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GENERALIZED CHARACTERIZATION
OF THE CONVEX ENVELOPE OF A FUNCTION*

FeETHI KADHI!

Communicated by Jean-Pierre Crouzeix

Abstract. We investigate the minima of functionals of the form

/ g(i(s))ds
[a,b]

where ¢ is strictly convex. The admissible functions u : [a,b] — R
are not necessarily convex and satisfy u < f on [a,b], u(a) = f(a),
u(b) = f(b), f is a fixed function on [a, b]. We show that the minimum
is attained by f, the convex envelope of f.
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1. INTRODUCTION

Consider a real valued function f : [a,b] — R, the convex envelope of f is the
largest convex function majorized by f on [a,b], see [6]. It will be denoted by f.
Assume that f € Wh'[a,b]. We have proved [4], that f is the unique solution of
the following optimization problem:

(P)  min L(u)
u € F(f)
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where
L(u) = /[ VI s
a,
and
F(f) = {ueW"a,b; u < f on [a,],u(a) = f(a),u(d) = f(b)} - (1)
Since L(u) is the length of u, then the previous result is due to the fact that f is

the shortest function majorized by f which coincides with f on a and b. In this
paper we consider problems of the form:

@ min /M g(i(s))ds

uweF(f)

where g is strictly convex. Denote by G the cost function of (Q). We show that f
is the unique solution of program (Q).

The organization of this paper is as follows:

In Section 2, we discuss some preliminary results concerning the properties
of the Sobolev space W' t[a,b] and the convex envelope of a given function. In
Section 3, we study the problem (Q), we show that the minimum is attained by f,

therefore, we obtain a general characterization of the convex envelope. Finally,
Section 4 is concerned with some concluding remarks.

2. PRELIMINARY RESULTS

Consider a continuous function w : [a, b] —> R. Denote
J=A{z€la,b] : u(z) # u(z)} (2)
and
K ={z€a,b] : u(z) = u(z)} - (3)

Since @ is convex then v = @ — w is continuous on Ja,b[. It is clear that J =
v (] — o0, 0[)N]a, b], then J and K are measurable.

Assume that J is not empty, the following lemma holds.

Lemma 2.1. Let zg € J then there exists |x1,x2[C J such that xo €]y, x2| and

u(r) = [(u(z2) —u(w1))/(v2 — x1))(x — 21) + u(21), Vo €|z, z2].
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Proof. Let

x1 = max[a, o] N K
and

x9 = min[zg, b] N K.

Remark that 1 and x5 are well defined since v and @ are continuous. Let D be the
affine function defined by D(z1) = @(x1) and D(z3) = @(z2). Since 4 is convex,
then @(z) < D(z) for all © €]z, 22[. Consider the convex function @ defined by

w(x) = D(z),Vx €]ay, xo|

and
u(x) = u(x),Vz € [a,b]\|z1, z2],

then u < u < w. Since u is the largest convex function majorized by u then o = .
It follows that @(x) = D(x), V& €]x1, z2[. Since x1,z9 € K then @(z1) = u(xq)
and 4(z2) = u(zz). It follows that
u(z) = [(u(z2) —u(1))/(x2 — z1)[(x — 21) + u(z1), Vo €]z1, T2[.
O

Assume that ]a, b[NK is not empty, then the following lemma holds, see [1].

Lemma 2.2. Let xg €]a,bNK. If u is differentiable at xo, then u is differentiable
at xg. Moreover @' (o) = u'(xg).

Now, let us discuss some properties of Whtla,b].

The Sobolev space Wtt[a,b] is defined by

Whila,b] = {ueL';3g€ L' such that
[ wt==] oo vpcciathy
[a,b] [a,b]

By [2], w € WY[a,b] if and only if u is absolutely continuous (AC) on [a,b]. In
the sequel, we need the following result [7] and [3].

Proposition 2.1. u is (AC) on [a,b] if and only if u is differentiable a.e. on
[a,b], v’ € L* and

u(z) = u(a) +/[ ]u’(t)dt (a <z <b).

It follows from Lemma 2.2 and Proposition 2.1 that if u € Wh[a,b] then @ €
Whta,b], see [4].



98 F. KADHI
3. GENERAL CHARACTERIZATION OF THE CONVEX ENVELOPE

Consider the problem (Q) introduced in Section 1. The cost function and the
feasible set associated with (Q) are denoted respectively by G and F'(f). In order
to show that f is the unique solution of (Q), we need to prove the following lemmas:

Lemma 3.1. Assume that g is strictly convex. Let uy and vy € F(f) such that u;
and vy are convex and u; < vi. Then, G(v1) < G(u1).

Proof. Let u; and vy € F(f) such that uy and vy are convex and u; < v1. Consider
the auxiliary problem

(Pvl) minG(u)
we F(f)
u; <u < v on [a,b
u is convex.

Remark that (Pvl) is a problem of minimizing functionals of the form

/ o(i(s))ds
[a,b]

on a set of convex functions. Moreover, u1, v1 € F(f), then uy = vy on 9[a, b]. It is
clear that program (Pv1) has the same form as problems considered in Theorem 1
of [5]. Since u; is convex and g is strictly convex, then vy is the unique solution
of (Pvl). In the other hand, u; is a feasible function, it follows that

G(’Ul) S G(ul)

Lemma 3.2. Let u € Wht{a,b]. If g is convex then

memngﬁw@m& (4)

J

Proof. Assume that J is not empty. Let zop € J. By Lemma 2.1 there exists
|1, 22[C J such that x¢ €]x1, o[ and

u(z) = [(u(z2) — ul(z1))/(z2 — 21)](x — 21) + u(z1), Vo €|z, 2. (5)
It follows that

u(s) = (u(we) — u(z1))/(xe — 11), Vs €]z, 2. (6)
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From the Jensen’s inequality, see 7], we deduce that for all v € L*,

1/(xe — 21 v(s)ds | <[1/(xo — 21 v(s))ds. 7
g<[ J(@s — )] /[] (s) ><[/< ) 1) /[wm () (7)
For v = u, we obtain

g(u(xa) —u(w1)/xy —x1) <[1/(22 — 21)] / g(u(s))ds. (8)

[3;17332]

It follows from (6) that

/[mlymz] g(u(s))ds < / g(u(s))ds. (9)

[z1,22]

By the same way as in Lemma 2.4 of [4], we obtain

/J g(i(s))ds < / g(i(s))ds. (10)

J

Now, it is easy to show the following theorem:

Theorem 3.1. Assume that g is strictly convex. Then, f is the unique solution

of (Q)-

Proof. Let u € F(f), writing [a,b] = J U K and using Lemma 3.2, we show that

G(u) < G(u). (11)
By Lemma 3.1,
G(f) < G(a)
Then
G(f) < G(u), Yu e F(f). (12)

The uniqueness of the solution follows from the strict convexity of G. For details,
we refer the reader to the proof of Theorem 2.1 of [4]. 0
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4. CONCLUDING REMARKS

We end this paper by two remarks:
First, the function
g:x+— 1+ 22

is strictly convex, then Theorem 2.1 of [4] is a particular case of Theorem 3.1. The
cost function in [4] is geometrically interpreted as the length of the considered
function. The difficulty, in the general case, is the fact that we do not know a
geometric interpretation of the cost function. The second remark is concerned
with Theorem 1 of [5] where the admissible functions are assumed to be convex.
We remark, by Theorem 3.1, that, in the case of one dimension, the minimum is
attained by the convex envelope of f without requiring the admissible functions
to be convex.
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