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GENERALIZED CHARACTERIZATION
OF THE CONVEX ENVELOPE OF A FUNCTION ∗

Fethi Kadhi1

Communicated by Jean-Pierre Crouzeix

Abstract. We investigate the minima of functionals of the form

Z
[a,b]

g(u̇(s))ds

where g is strictly convex. The admissible functions u : [a, b] −→ R

are not necessarily convex and satisfy u ≤ f on [a, b], u(a) = f(a),
u(b) = f(b), f is a fixed function on [a, b]. We show that the minimum
is attained by f̄ , the convex envelope of f .
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1. Introduction

Consider a real valued function f : [a, b] −→ R, the convex envelope of f is the
largest convex function majorized by f on [a, b], see [6]. It will be denoted by f̄ .
Assume that f ∈ W 1,1[a, b]. We have proved [4], that f̄ is the unique solution of
the following optimization problem:

(P) minL(u)

u ∈ F (f)

Received June, 2001.

∗ The author thanks A. Trad and the referees for their kind advices.

1 Preparatory Institute of Engineering Studies, P.O. Box 805, 3018 Sfax, Tunisia.

c© EDP Sciences 2002



96 F. KADHI

where

L(u) =
∫

[a,b]

√
1 + u̇2(s)ds.

and

F (f) =
{
u ∈ W 1,1[a, b]; u ≤ f on [a, b], u(a) = f(a), u(b) = f(b)

} · (1)

Since L(u) is the length of u, then the previous result is due to the fact that f̄ is
the shortest function majorized by f which coincides with f on a and b. In this
paper we consider problems of the form:

(Q) min
u∈F (f)

∫
[a,b]

g(u̇(s))ds

where g is strictly convex. Denote by G the cost function of (Q). We show that f̄
is the unique solution of program (Q).

The organization of this paper is as follows:
In Section 2, we discuss some preliminary results concerning the properties

of the Sobolev space W 1,1[a, b] and the convex envelope of a given function. In
Section 3, we study the problem (Q), we show that the minimum is attained by f̄ ,
therefore, we obtain a general characterization of the convex envelope. Finally,
Section 4 is concerned with some concluding remarks.

2. Preliminary results

Consider a continuous function u : [a, b] −→ R. Denote

J = {x ∈ [a, b] : ū(x) 6= u(x)} (2)

and

K = {x ∈ [a, b] : ū(x) = u(x)} · (3)

Since ū is convex then v = ū − u is continuous on ]a, b[. It is clear that J =
v−1(] −∞, 0[)∩]a, b[, then J and K are measurable.

Assume that J is not empty, the following lemma holds.

Lemma 2.1. Let x0 ∈ J then there exists ]x1, x2[⊂ J such that x0 ∈]x1, x2[ and

ū(x) = [(u(x2) − u(x1))/(x2 − x1)](x − x1) + u(x1), ∀x ∈]x1, x2[.
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Proof. Let

x1 = max[a, x0] ∩ K

and

x2 = min[x0, b] ∩ K.

Remark that x1 and x2 are well defined since u and ū are continuous. Let D be the
affine function defined by D(x1) = ū(x1) and D(x2) = ū(x2). Since ū is convex,
then ū(x) ≤ D(x) for all x ∈]x1, x2[. Consider the convex function ũ defined by

ũ(x) = D(x), ∀x ∈]x1, x2[

and

ũ(x) = ū(x), ∀x ∈ [a, b]\]x1, x2[,

then ū ≤ ũ ≤ u. Since ū is the largest convex function majorized by u then ũ = ū.
It follows that ū(x) = D(x), ∀x ∈]x1, x2[. Since x1, x2 ∈ K then ū(x1) = u(x1)
and ū(x2) = u(x2). It follows that

ū(x) = [(u(x2) − u(x1))/(x2 − x1)](x − x1) + u(x1), ∀x ∈]x1, x2[.

Assume that ]a, b[∩K is not empty, then the following lemma holds, see [1].

Lemma 2.2. Let x0 ∈]a, b[∩K. If u is differentiable at x0, then ū is differentiable
at x0. Moreover ū′(x0) = u′(x0).

Now, let us discuss some properties of W 1,1[a, b].
The Sobolev space W 1,1[a, b] is defined by

W 1,1[a, b] = {u ∈ L1; ∃g ∈ L1 such that∫
[a,b]

uϕ′ = −
∫

[a,b]

gϕ, ∀ϕ ∈ C1
c ([a, b])}·

By [2], u ∈ W 1,1[a, b] if and only if u is absolutely continuous (AC) on [a, b]. In
the sequel, we need the following result [7] and [3].

Proposition 2.1. u is (AC) on [a, b] if and only if u is differentiable a.e. on
[a, b], u′ ∈ L1 and

u(x) = u(a) +
∫

[a,x]

u′(t)dt (a ≤ x ≤ b).

It follows from Lemma 2.2 and Proposition 2.1 that if u ∈ W 1,1[a, b] then ū ∈
W 1,1[a, b], see [4].



98 F. KADHI

3. General characterization of the convex envelope

Consider the problem (Q) introduced in Section 1. The cost function and the
feasible set associated with (Q) are denoted respectively by G and F (f). In order
to show that f̄ is the unique solution of (Q), we need to prove the following lemmas:

Lemma 3.1. Assume that g is strictly convex. Let u1 and v1 ∈ F (f) such that u1

and v1 are convex and u1 ≤ v1. Then, G(v1) ≤ G(u1).

Proof. Let u1 and v1 ∈ F (f) such that u1 and v1 are convex and u1 ≤ v1. Consider
the auxiliary problem

(Pv1) minG(u)

u ∈ F (f)

u1 ≤ u ≤ v1 on [a, b]

u is convex.

Remark that (Pv1) is a problem of minimizing functionals of the form∫
[a,b]

g(u̇(s))ds

on a set of convex functions. Moreover, u1, v1 ∈ F (f), then u1 = v1 on ∂[a, b]. It is
clear that program (Pv1) has the same form as problems considered in Theorem 1
of [5]. Since u1 is convex and g is strictly convex, then v1 is the unique solution
of (Pv1). In the other hand, u1 is a feasible function, it follows that

G(v1) ≤ G(u1).

Lemma 3.2. Let u ∈ W 1,1[a, b]. If g is convex then∫
J

g( ˙̄u(s))ds ≤
∫

J

g(u̇(s))ds. (4)

Proof. Assume that J is not empty. Let x0 ∈ J . By Lemma 2.1 there exists
]x1, x2[⊂ J such that x0 ∈]x1, x2[ and

ū(x) = [(u(x2) − u(x1))/(x2 − x1)](x − x1) + u(x1), ∀x ∈]x1, x2[. (5)

It follows that

˙̄u(s) = (u(x2) − u(x1))/(x2 − x1), ∀s ∈]x1, x2[. (6)
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From the Jensen’s inequality, see [7], we deduce that for all v ∈ L1,

g

(
[1/(x2 − x1)]

∫
[x1,x2]

v(s)ds

)
≤ [1/(x2 − x1)]

∫
[x1,x2]

g(v(s))ds. (7)

For v = u̇, we obtain

g(u(x2) − u(x1)/x2 − x1) ≤ [1/(x2 − x1)]
∫

[x1,x2]

g(u̇(s))ds. (8)

It follows from (6) that

∫
[x1,x2]

g( ˙̄u(s))ds ≤
∫

[x1,x2]

g(u̇(s))ds. (9)

By the same way as in Lemma 2.4 of [4], we obtain

∫
J

g( ˙̄u(s))ds ≤
∫

J

g(u̇(s))ds. (10)

Now, it is easy to show the following theorem:

Theorem 3.1. Assume that g is strictly convex. Then, f̄ is the unique solution
of (Q).

Proof. Let u ∈ F (f), writing [a, b] = J ∪ K and using Lemma 3.2, we show that

G(ū) ≤ G(u). (11)

By Lemma 3.1,

G(f̄) ≤ G(ū).

Then

G(f̄) ≤ G(u), ∀u ∈ F (f). (12)

The uniqueness of the solution follows from the strict convexity of G. For details,
we refer the reader to the proof of Theorem 2.1 of [4].
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4. Concluding remarks

We end this paper by two remarks:
First, the function

g : x 7−→
√

1 + x2

is strictly convex, then Theorem 2.1 of [4] is a particular case of Theorem 3.1. The
cost function in [4] is geometrically interpreted as the length of the considered
function. The difficulty, in the general case, is the fact that we do not know a
geometric interpretation of the cost function. The second remark is concerned
with Theorem 1 of [5] where the admissible functions are assumed to be convex.
We remark, by Theorem 3.1, that, in the case of one dimension, the minimum is
attained by the convex envelope of f without requiring the admissible functions
to be convex.
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