . . , K − 1, (32)

dp
(0)
K (t)
dt

= λp
(0)
K−1 − {µ(·) + ρ(·)}p(0)

K (t). (33)



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 141

Case (ii): 1, . . . , N − 1 transactions are completed,

dp
(i)
0 (t)
dt

= µ(·)p(i−1)
1 (t) − λp

(i)
0 (t), (34)

dp
(i)
n (t)
dt

= λp
(i)
n−1(t) + µ(·)p(i−1)

n+1 (t) − {λ + µ(·) + ρ(·)}p(i)
n (t),

n = 1, . . . , K − 1, (35)

dp
(i)
K (t)
dt

= λp
(i)
K−1(t) − {µ(·) + ρ(·)}p(i)

K (t). (36)

Case (iii): the software rejuvenation is executed,

dp
(N)
n (t)
dt

= µ(·)p(N−1)
n+1 (t), n = 0, . . . , K − 1. (37)

Case (iv): the server fails,

dpn′(t)
dt

= ρ(·)p(0)
n (t) + · · · + ρ(·)p(N−1)

n (t)

=
N−1∑
i=0

ρ(·)p(i)
n (t), n = 1, . . . , K. (38)

Note that the above difference-differential equations represent the case where the
server never fail in the idle period.

By solving the difference-differential equations above, the probabilistic quanti-
ties are given by

PAB =
K∑

n=1

pn′(∞), (39)

E[Un] =
∫ ∞

0

N−1∑
i=0

p(i)
n (t)dt, n = 0, . . . , K, (40)

E[Nl] =
K∑

n=1

n
{
pn′(∞) + p(N)

n (∞)
}
· (41)

The assumption that the server never fails in idle periods also gives an effect on the
probabilistic quantities above. If the assumption was not made under Policy III,
equation (39) should be expressed by the sum of pn′(∞) from n = 0 to K.

3.3.2. Policy IV

Similar to Policy III, the corresponding difference-differential equations can be
derived under Policy IV. For convenience, we focus only on the difference between
Policy III and Policy IV in terms of the difference-differential equations.



142 H. OKAMURA, S. MIYAHARA AND T. DOHI

Figure 7. State diagram under the Policy IV.

The software rejuvenation under Policy IV is executed at the first idle period
after N transactions are completed. Hence, the Markovian state corresponding to
the software rejuvenation is reduced into the state 0(N) (see Fig. 7). This difference
affects the difference-differential equations in only the cases (iii) and (iv).

Case (iii): the software rejuvenation is executed,

dp
(N)
0 (t)
dt

= µ(·){p(N)
1 (t) + p

(N−1)
1 (t)}, (42)

dp
(N)
n (t)
dt

= µ(·){p(N)
n+1(t) + p

(N−1)
n+1 (t)} − {λ + ρ(·)}p(N)

n (t),

n = 1, . . . , K − 1, (43)

dp
(N)
K (t)
dt

= λp
(N)
K−1(t) − µ(·)p(N)

K (t). (44)



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 143

Case (iv): the server fails,

dpn′(t)
dt

=
N∑

i=0

ρ(·)p(i)
n (t), n = 1, . . . , K. (45)

The difference-differential equations in the other cases are equivalent to
equations (31–36). Using p

(i)
n (t) and pn′(t), the probabilistic quantities needed

for our analysis are given by

PAB =
K∑

n=1

pn′(∞), (46)

E[U0] =
∫ ∞

0

N−1∑
i=0

p
(i)
0 (t)dt, (47)

E[Un] =
∫ ∞

0

N∑
i=0

p(i)
n (t)dt, n = 1, . . . , K, (48)

E[Nl] =
K∑

n=1

npn′(∞). (49)

Notice that, similar to equation (39), PAB can be expressed as the sum of pn′(∞)
from n = 1 to K.

The difference-differential equations derived in this section can be solved with
the ordinary numerical calculation methods, such as Runge–Kutta method, Adam’s
method and so on. It is, however, noted that the numerical calculation is not al-
ways easy to perform in the case with a large number of Markovian states, since
the computation time strongly depends on the size of the underlying NHMP and
usually takes much longer as the size of state is larger.

4. Numerical examples

In numerical examples, we examine the dependability measures under Policies I,
II, III and IV as well as the revisited assumption.

Suppose that the failure rate is given by

ρ(t) = βαtα−1. (50)

The software failure occurs at the Weibull distributed random time with scale
parameter β (>0) and shape parameter α (>0). Since the number of failures
increases with respect to the operation time t, the shape parameter is assumed to
be larger than unity, i.e., the failure rate has IFR property. Let MTTF denote



144 H. OKAMURA, S. MIYAHARA AND T. DOHI

the mean time to failures of the software system. Then the shape parameter is
given by

β =
[
Γ(1 + 1/α)

MTTF

]α

, (51)

where Γ(·) is the standard gamma function. The service rate has the monotonically
increasing property and is given by

µ(t) =

{
µmax − t

a
(µmax − µmin) for t ≤ a,

µmin for t > a,
(52)

where a (>0) is constant. This implies that the server does not deteriorate after
time a. The capacity of buffer is fixed as K = 50. The other model parameters
are assumed as follows.

λ = 4.0 (hours−1)
µmax = 12.0 (hours−1)
µmin = 3.0 (hours−1)

γr = 0.85 (hours)
γR = 0.15 (hours)

MTTF = 240.0 (hours)
a = 180.0 (hours).

In the numerical examples, we call the existing models and the revisited models
in this paper Model A and Model B, respectively.

Table 1 presents the optimal rejuvenation policies, T ∗ and N∗, maximizing
the steady-state availability and minimizing the probability of transaction loss,
and their associated dependability measures. From Table 1, we can find that
the maximum steady-state availabilities for Model B are larger than those for
Model A and that the minimum probabilities of transaction loss for Model B are
always smaller than those for Model A. These results will be intuitively validated,
since the probability that the server fails during the idle period is zero in Model B.

Next, we consider the case where both the failure rate and the service rate
depend on the busy time of server. Let L(t) denote the expected total amount of
busy time, where

For Policies I and II:

L(t) =
∫ t

0

K∑
n=1

pn(s)ds. (53)

For Policy III:

L(t) =
∫ t

0

K∑
n=1

N−1∑
i=0

p(i)
n (s)ds. (54)



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 145

Table 1. Operation time dependent case.

Policy & maximization of availability minimization of loss probability

Model α Optimal Ass Ploss Tres Optimal Ass Ploss Tres

I-A 1.5 160.58 0.9969 1.308e-02 0.3677 92.38 0.9967 6.473e-03 0.1830

2.0 127.66 0.9976 6.770e-03 0.2391 90.84 0.9974 5.716e-03 0.1825

2.5 125.22 0.9980 6.239e-03 0.2358 91.42 0.9978 5.319e-03 0.1838

I-B 1.5 136.72 0.9979 5.817e-03 0.1764 95.34 0.9977 4.613e-03 0.1251

2.0 132.48 0.9982 5.191e-03 0.1696 95.26 0.9980 4.236e-03 0.1254

2.5 133.40 0.9984 5.031e-03 0.1723 96.16 0.9982 4.023e-03 0.1264

II-A 1.5 131.00 0.9969 5.987e-03 0.3450 100.96 0.9968 3.682e-03 0.1950

2.0 121.52 0.9976 3.082e-03 0.2405 98.16 0.9975 2.806e-03 0.1930

2.5 120.40 0.9980 2.488e-03 0.2376 101.78 0.9979 2.301e-03 0.1988

II-B 1.5 126.10 0.9978 3.615e-03 0.2782 103.16 0.9978 2.760e-03 0.2004

2.0 124.16 0.9981 2.750e-03 0.2591 104.06 0.9981 2.274e-03 0.2026

2.5 124.50 0.9983 2.425e-03 0.2610 107.32 0.9983 1.973e-03 0.2084

III-A 1.5 634 0.9969 1.351e-02 0.3802 368 0.9967 6.476e-03 0.1833

2.0 509 0.9976 6.816e-03 0.2411 362 0.9974 5.720e-03 0.1829

2.5 499 0.9980 6.274e-03 0.2375 364 0.9978 5.323e-03 0.1841

III-B 1.5 539 0.9979 7.594e-03 0.2641 365 0.9976 5.758e-03 0.1841

2.0 526 0.9982 6.892e-03 0.2563 365 0.9979 5.344e-03 0.1846

2.5 530 0.9984 6.765e-03 0.2607 368 0.9981 5.115e-03 0.1858

IV-A 1.5 633 0.9969 4.381e-03 0.3761 412 0.9968 3.677e-03 0.1959

2.0 508 0.9976 2.941e-03 0.2401 397 0.9975 2.798e-03 0.1928

2.5 498 0.9980 2.394e-03 0.2365 412 0.9979 2.297e-03 0.1986

IV-B 1.5 543 0.9979 2.960e-03 0.2668 420 0.9978 2.751e-03 0.2010

2.0 526 0.9982 2.424e-03 0.2557 422 0.9981 2.267e-03 0.2026

2.5 529 0.9983 2.100e-03 0.2593 437 0.9983 1.967e-03 0.2089

For Policy IV:

L(t) =
∫ t

0

K∑
n=1

N∑
i=0

p(i)
n (s)ds. (55)

In the busy time dependent case, the failure rate and the service rate are repre-
sented as ρ(L(t)) and µ(L(t)), respectively. The other model parameters are same
as those in the operation dependent case.

Table 2 presents the optimal rejuvenation policies and their associated depend-
ability measures in this case. These results give us the similar tendency of the
dependability measures in the operation time dependent case. That is, Model A
tends to underestimate the steady-state availability and to overestimate the prob-
ability of transaction loss, comparing with Model B. These tendencies are observed
in the operation dependent case. Note that, however, Model A tends to underes-
timate the upper bound of the mean response time under the maximization of the
steady-state availability. This is a remarkably different result from the operation
time dependent case.

Finally, we investigate the case where the failure and service rates depend on the
system workload. The failure and service rates are given by ρ(W (t)) and µ(W (t)),
where W (t) is the expected total amount of workload before time t.



146 H. OKAMURA, S. MIYAHARA AND T. DOHI

Table 2. Busy time dependent case.

Policy & maximization of availability minimization of loss probability

Model α Optimal Ass Ploss Tres Optimal Ass Ploss Tres

I-A 1.5 234.92 0.9979 3.240e-03 0.1674 256.24 0.9979 3.233e-03 0.1726

2.0 206.44 0.9985 2.640e-03 0.1664 209.64 0.9985 2.640e-03 0.1673

2.5 216.42 0.9989 2.350e-03 0.1727 203.94 0.9989 2.341e-03 0.1682

I-B 1.5 250.48 0.9987 2.782e-03 0.1830 212.46 0.9987 2.716e-03 0.1687

2.0 241.70 0.9990 2.467e-03 0.1842 203.78 0.9989 2.378e-03 0.1684

2.5 247.62 0.9991 2.346e-03 0.1901 204.16 0.9991 2.203e-03 0.1696

II-A 1.5 234.02 0.9979 2.476e-03 0.1675 181.52 0.9978 2.439e-03 0.1557

2.0 205.72 0.9985 1.639e-03 0.1665 177.02 0.9985 1.619e-03 0.1583

2.5 215.60 0.9989 1.245e-03 0.1729 192.24 0.9989 1.230e-03 0.1646

II-B 1.5 249.06 0.9987 1.733e-03 0.1831 196.12 0.9987 1.677e-03 0.1639

2.0 240.18 0.9990 1.290e-03 0.1843 199.58 0.9989 1.247e-03 0.1673

2.5 245.90 0.9991 1.054e-03 0.1902 212.22 0.9991 1.020e-03 0.1734

III-A 1.5 940 0.9979 2.128e-03 0.1673 1028 0.9979 3.221e-03 0.1728

2.0 825 0.9985 1.458e-03 0.1662 842 0.9985 2.622e-03 0.1677

2.5 864 0.9989 1.126e-03 0.1725 822 0.9989 2.319e-03 0.1688

III-B 1.5 1001 0.9987 2.754e-03 0.1831 856 0.9987 2.696e-03 0.1693

2.0 966 0.9990 2.433e-03 0.1843 821 0.9989 2.355e-03 0.1690

2.5 990 0.9991 2.304e-03 0.1903 824 0.9991 2.177e-03 0.1705

IV-A 1.5 938 0.9979 2.475e-03 0.1673 731 0.9978 2.438e-03 0.1557

2.0 825 0.9985 1.639e-03 0.1663 710 0.9985 1.619e-03 0.1581

2.5 865 0.9989 1.245e-03 0.1727 770 0.9989 1.229e-03 0.1643

IV-B 1.5 1002 0.9987 1.733e-03 0.1831 790 0.9987 1.675e-03 0.1639

2.0 966 0.9990 1.290e-03 0.1842 802 0.9989 1.245e-03 0.1672

2.5 991 0.9991 1.055e-03 0.1903 852 0.9991 1.018e-03 0.1732

For Policies I and II:

W (t) =
∫ t

0

K∑
n=1

µ(s)pn(s)ds. (56)

For Policy III:

W (t) =
∫ t

0

K∑
n=1

N−1∑
i=0

µ(s)p(i)
n (s)ds. (57)

For Policy IV:

W (t) =
∫ t

0

K∑
n=1

N∑
i=0

µ(s)p(i)
n (s)ds. (58)

The optimal rejuvenation policies and their associated dependability measures in
the workload dependent case are presented in Table 3. In the workload depen-
dent case, Model A also tends to underestimate the steady-state availability and
to overestimate the probability of transaction loss. In the maximization of the



REFINED MARKOVIAN MODELS FOR SOFTWARE REJUVENATION 147

Table 3. Workload dependent case.

Policy & maximization of availability minimization of loss probability

Model α Optimal Ass Ploss Tres Optimal Ass Ploss Tres

I-A 1.5 137.86 0.9954 1.658e-01 6.3716 26.04 0.9925 1.956e-02 0.1935

2.0 75.60 0.9954 1.178e-01 2.4496 25.50 0.9931 1.903e-02 0.1923

2.5 61.50 0.9955 9.353e-02 1.3456 25.34 0.9935 1.871e-02 0.1922

I-B 1.5 99.70 0.9958 1.471e-01 4.5027 25.48 0.9934 1.906e-02 0.1924

2.0 65.24 0.9958 1.031e-01 1.6706 25.30 0.9936 1.873e-02 0.1921

2.5 56.78 0.9958 8.392e-02 1.0502 25.28 0.9938 1.854e-02 0.1923

II-A 1.5 43.08 0.9954 1.621e-01 7.8012 34.34 0.9938 7.140e-03 0.3010

2.0 39.28 0.9953 1.061e-01 4.9254 33.52 0.9944 6.368e-03 0.2949

2.5 37.94 0.9955 7.637e-02 3.6149 33.32 0.9948 5.841e-03 0.2978

II-B 1.5 40.46 0.9958 1.445e-01 6.9098 33.00 0.9946 6.292e-03 0.2857

2.0 38.20 0.9957 9.259e-02 4.3411 33.14 0.9949 5.820e-03 0.2952

2.5 37.36 0.9957 6.754e-02 3.2687 33.14 0.9951 5.475e-03 0.2991

III-A 1.5 454 0.9954 1.658e-01 6.3861 106 0.9927 1.888e-02 0.1978

2.0 266 0.9954 1.179e-01 2.5456 103 0.9932 1.832e-02 0.1956

2.5 223 0.9955 9.334e-02 1.4412 103 0.9936 1.800e-02 0.1963

III-B 1.5 338 0.9958 1.472e-01 4.5479 103 0.9935 1.835e-02 0.1958

2.0 234 0.9958 1.031e-01 1.7721 103 0.9938 1.802e-02 0.1965

2.5 209 0.9958 8.410e-02 1.1540 102 0.9939 1.781e-02 0.1955

IV-A 1.5 452 0.9954 1.106e-01 5.9816 156 0.9941 6.903e-03 0.3103

2.0 263 0.9954 2.524e-02 2.2554 150 0.9946 6.173e-03 0.2969

2.5 222 0.9955 1.238e-02 1.3179 148 0.9950 5.658e-03 0.2945

IV-B 1.5 337 0.9958 6.324e-02 0.4145 150 0.9950 6.033e-03 0.3000

2.0 233 0.9958 1.506e-02 1.6098 148 0.9952 5.589e-03 0.2963

2.5 208 0.9958 9.598e-03 1.0612 148 0.9954 5.251e-03 0.2987

steady-state availability, we can find the noticeable difference between Model A
and Model B, that is, the optimal policies are quite different from each other. By
contrast, in the minimization of the probability of transaction loss, the optimal
policies in both cases are quite similar.

5. Conclusion

In this paper, we have revisited the software rejuvenation models. By mak-
ing the plausible assumption that the server never fails during idle periods, we
have reformulated three dependability measures under four kinds of rejuvenation
policies. Furthermore, we have compared numerically the dependability measures
under both the existing and the revisited assumptions. As a result, it has been
found that Garg et al. [6] model tends to underestimate and overestimate the
steady-state availability and the probability of transaction loss, respectively, and



148 H. OKAMURA, S. MIYAHARA AND T. DOHI

makes pessimistic decisions on the determination of the optimal software rejuve-
nation policy.

Acknowledgements. This work is supported in part by Grant-in-Aid for Scientific Re-

search from the Ministry of Education, Science and Culture of Japan under Grant No.

13480109 (2001–2003).

References

[1] E. Adams, Optimizing preventive service of the software products. IBM J. Res. Development
28 (1984) 2-14.

[2] A. Avritzer and E.J. Weyuker, Monitoring smoothly degrading systems for increased de-
pendability. Empirical Software Engrg. 2 (1997) 59-77.

[3] T. Dohi, K. Gos̆eva–Popstojanova and K.S. Trivedi, Estimating software rejuvenation sched-
ule in high assurance systems. Comput. J. 44 (2001) 473-485.

[4] S. Garg, A. Puliafito, M. Telek and K.S. Trivedi, Analysis of software rejuvenation using
Markov regenerative stochastic Petri net, in Proc. 6th Int’l Symp. on Software Reliability
Eng. IEEE CS Press, Los Alamitos (1995) 24-27.

[5] S. Garg, Y. Huang, C. Kintala and K.S. Trivedi, Time and load based software rejuvenation:
Policy, evaluation and optimality, in Proc. 1st Fault-Tolerant Symp. (1995) 22-25.

[6] S. Garg, S. Pfening, A. Puliafito, M. Telek and K.S. Trivedi, Analysis of preventive mainte-
nance in transactions based software systems. IEEE Trans. Comput. 47 (1998) 96-107.

[7] J. Gray and D.P. Siewiorek, High-availability computer sysmtes. IEEE Comput. 24 (1991)
39-48.

[8] D.P. Heyman, Optimal operating policies for M/G/1 queueing system. Oper. Res. 16 (1968)
362-382.

[9] D.P. Heyman, The T -policy for the M/G/1 queue. Management Sci. 23 (1977) 775-778.
[10] Y. Huang, C. Kintala, N. Kolettis and N.D. Fulton, Software rejuvenation: Analysis, module

and applications, in Proc. 25th Int’l Symp. on Fault Tolerant Computing. IEEE CS Press,
Los Alamitos (1995) 381-390.

[11] V.G. Kulkarni, Modeling, Analysis, Design, and Control of Stochastic Systems. Springer-
Varlag, New York (1999).

[12] H. Okamura, S. Miyahara, T. Dohi and S. Osaki, Performance evaluation of workload-based
software rejuvenation scheme. IEICE Trans. Inform. Systems E84D (2001) 1368-1375.

[13] D.L. Parnas, Software aging, in Proc. 16th Int’l Conf. on Software Eng. ACM, New York
(1994) 279-287.

[14] A.T. Tai, L. Alkalai and S.N. Chau, On-board preventive maintenance for long-life deep
space missions: A model – based analysis, in Proc. 3rd IEEE Int’l Computer Performance
and Dependability Symp. IEEE CS Press, Los Alamitos (1998) 196-205.

[15] A.T. Tai, L. Alkalai and S.N. Chau, On-board preventive maintenance: A design-oriented
analytic study for long-life applications. Performance Evaluation 35 (1999) 215-232.

to access this journal online:
www.edpsciences.org


