RAIRO Oper. Res. **36** (2002) 95-100

DOI: 10.1051/ro:2002007

GENERALIZED CHARACTERIZATION OF THE CONVEX ENVELOPE OF A FUNCTION*

Fethi Kadhi¹

Communicated by Jean-Pierre Crouzeix

Abstract. We investigate the minima of functionals of the form

$$\int_{[a,b]} g(\dot{u}(s)) \mathrm{d}s$$

where g is strictly convex. The admissible functions $u:[a,b] \longrightarrow \mathbb{R}$ are not necessarily convex and satisfy $u \leq f$ on [a,b], u(a) = f(a), u(b) = f(b), f is a fixed function on [a,b]. We show that the minimum is attained by \bar{f} , the convex envelope of f.

Keywords: Convex envelope, optimization, strict convexity, cost function.

1. Introduction

Consider a real valued function $f:[a,b] \longrightarrow \mathbb{R}$, the convex envelope of f is the largest convex function majorized by f on [a,b], see [6]. It will be denoted by \bar{f} . Assume that $f \in W^{1,1}[a,b]$. We have proved [4], that \bar{f} is the unique solution of the following optimization problem:

(P)
$$\min L(u)$$

$$u \in F(f)$$

Received June, 2001.

^{*} The author thanks A. Trad and the referees for their kind advices.

¹ Preparatory Institute of Engineering Studies, P.O. Box 805, 3018 Sfax, Tunisia.

96 F. KADHI

where

$$L(u) = \int_{[a,b]} \sqrt{1 + \dot{u}^2(s)} ds.$$

and

$$F(f) = \left\{ u \in W^{1,1}[a,b]; \ u \le f \text{ on } [a,b], u(a) = f(a), u(b) = f(b) \right\}. \tag{1}$$

Since L(u) is the length of u, then the previous result is due to the fact that \bar{f} is the shortest function majorized by f which coincides with f on a and b. In this paper we consider problems of the form:

(Q)
$$\min_{u \in F(f)} \int_{[a,b]} g(\dot{u}(s)) ds$$

where g is strictly convex. Denote by G the cost function of (Q). We show that \bar{f} is the unique solution of program (Q).

The organization of this paper is as follows:

In Section 2, we discuss some preliminary results concerning the properties of the Sobolev space $W^{1,1}[a,b]$ and the convex envelope of a given function. In Section 3, we study the problem (Q), we show that the minimum is attained by \bar{f} , therefore, we obtain a general characterization of the convex envelope. Finally, Section 4 is concerned with some concluding remarks.

2. Preliminary results

Consider a continuous function $u:[a,b] \longrightarrow \mathbb{R}$. Denote

$$J = \{ x \in [a, b] : \bar{u}(x) \neq u(x) \}$$
 (2)

and

$$K = \{x \in [a, b] : \bar{u}(x) = u(x)\}$$
 (3)

Since \bar{u} is convex then $v = \bar{u} - u$ is continuous on]a, b[. It is clear that $J = v^{-1}(]-\infty, 0[)\cap]a, b[$, then J and K are measurable.

Assume that J is not empty, the following lemma holds.

Lemma 2.1. Let $x_0 \in J$ then there exists $|x_1, x_2| \subset J$ such that $x_0 \in]x_1, x_2[$ and

$$\bar{u}(x) = [(u(x_2) - u(x_1))/(x_2 - x_1)](x - x_1) + u(x_1), \ \forall x \in]x_1, x_2[.$$

Proof. Let

$$x_1 = \max[a, x_0] \cap K$$

and

$$x_2 = \min[x_0, b] \cap K.$$

Remark that x_1 and x_2 are well defined since u and \bar{u} are continuous. Let D be the affine function defined by $D(x_1) = \bar{u}(x_1)$ and $D(x_2) = \bar{u}(x_2)$. Since \bar{u} is convex, then $\bar{u}(x) \leq D(x)$ for all $x \in]x_1, x_2[$. Consider the convex function \tilde{u} defined by

$$\tilde{u}(x) = D(x), \forall x \in]x_1, x_2[$$

and

$$\tilde{u}(x) = \bar{u}(x), \forall x \in [a, b] \setminus]x_1, x_2[,$$

then $\bar{u} \leq \tilde{u} \leq u$. Since \bar{u} is the largest convex function majorized by u then $\tilde{u} = \bar{u}$. It follows that $\bar{u}(x) = D(x), \ \forall x \in]x_1, x_2[$. Since $x_1, x_2 \in K$ then $\bar{u}(x_1) = u(x_1)$ and $\bar{u}(x_2) = u(x_2)$. It follows that

$$\bar{u}(x) = [(u(x_2) - u(x_1))/(x_2 - x_1)](x - x_1) + u(x_1), \ \forall x \in]x_1, x_2[.$$

Assume that $a, b \cap K$ is not empty, then the following lemma holds, see [1].

Lemma 2.2. Let $x_0 \in]a, b[\cap K]$. If u is differentiable at x_0 , then \bar{u} is differentiable at x_0 . Moreover $\bar{u}'(x_0) = u'(x_0)$.

Now, let us discuss some properties of $W^{1,1}[a,b]$. The Sobolev space $W^{1,1}[a,b]$ is defined by

$$W^{1,1}[a,b] = \{u \in L^1; \exists g \in L^1 \text{ such that } \int_{[a,b]} u\varphi' = -\int_{[a,b]} g\varphi, \ \forall \varphi \in C^1_c([a,b])\}.$$

By [2], $u \in W^{1,1}[a,b]$ if and only if u is absolutely continuous (AC) on [a,b]. In the sequel, we need the following result [7] and [3].

Proposition 2.1. u is (AC) on [a,b] if and only if u is differentiable a.e. on [a,b], $u' \in L^1$ and

$$u(x) = u(a) + \int_{[a,x]} u'(t)dt \ (a \le x \le b).$$

It follows from Lemma 2.2 and Proposition 2.1 that if $u \in W^{1,1}[a,b]$ then $\bar{u} \in W^{1,1}[a,b]$, see [4].

98 F. KADHI

3. General Characterization of the convex envelope

Consider the problem (Q) introduced in Section 1. The cost function and the feasible set associated with (Q) are denoted respectively by G and F(f). In order to show that \bar{f} is the unique solution of (Q), we need to prove the following lemmas:

Lemma 3.1. Assume that g is strictly convex. Let u_1 and $v_1 \in F(f)$ such that u_1 and v_1 are convex and $u_1 \leq v_1$. Then, $G(v_1) \leq G(u_1)$.

Proof. Let u_1 and $v_1 \in F(f)$ such that u_1 and v_1 are convex and $u_1 \leq v_1$. Consider the auxiliary problem

$$(\operatorname{Pv1}) \quad \min G(u)$$

$$u \in F(f)$$

$$u_1 \le u \le v_1 \text{ on } [a,b]$$

$$u \text{ is convex.}$$

Remark that (Pv1) is a problem of minimizing functionals of the form

$$\int_{[a,b]} g(\dot{u}(s)) \mathrm{d}s$$

on a set of convex functions. Moreover, $u_1, v_1 \in F(f)$, then $u_1 = v_1$ on $\partial[a, b]$. It is clear that program (Pv1) has the same form as problems considered in Theorem 1 of [5]. Since u_1 is convex and g is strictly convex, then v_1 is the unique solution of (Pv1). In the other hand, u_1 is a feasible function, it follows that

$$G(v_1) \le G(u_1).$$

Lemma 3.2. Let $u \in W^{1,1}[a,b]$. If g is convex then

$$\int_{I} g(\dot{\bar{u}}(s)) ds \le \int_{I} g(\dot{u}(s)) ds. \tag{4}$$

Proof. Assume that J is not empty. Let $x_0 \in J$. By Lemma 2.1 there exists $]x_1, x_2[\subset J \text{ such that } x_0 \in]x_1, x_2[$ and

$$\bar{u}(x) = [(u(x_2) - u(x_1))/(x_2 - x_1)](x - x_1) + u(x_1), \ \forall x \in]x_1, x_2[.$$
 (5)

It follows that

$$\dot{\bar{u}}(s) = (u(x_2) - u(x_1))/(x_2 - x_1), \ \forall s \in]x_1, x_2[.$$

From the Jensen's inequality, see [7], we deduce that for all $v \in L^1$,

$$g\left(\left[1/(x_2 - x_1)\right] \int_{[x_1, x_2]} v(s) ds\right) \le \left[1/(x_2 - x_1)\right] \int_{[x_1, x_2]} g(v(s)) ds. \tag{7}$$

For $v = \dot{u}$, we obtain

$$g(u(x_2) - u(x_1)/x_2 - x_1) \le [1/(x_2 - x_1)] \int_{[x_1, x_2]} g(\dot{u}(s)) ds.$$
 (8)

It follows from (6) that

$$\int_{[x_1, x_2]} g(\dot{\bar{u}}(s)) ds \le \int_{[x_1, x_2]} g(\dot{u}(s)) ds.$$
 (9)

By the same way as in Lemma 2.4 of [4], we obtain

$$\int_{J} g(\dot{\bar{u}}(s)) ds \le \int_{J} g(\dot{u}(s)) ds. \tag{10}$$

Now, it is easy to show the following theorem:

Theorem 3.1. Assume that g is strictly convex. Then, \bar{f} is the unique solution of (Q).

Proof. Let $u \in F(f)$, writing $[a,b] = J \cup K$ and using Lemma 3.2, we show that

$$G(\bar{u}) \le G(u). \tag{11}$$

By Lemma 3.1,

$$G(\bar{f}) \le G(\bar{u}).$$

Then

$$G(\bar{f}) \le G(u), \ \forall u \in F(f).$$
 (12)

The uniqueness of the solution follows from the strict convexity of G. For details, we refer the reader to the proof of Theorem 2.1 of [4].

100 F. KADHI

4. Concluding remarks

We end this paper by two remarks:

First, the function

$$g: x \longmapsto \sqrt{1+x^2}$$

is strictly convex, then Theorem 2.1 of [4] is a particular case of Theorem 3.1. The cost function in [4] is geometrically interpreted as the length of the considered function. The difficulty, in the general case, is the fact that we do not know a geometric interpretation of the cost function. The second remark is concerned with Theorem 1 of [5] where the admissible functions are assumed to be convex. We remark, by Theorem 3.1, that, in the case of one dimension, the minimum is attained by the convex envelope of f without requiring the admissible functions to be convex.

REFERENCES

- [1] J. Benoist and J.B. Hiriart-Urruty, What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal. 27 (1994) 1661-1679.
- [2] H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983).
- [3] B. Dacorogna, Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992).
- [4] F. Kadhi and A. Trad, Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl. 110 (2001) 457-466.
- [5] T. Lachand–Robert and M.A. Peletier, Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 851-855.
- [6] T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey (1970).
- [7] W. Rudin, Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987).

to access this journal online: www.edpsciences.org