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1. Introduction

Consider the following setting. Given is a grid consisting of t columns and m
rows. Furthermore, n intervals are given such that each interval Ii lies on a single
row (called row(i)) and it occupies columns li, li+1, . . . , ri (we refer to column j
stabbing Ii when li ≤ j ≤ ri). For each interval Ii a nonnegative weight wi is
given, and for each column j, for each row k and for each interval Ii nonnegative
capacities vj , uk and pi are specified respectively. We assume that all data are
integral. We consider two problems:

A PACKING problem: specify an integral multiplicity xi for each interval Ii

that is no more than pi, such that the sum of multiplicities of intervals sharing a
common row or column does not exceed the corresponding given capacity, while
maximizing total weight.

We refer to this problem as a geometric set packing problem (GEOSP). Below we
give an integer programming formulation for it. Here, the x-variables are integer
and denote the multiplicities of the intervals:

Maximize
∑n

i=1 wixi (1)
subject to

∑
i:row(i)=k xi ≤ uk for all k = 1, . . . , m, (2)∑
i:j∈[li,ri]

xi ≤ vj for all j = 1, . . . , t, (3)

xi ≤ pi for all i = 1, . . . , n, (4)
xi ∈ Z1

+ for all i = 1, . . . , n. (5)

Constraints (2) state that the sum of the multiplicities of intervals on row k cannot
exceed uk; constraints (3) express the requirement that the sum of the multiplicities
of intervals that are stabbed by column j is no more than vj . Constraints (4) are
the upper bound constraints and constraints (5) are the integrality constraints.

A COVERING problem: find a multiplicity for each column, row and interval
minimizing the total capacity, while for each interval the sum of multiplicities of
the columns stabbing it plus the multiplicity of its row plus its own multiplicity is
not less then its weight.

We refer to this problem as a geometric set covering problem (GEOSC). Below
we give its integer programming formulation. Here the y, z and s-variables are in-
teger and denote the multiplicities of the columns, rows and intervals respectively.

Minimize
∑t

j=1 vjyj +
∑m

k=1 ukzk +
∑n

i=1 pisi (6)

subject to zrow(i) +
∑

j∈[li,ri]
yj + si ≥ wi for all i = 1, . . . , n (7)

zk, yj , si ∈ Z1
+ for all k, j, i. (8)

Constraints (7) state that for each interval Ii, the sum of the multiplicities of
columns stabbing Ii plus the row-multiplicity plus its own multiplicity si must be
at least wi and constraints (8) are the integrality constraints.
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Thus an instance of any of our problems is specified by specifying numbers t, m,
n ∈ Z1

+, pairs (li, ri) ∈ Z2
+, i = 1 . . . n, function row(·) : {1, 2, . . . , n} → {1, 2, . . . ,

m} and vectors w ∈ Zn
+,v ∈ Zt

+,u ∈ Zm
+ ,p ∈ Zn

+.
Notice that the two integer programming problems are primal-dual related, that

is, their LP-relaxations, obtained by replacing (5) and (8) by the corresponding
nonnegativity constraints, form a primal-dual pair of LPs.

Applications. Although at first sight problems GEOSP and GEOSC may look
rather specific, they contain a host of problems. A special case of GEOSP is the
problem of finding a maximum weighted independent set in an interval graph (see
e.g. [10]): indeed, when allowing at most one interval on a row and setting all
capacities in GEOSP to 1, this problem arises. In [7] the case is investigated
where uk = 1, vj = v, pi = 1 for all k, j, i. Applications of the resulting problem
can be found in scheduling [4], molecular biology [6] and PCB-assembly [14]. We
refer to these references for a more elaborate description of these problems.

Applications of the covering problem seem less abundantly present in literature;
however, the following type of situation leads naturally to instances of GEOSC
with wi = 1 for all i. Each of m items (patients to receive treatment, products
to undergo chemical processes, machines subject to inspection) has to undergo
treatment on a regular basis. More precisely, for each item a set of intervals is
given during which a treatment must take place. The treatment itself takes one
time-unit and is provided by some kind of machine with unbounded capacity (that
is, it can process any number of items), and consists of “turning the machine on” at
some point in time, say q (this corresponds to selecting column q). Then the items
corresponding to intervals that are stabbed by column q undergo the treatment.
The objective is to minimize (a weighted combination of) the number of times
the machine is turned on plus the number of items not processed (an item is not
processed when at least one of its intervals has not undergone the treatment (this
corresponds to selecting the row corresponding to that item)). An example of such
a problem is described in [1].

It is not hard to see that GEOSC with wi = 1 for all i is a special case of the
well-known weighted set covering problem: let the intervals correspond to elements
in the ground set, and let a set of intervals that are on a same row or a set of
intervals that share a column or a single-interval set correspond to a set in the
collection.

Previous and related results. Concerning approximation results for general
set packing and set covering problems we refer to [12]. In [14] it is proved that
GEOSP is MAX SNP-hard already when w = 1, u = 1, and v = 1. Also, in [14] it
is shown that for this case the value of an optimal solution to GEOSC is bounded
by two times the value of an optimal solution to GEOSP. In [5] and [6] the case of
GEOSP is studied with u = 1 and vj = v for all j (where v reflects the number of
machines in a scheduling context). Each of these papers presents a combinatorial
1
2 -approximation algorithm for GEOSP.

Actually, the problem considered in [5] is more general than the one that arises
from GEOSP by setting u = 1 and vj = v for all j: a nonnegative “width” for
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each interval is specified and it is required that a column’s capacity is not exceeded
by the total width (and not necessarily by the number of the intervals which are
stabbed by it). In [5] a general framework is described, based on the local ratio
technique, which allows to approximate with a constant factor a variety of special
cases of this problem.

Another special case of the set covering problem for which a constant approx-
imation factor is achieved is described in [8]. They present a 2-approximation
algorithm for special set cover instances which they call tree-representable. It is
easy to verify that there exist instances of GEOSC2 that are not tree-representable.

Our results. Here we show that

• if either (w = 1) or (v = 1,u = 1) we present a simple algorithm that
outputs feasible solutions to both GEOSP and GEOSC, that are within a
factor of 2. For the case (v = 1,u = 1) this algorithm is based on [5] and [6].
This result implies an approximative min-max result for the corresponding
pair of problems (see Sect. 2);
• a (2 + ε)-approximation algorithm for GEOSC exists (see Sect. 4);
• GEOSC is MAX SNP-hard (see Sect. 5).

2. Primal-dual approximation algorithms

Approximation algorithms based on the primal-dual method have been used
successfully in obtaining performance guarantees for a number of combinatorial
optimization problems that have a natural formulation as an integer program (see
e.g. [9,15]). Based on an IP-formulation of a problem (in our context, the covering
problem, or the dual problem) one typically aims to construct a good feasible
solution for this problem in the following way. The basic algorithm starts with a
feasible primal solution and an infeasible dual solution. Next, guided by (some of
the) complementary slackness conditions, both the primal and dual solutions are
iteratively modified, so that the dual solution becomes feasible. Using problem
specific features one is often able to prove worst-case ratios for these algorithms
(see [9]).

Note that in general the primal solution constructed need not to be integral.
In this section we present two primal-dual approximation algorithms that provide
simultaneously two feasible integral solutions, one for the primal problem and one
for the dual problem.

We use the terminology assumed in [11], according to which an algorithm is said
to be a δ-approximation algorithm for a minimization (maximization) problem if
for every instance of the problem it delivers a feasible solution with a value of at
most (at least) δ times the optimum.

We assume that the intervals are indexed according to non-decreasing rightmost
stabbing column, that is r1 ≤ r2 ≤ . . . ≤ rn.

We also assume (wlog) that there is at least one interval on each row, therefore
m ≤ n.
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Given an instance I of GEOSP (GEOSC) let OPTpack(I) (OPTcover(I)) denote
the value of the optimal solution of the corresponding problem instance. Also,
let vLP be equal to the optimal value of the LP-relaxation. Obviously, due to weak
duality we have that OPTpack(I) ≤ OPTcover(I) for all instances I.

2.1. Unit capacities: The case u = 1, v = 1

Notice that in this setting the constraints xi ≤ pi become superfluous since
they will be automatically satisfied for any integral pi > 0. Therefore, all the
s-variables will have value 0 and we do not need to consider them further in this
subsection.

Notice also that in the IP formulation of GEOSP we can disregard the con-
straints

∑
i:j∈[li,ri]

xi ≤ 1, for j /∈ {r1, ..., rn}. Indeed, the column capacity con-
straints corresponding to the columns other than the last stabbing columns of
the intervals are implied by the other constraints. So among the y-variables we
consider only yr1 , ..., yrn , all the other y-variables are 0.

The idea of the algorithm is proposed in [6], where a combinatorial 1/2-
approximation algorithm is presented for a problem, similar to GEOSP with u = 1
and vj = v for all j. Here we describe a slightly modified algorithm, referred to as
ALG1, which delivers a feasible solution to GEOSC as well.

The algorithm maintains a pair of solutions for the problems GEOSP and
GEOSC, x and (y, z) respectively. Starting with a zero assignment to x,y, z
(which is infeasible for GEOSC), the algorithm iteratively modifies their values.
At the end of the forward pass we obtain a feasible solution to GEOSC and an
infeasible one to GEOSP. The backward pass is used to restore the feasibility of x
to GEOSP.

Let x ∈ Z+
n , y ∈ Z+

n , z ∈ Z+
m and ∆ ∈ Z+

n .
The algorithm ALG1 proceeds as follows:

1. x← 0, y← 0, z← 0;
{forward pass}·

2. For all i from 1 to n do:
begin

∆i ← max


wi −


zrow(i) +

∑
j∈[li,ri]

yj


 , 0


 · (9)

If ∆i > 0 then xi ← 1;

yri ← yri + ∆i;

zrow(i) ← zrow(i) + ∆i;
end;
{backward pass}·
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3. For all i from n down to 1 do:
if xi = 1 and (0, ..., 0, xi, xi+1, ..., xn) is not a feasible solution to GEOSP,
assign
xi = 0.

Remark 2.1. ALG1 can be implemented to run in O(n log(n)) time, see [6].

Theorem 2.2 (Min-max result for the case of unit capacities). For all instances
I of the pair GEOSP-GEOSC where all columns and rows have unit capacities,

OPTcover(I) ≤ 2 ·OPTpack(I).

Proof. First, we establish that ALG1 delivers feasible solutions x and (y, z) to
GEOSP and GEOSC respectively (in the case of unit capacities). Then we argue
that (1 · y + 1 · z) ≤ 2wx.

Notice that after each loop i in the forward pass vector (y, z) is increased so as
to satisfy the constraint corresponding to interval Ii in (7). Thus at the end of the
algorithm (y, z) satisfies all constraints in (7) and constitutes a feasible solution.
Feasibility of the solution x is provided by the backward pass.

Let us now argue that 1 · y + 1 · z ≤ 2wx. Observe that
∑t

j=1 yj =
∑m

k=1 zk =∑n
i=1 ∆i, since during the forward pass in every loop i the algorithm increases

the values of
∑t

j=1 yj and
∑m

k=1 zk uniformly by ∆i. Observe also that for each
interval Ii with ∆i > 0, we have

wi = ∆i +
∑

j:j<i,rj∈[li,ri]

∆j +
∑

l:l<i,row(l)=row(i)

∆l.

This follows from (9) and from the fact that at the moment of evaluation of ∆i,
zrow(i) equals the sum of contributions made by the earlier processed intervals lying
on the same row and

∑
j∈[li,ri]

yj is a sum of contributions of the earlier processed
intervals sharing a column with Ii (for such an interval Ij we have rj ∈ [li, ri]).
Thus,

xw =
∑

i:xi=1

wi =
∑

i:xi=1

∆i +
∑

i:xi=1


 ∑

j:j<i,rj∈[li,ri]

∆j +
∑

j:j<i,row(j)=row(i)

∆j


 ·
(10)

Now, consider any interval Ij such that ∆j > 0 and xj = 0. Observe that after
the forward pass the current value of xj is 1 and the fact that in the backward
pass the value was changed to 0 means that (0, ..., 0, 1, xj+1, ..., xn) is not a feasible
solution. Thus, there exists and interval Ii, i > j, xi = 1, sharing a column or a
row with interval Ij . In case it shares a row: row(j) = row(i) and ∆j is included
in the last term of (10). Consider the case when it shares a column. Then due to
the ordering of the intervals in the instance according to non-decreasing right-most
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stabbing column, the fact i > j implies that rj ∈ [li, ri]. So again, the interval Ij

has its contribution ∆j to the last term of (10).
Now we have

xw ≥
∑

i:xi=1

∆i +
∑

i:xi=0

∆i =
n∑

i=1

∆i =
t∑

j=1

yj =
m∑

k=1

zk.

Therefore

2xw ≥
t∑

j=1

yj +
m∑

k=1

zk.

Corollary 2.3. ALG1 is a 1/2-approximation algorithm for GEOSP with unit
column and row capacities and a 2-approximation algorithm for GEOSC with unit
column and row capacities.

2.2. Unit weights: The case w = 1

Consider another special case of GEOSP and GEOSC. Now the column, row and
interval capacities are arbitrary nonnegative integer numbers, and all the intervals
have the same weight, or equivalently w = 1. Since in this case GEOSC can be
seen as a so-called hitting set problem, the high-level description of primal-dual
method given in [9] apply. Similarly to the previous case we describe an algorithm
ALG2, which in this case delivers a feasible solution x to GEOSP and y, z, s to
GEOSC, such that vy + uz + sp ≤ 2(1 · x).

During its execution the algorithm maintains solutions x and y, z, s to GEOSP
and to GEOSC respectively. As in the previous subsection all the values have
initially a value of 0. While keeping the complementary slackness conditions as-
sociated to constraints (2,3) and (4) satisfied, the algorithm iteratively modifies
their values, so that x remains feasible to GEOSP and y, z, s constitute a feasible
solution to GEOSC at the end of the forward pass. The backward pass (called the
reverse delete step in [9]) is used to get rid of redundant column multiplicities and
will allow us to obtain the ratio of 2 between the solution values.

Notice that this algorithm generalizes the algorithm described in [14] for the
case of unit weights and unit capacities.

Let x ∈ Z+
n , y ∈ Z+

t , z ∈ Z+
m, s ∈ Z+

n , V ∈ Z+
t and U ∈ Z+

m.

Algorithm ALG2:
1. x← 0;y← 0; z← 0; s← 0;V← v;U← u;

{forward pass}·
2. For all i from 1 to n do:

begin
xi ← min{Vli , Vli+1, ..., Vri , Urow(i), pi};
if (Urow(i) ← Urow(i) − xi) = 0, then zrow(i) ← 1; if (pi − xi) = 0, then si ← 1;
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for all j ∈ [li, ri]: if (Vj ← Vj − xi) = 0, then yj ← 1; end.
{backward pass}·

3. For all j from t down to 1 do:
if yj = 1 and (y1, y2, ..., yj−1, 0, yj+1, ..., yt), z, s is a feasible solution, assign
yj ← 0;

4. For all i from 1 up to n do:
if si = 1 and (y, z, (s1, ..., si−1, 0, si+1, ..., sn)) is a feasible solution to GEOSC,
then si ← 0.

Theorem 2.4. The time complexity of ALG2 is O(tn).

Proof. In the forward pass the algorithm makes n loops, each of which takes at
most O(t) time to calculate the value of xi and to update the values of the V -
variables, thus we need O(tn) time to complete the forward pass.

Consider step 3. There are t loops, we will argue that the feasibility test in a
single loop i can be done in O(n) time.

Let l1 = max{max{l : l < j, yl = 1}, 0} and l2 = min{min{l : l > j,
yl = 1}, t + 1}. So l1 and l2 are the indices of the columns, closest to column
j from the left and from the right respectively and such that y currently has ones
in the corresponding positions (if they exist, otherwise l1 (l2) is assigned 0 (t+1)).

Knowing that (y, z, s) is a feasible solution (see the proof of Th. 2.5) enables us
to test the feasibility of ((y1, y2, ..., yj−1, 0, yj+1, ..., yt), z, s) within O(n) time: it
is enough to consider all the intervals stabbed by column j and to check whether
each of them satisfies one of the following conditions:
• it is stabbed by column l1;
• it is stabbed by column l2;
• the corresponding z-variable is 1;
• the corresponding s-variable is 1.

Obviously, this takes O(n) time. Therefore if at each step the numbers l1 and l2
can be found in a constant time, the overall time complexity of the backward pass,
and thus of the whole algorithm, is O(tn).

In order to find the numbers l1 and l2 efficiently, we maintain an additional
data structure: a list {0} � {i1} � ... � {ip} � {t + 1}, where i1, ..., ip are
the indices of all the (currently) unit elements of y, arranged in increasing order.
Each internal element of the list has a reference to the previous and to the next
element.

Thus, having a reference to the element j in the list, we can obtain the values
of l1 and l2 within constant time, by taking the previous and the next elements of
the list respectively.

Notice that this data structure can be created at the beginning of the backward
pass in O(t) time and it takes only a constant amount of time to update it when
some element of y changes its value from 1 to 0.

Finally, consider step 4. There are n loops and in each of them, say loop i, we
need to check the values of yli , ..., yri and zrow(i). Thus, we have at most t + 1
operations. So step 4 takes O(tn) time as well.
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Theorem 2.5 (Min-max result for the case of unit weights). For all instances I
of the pair GEOSP-GEOSC where all intervals have unit weight,

OPTcover(I) ≤ 2 ·OPTpack(I).

Proof. We first establish feasibility of the solutions delivered by ALG2. We
show feasibility of x by induction on the number of loops in the forward pass.
The initial zero assignment is feasible. Suppose that after i − 1 loops we have
a feasible solution (x1, x2, . . . , xi−1, 0, . . . , 0). Observe that at the beginning of
loop i the values of V and U denote the residual capacity after assigning mul-
tiplicities (x1, x2, . . . , xi−1, 0, . . . , 0) to the intervals. Therefore the assignment
xi ← min{Vli , Vli+1, ..., Vri , Urow(i)} does not violate the capacity constraint and
thus the feasibility of the solution.

Now we proof the feasibility of (y, z, s) to GEOSC. Observe that during the
forward pass for each i at least one of the variables yli , yli+1, ..., yri , zrow(i), si gets
a unit value. That implies the feasibility of (y, z, s) at the end of the forward pass.
Since the backward pass can not violate feasibility, it remains feasible after the
backward pass as well.

Let us now establish the theorem.
First we show that

si(xi − pi) = 0 for all i, (11)

yj


 ∑

i:j∈[li,ri]

xi − vj


 = 0 for all j and (12)

zk


 ∑

i:row(i)=k

xi − uk


 = 0 for all k. (13)

(Notice that these are the complementary slackness conditions associated to (2, 3)
and (4).)

The first equality follows straightforward from the description of the algorithm.
Consider (12). Notice that yj > 0 implies Vj = 0. That means that the capacity
of the column j is exhausted completely by assigning multiplicities x1, x2, ..., xn

to the intervals. Thus
∑

i:j∈[li,ri]
xi = vj . A similar argument can be used to

justify (13).
Now we show that

xi > 0 implies zrow(i) +
∑

j∈[li,ri]

yj + si ≤ 2. (14)

First, notice that due to step 4 of the algorithm si = 1 implies zrow(i) =
∑

j∈[li,ri]

yj = 0. Thus, the correctness of (14) is proved if we show that for each interval Ii,
such that xi > 0,

∑
j∈[li,ri]

yj ≤ 1. We will derive this by a contradiction argument.
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Assume that there exists an interval Ii such that
∑

j∈[li,ri]
yj ≥ 2 and xi > 0.

That means that at least 2 columns stabbing the interval have unit multiplic-
ity. Let j1 and j2 be the right-most and the left-most of those columns respec-
tively. Let ŷ denote the value of vector y right after the forward pass. The fact
that in the backward pass the value of yj1 was not decreased to 0 means that
(ŷ1, ŷ2, ..., ŷj1−1, 0, yj1+1, ..., yt) is not a feasible solution to GEOSC. Therefore,
there exists an interval Ik, such that (a) zrow(k) = sk = 0, (b) there is no column j
stabbing Ik, such that j < j1 and ŷj > 0, (c) Ik is not stabbed by column j2.

Consider loop k of the forward pass. The argument that at least one of the
columns stabbing interval Ik, or its row has to get a positive value in this loop, to-
gether with (a) and (b) derived above, implies that at least one of yj1 , yj1+1, ..., yrk

becomes positive, thus at least one of Vj1 , Vj1+1, ..., Vrk
becomes 0 after loop k.

(c) implies that rk < ri, thus k < i, which means that interval Ii was considered
by the algorithm after Ik.

Since all the columns j1, j1 + 1, ..., rk stab Ii, and when evaluating xi one of
Vj1 , Vj1+1, ..., Vrk

is 0, xi has to be 0, we have found a contradiction.
Due to (11–14):
vy + uz + ps =

∑t
j=1 yj

∑
i:j∈[li,ri]

xi +
∑m

k=1 zk

∑
i:row(i)=k xi +

∑n
i=1 sixi =∑n

i=1 xi

(
zrow(i) +

∑
j∈[li,ri]

yi + si

)
≤ 2

∑n
i=1 xi = 2(1 · x).

Corollary 2.6. ALG2 is a 1/2-approximation algorithm for GEOSP with unit
interval weights and a 2-approximation algorithm for GEOSC with unit interval
weights.

3. Tightness

In this section we present 3 examples. In all the examples the weights and capac-
ities are unit, therefore we can apply both the algorithms ALG1 and ALG2. We
denote the values of the solutions delivered by the algorithms as SOLpack(ALG1)
and SOLcover(ALG1) (SOLpack(ALG2) and SOLcover(ALG2) respectively).

For all three examples we have SOLpack(ALG1) = SOLpack(ALG2) and
SOLcover(ALG1) = SOLcover(ALG2).

Example 1 shows that our bound on the gap size between the optimal values of
GEOSP and GEOSC is tight even in the case when all the data are unit.

Examples 2 and 3 demonstrate that the performance guarantees derived in the
previous section are tight. Example 2 establishes that ALG1 as well as ALG2 is
a 1/2-approximation algorithm for GEOSP, example 3 establishes that ALG1 as
well as ALG2 is a 2-approximation algorithm for GEOSC.

Figure 1. Example 1.
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Example 1. Obviously for this instance I we have OPTpack(I) = 1 and
OPTcover(I) = 2.

Figure 2. Example 2.

Example 2. For this instance both the algorithms ALG1 and ALG2 deliver so-
lution x1 = 1, x2 = x3 = 0 to GEOSP, with SOLpack(ALG1) = SOLpack(ALG2)
= 1, while the optimal solution is x1 = 0, x2 = x3 = 1, so that OPTpack = 2.

1 2 3 4 5 6 7 8 9 ... 3k-1 3k 3k+1

1
2
3
4
5
6...
2k-1

2k

Figure 3. Example 3.

Example 3. The solution to GEOSC delivered by our algorithms is y2+3p = 1,
p = 0, ..., k − 1, z1+2h = 1, h = 0, ..., k − 1, all the other variables are 0.
So SOLcover(ALG1) = SOLcover(ALG2) = 2k, while the optimal solution is
the following : y1+3r = 1, r = 0, ..., k, all the other variables are 0, and thus
OPTcover = k + 1. When k increases, the ratio between SOLcover(ALG1) and
OPTcover (and between SOLcover(ALG2) and OPTcover) tends to 2.

4. An LP-based (2 + ε)-approximation algorithm

for GEOSC

In this section we focus on GEOSC with arbitrary weights and capacities. We
present an LP-based algorithm that delivers a solution to GEOSC with a value of
at most 2+ ε times the value of an optimal solution, for any ε > 0. We use an idea
described in [4] to obtain the desired result.

Informally, the algorithm works as follows. Consider an instance I of GEOSC
and IP formulation (6–8) for it. First we solve the LP-relaxation. Let the corre-
sponding solution of the linear program be described by ŷ, ẑ, ŝ and let vLP be its
value. In addition to I let us also assume that some ε > 0 has been specified. Let
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δ = ε/4
(n+t+m)(1+ε/4) and let N = (n+t+m)(1+ε/4)

(ε/4)2 . First we modify the values of ŷj,
ẑk and ŝi so that each of them becomes 0 if it is less then δ and is multiplied by
(1+ε/4) otherwise. Then we round each of the modified fractional values up to the
nearest multiple of 1/N , so that the rounded values are ỹj = aj/N , z̃k = bk/N and
s̃i = ci/N for some integral aj , bk and ci, j = 1, . . . , t, k = 1, . . . , m, i = 1, . . . , n.

In each column j we draw aj vertical lines j = 1, . . . , t; similarly, we draw bk

horizontal lines in each row k, k = 1, . . . , m, and we create ci distinct copies of
each interval Ii.

The following question can be answered affirmatively (Th. 4.1): is it possible to
color all the lines and copies of the intervals using N

2 colors (we can assume wlog
that N is even), so that each line and each copy receive exactly one color, and so
that each color class (that is, all lines and copies with a same color) constitutes
a feasible solution? Given a set of lines and copies of a same color, a solution to
GEOSC is found by setting the multiplicity of each column, row and interval equal
to the number of corresponding lines or copies in the set.

Observe that if the answer is yes, for any interval, say Ii, and for any color,
say blue, the number of blue lines (vertical and horizontal), stabbing Ii, plus the
number of blue copies of Ii would be at least wi.

We use the following coloring procedure. First we consider the vertical lines.
Index these lines according to the index of the column they belong to in non-
decreasing order. Then give line j color (j mod N

2 ), j = 1, ..,
∑

h∈[1,t] ah. Next
consider the horizontal lines. At each row j = 1, . . . , m index them consecutively
from 1 to bj and give line k color (k mod N

2 ), k = 1, . . . , bj. At last, index the
copies of each interval Ii as 1, . . . , ci and give copy k color (k + brow(i)) mod N

2 ,
k = 1, . . . , ci.

Finally, we choose a solution with the minimum value among those induced by
the N/2 color classes.

Here is a more formal description of the algorithm, called ALG3.
The algorithm gets as input an instance I of GEOSC and a rational positive

number ε.
Let ŷ ∈ Rt

+, ẑ ∈ Rm
+ , ŝ ∈ Rn

+, a,ysol ∈ Zt
+, b, zsol ∈ Zm

+ , c, ssol ∈ Zn
+, δ =

ε/4
(n+t+m)(1+ε/4) , N = (n+t+m)(1+ε/4)

(ε/4)2 , V (i) ∈ Z1
+, i = 1, . . . , N/2.

Algorithm ALG3.
1. ysol

j ← 0, zsol
k ← 0, ssol

i ← 0, for all j = 1, . . . , t, k = 1, . . . , m and i = 1, . . . , n;
2. solve the LP-relaxation of (6–8) and store its optimal solution in (ŷ, ẑ, ŝ);
3. if ŷj < δ then ŷj ← 0 else ŷj ← (1 + ε/4)ŷj,

if ẑk < δ then ẑk ← 0 else ẑk ← (1 + ε/4)ẑk,
if ŝi < δ then ŝi ← 0 else ŝi ← (1 + ε/4)ŝi, for all j = 1, . . . , t, k = 1, . . . , m
and i = 1, . . . , n;

4. for all j from 1 to t
for all h from

∑
p=1,... ,j−1 ap + 1 to

∑
p=1,... ,j ap do V (h mod N/2) ←

V (h mod N/2) + vj ;
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5. for all k from 1 to m for all h from 1 to bk do V (h mod N/2) ←
V (h mod N/2) + uk;

6. for all i from 1 to n
for all h from brow(i)+1 to brow(i)+cp do V (h mod N/2)← V (h mod N/2)+pi;

7. h∗ ← argminh=1,... ,N/2(V (h));
8. for all j from 1 to t for all h from

∑
p=1,... ,j−1 ap + 1 to

∑
p=1,... ,j ap if

(h mod N/2 = h∗) ysol
j ← ysol

j + 1;
9. for all k from 1 to m
for all h from

∑
p=1,... ,k−1 bp + 1 to

∑
p=1,... ,k bp if (h mod N/2 = h∗) zsol

k ←
zsol

k + 1;
10. for all i from 1 to n
for all h from

∑
p=1,... ,i−1 cp+1 to

∑
p=1,... ,i cp if (h mod N/2 = h∗) ssol

i ← ssol
i +1.

Theorem 4.1. ALG3 is a (2 + ε)-approximation algorithm for GEOSC.

Proof. First we argue that ALG3 delivers a feasible solution to GEOSC. Consider
some interval Ii. This interval is stabbed by columns of the set li, . . . , ri, or
alternatively, it is stabbed by

∑
j∈[li,ri]

aj vertical lines. If this number is equal
to or larger than wi

N
2 , then we are done, since the coloring approach described

above ensures that interval Ii is stabbed by at least wi vertical lines of each color.
Otherwise, as we show below, the set containing all the horizontal lines stab-

bing Ii and all the copies of Ii has at least wi
N
2 elements, which implies that there

are at least wi elements of each color in this set. Therefore, each color class implies
a feasible solution to GEOSC on instance I.

To show that the set of all the horizontal lines stabbing Ii and all the copies
of Ii has at least wi

N
2 elements, we prove firstly that (ỹ, z̃, s̃) constitutes a feasible

solution to the LP-relaxation of (6–8). Then, since aj = Nỹj , bk = Nz̃k and
ci = Ns̃i, for all j, k, i, we have:

brow(i) +
∑

j∈[li,ri]

aj + ci ≥ Nwi.

Therefore,
∑

j∈[li,ri]
aj < Nwi

2 implies brow(i) + ci ≥ Nwi

2 .

Now, let us consider (ỹ, z̃, s̃) and show that any of the constraints (7), for
instance,

zrow(i) +
∑

j∈[li,ri]

yj + si ≥ wi,

is satisfied by variables z̃row(i), ỹli , ..., ỹri, s̃i.
For convenience of notation denote d̃ = (z̃row(i), ỹli , . . . , ỹri , s̃i)T ∈ Rp, d̂ =

(ẑrow(i), ŷli , ..., ŷri , ŝi)T ∈ Rp and w = wi, where (ŷ, ẑ, ŝ) is the optimal solution to
the LP-relaxation and p = li − ri + 3 ≤ n + t + m. Notice, that we can assume
that w > 0, since otherwise the inequality is trivially satisfied.
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Clearly,

∑
j=1,... ,p

d̂j ≥ w. (15)

Consider
∑

j=1,... ,p d̃j . Since d̃j = 0 for all j such that d̂j < δ, the sum can be
written down as follows:

∑
j=1,... ,p

d̃j =
∑

j:d̂j≥δ,1≤j≤p

d̃j ≥
∑

j:d̂j≥δ,1≤j≤p

(1 + ε/4)d̂j ≥

(due to (15))

≥ (1 + ε/4)


w −

∑
j:d̂j<δ,1≤j≤p

d̂j


 ≥ (1 + ε/4)(w − pδ)

≥ (1 + ε/4)
(

w − ε/4
1 + ε/4

)
≥ w.

Thus (ỹ, z̃, s̃) satisfies each of the constraints (7) and constitutes a feasible solution
to the LP-relaxation.

Now we have N
2 feasible solutions, the total value of which can be bounded from

above as follows:

t∑
j=1

vjaj +
m∑

k=1

ukbk +
n∑

i=1

pici = N


 t∑

j=1

vj ỹj +
m∑

k=1

ukz̃k +
n∑

i=1

pis̃i


 ≤

(since ŷj ≥ δ implies ỹj ≤ (1 + ε/4)ŷj + 1/N and ŷj < δ implies ỹj = 0, similarly
for zk, si, for all j, k, i )

≤ N


(1 + ε/4)


 t∑

j=1

vj ŷj +
m∑

k=1

ukẑk +
n∑

i=1

piŝi




+
1
N


 ∑

j:ŷj≥δ,1≤j≤t

vj +
∑

k:ẑk≥δ,1≤k≤m

uk +
∑

i:ŝi≥δ,1≤i≤n

si





 ≤
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(since ŷj ≥ δ implies 1
N vj ≤ 1

Nδ ŷjvj = ε
4 ŷjvj , similarly for uk , pi, for all j, k, i )

≤ N


(1 + ε/4)


 t∑

j=1

vj ŷj +
m∑

k=1

ukẑk +
n∑

i=1

piŝi




+ε/4


 t∑

j=1

vj ŷj +
m∑

k=1

ukẑk +
n∑

i=1

piŝi





 = N(1 + ε/2)vLP.

It is clear that among those N/2 feasible solutions there is at least one with value
less or equal to 2(1+ε/2)vLP = (2+ε)vLP. Since ALG3 chooses one with minimum
value, it is a (2 + ε)-approximation algorithm.

5. A non-approximability result

In this section we prove that GEOSC is hard to approximate arbitrarily closely
in polynomial time (unless P = NP). We assume familiarity with some of the
issues in approximation and complexity, see for instance [3] or [13].

Let us first describe a graph-theoretical interpretation of a special case of
GEOSC. The special case of GEOSC of interest in this section is the case where
all weights and capacities are 1 and there are at most 2 intervals per row. Then,
a solution of GEOSC will have all s-variables equal to 0 and hence consist of se-
lected rows and columns. In fact this special case of GEOSC can be formulated in
a graph-theoretic context as follows. Construct a graph in which there is a node
for each interval and two nodes are connected if they share a column (blue edge),
or if they share a row (red edge). Thus, the graph constructed is the edge union of
an interval graph and a matching. Notice that a monochromatic maximal clique
in such a graph corresponds to a row or a column in GEOSC. In fact, finding a
monochromatic clique cover of minimum size is exactly GEOSC.

Theorem 5.1. GEOSC does not have a PTAS unless P = NP.

Proof. We prove the theorem by presenting an L-reduction [13] from MAX 3-SAT-
3 to GEOSC2. The result in [2] then establishes the theorem.

MAX 3-SAT-3 is the version of satisfiability in which each clause has at most 3
variables and each variable occurs at most 3 times. It is shown to be MAX SNP-
hard in [3] (see also [13]).

Recall that C = {C1, C2, . . . , Cr} is a set consisting of r disjunctive clauses,
each containing at most 3 literals. Let x1, x2, . . . , xn denote the variables in the r
clauses and, for each i = 1, . . . , n, let m(i) denote the number of occurrences of
variable xi (either as literal xi or as literal x̄i). Arbitrarily index the occurrences of
variable xi as occurrence 1, 2, . . . , m(i). Notice that without loss of generality we
can assume that each variable occurs at least twice in C, thus we have 2 ≤ m(i) ≤ 3
for all i and that

∑
i m(i) ≤ 3r. Moreover, we will also assume (again wlog) that

each variable occurs at least once unnegated and at least once negated in C.
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We now construct an instance of GEOSC, that is a graph G = (V, E) which is
the edge union of an interval graph and a matching. Let I denote an instance of
MAX 3-SAT-3 and R(I) the corresponding instance of GEOSC with corresponding
optimal values OPT (I) and OPT (R(I)).

For each variable xi in I, i = 1, . . . , n, we have a subgraph H1i = (V 1i, E1i)
in R(I), where V 1i = {vij | j = 0, . . . , 5} and E1i = {{vij , vi,j+1}| j = 0, . . . , 5}
(indices modulo 6). So for each variable xi in I we have a cycle consisting of 6
nodes in R(I). We refer to the edges {vi0, vi1}, {vi2, vi3} and {vi4, vi5} as T edges,
and to the edges {vi1, vi2}, {vi3, vi4} and {vi5, vi6} as F edges. Thus the cycle
consists of alternating T and F edges.

For each clause Cj in I, j = 1, . . . , r, we have a subgraph H2j = (V 2j , E2j) in
R(I) depending upon the cardinality of Cj , as depicted in Figure 4.

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

M M

M M

M M

• • • • • • •
•
•
•
•
•
•
•
•
•
•
•

@
@ �

�p3j

p1j

p2j

• • • • • • • • • • • • • • • • •
M M M M M M M M

p2jp1j

• • • • • • • • • • • • • • • • •
M M M M M M M M

p1j

Figure 4. The subgraph H2j when |Cj | = 3 (upper figure), when
|Cj | = 2 (middle figure: P17) and when |Cj | = 1 (lower fig-
ure: P17).

When no ambiguity is likely to occur, we refer to the nodes p1j, p2j and p3j as
p-nodes. Notice that each of the subgraphs has the property that a clique cover
of its vertices has cardinality at least 9, whereas if 1, 2 or even 3 p-nodes need not
be covered, one needs at least 8 cliques.

To connect the subgraphs introduced sofar in R(I), consider some clause Cj ,
and consider the first variable occurring in this clause Cj , say xi. Let this be the
q-th occurrence of this variable xi in C, q ∈ {1, . . . , m(i)}. If the variable xi occurs
as literal xi add the edges {p1j, vi,2q−2} and {p1j, vi,2q−1} to E. (The node p1j will
then be referred to as a true p-node.) If the variable xi occurs as literal x̄i add the
edges {p1j, vi,2q−1} and {p1j, vi,2q} to E. (The node p1j will then be referred to as
a false p-node.) Consider now the second (third) variable occurring in Cj , say xl,
and let this be the q-th occurrence of this variable xl in C, q ∈ {1, . . . , m(l)}. If
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the variable xl occurs as literal xl add the edges {p2j, vi,2q−2} and {p2j, vi,2q−1}
({p3j, vi,2q−2} and {p3j, vi,2q−1}) to E. If the variable xl occurs as literal x̄l add
the edges {p2j, vi,2q−1} and {p2j, vi,2q} ({p3j, vi,2q−1} and {p3j, vi,2q}) to E. This
is done for all clauses Cj , j = 1, . . . , r. See Figure 5 for a graphic representation of
the way in which the subgraphs H1i are connected to the p-nodes of subgraphs H2j .
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Figure 5. The subgraph H1i and its connections when m(i) = 2
(upper figure, 2 possibilities) and when m(i) = 3 (lower figure).

Now the graph G = (V, E) is completely specified.
We now exhibit a matching M in G. M consists of two parts: edges in ∪iH1i

and edges in ∪jH2j. For the first part we take the edges that are marked with
an “M” in Figure 5, for the second part we take the edges that are marked with
an “M” in Figure 4.

Obviously, M is indeed a matching. Also, one can verify that the remaining
edges in G form an interval graph (notice that each H2j disconnects).

In the remaining part of the proof, with the word “clique cover” a monochro-
matic clique cover is meant, that is a clique cover with the edges of each clique
having the same color.

In order to show that this reduction is an L-reduction, consider the following.
Observe that v ≡ OPT (I) ≥ 1

2r. (Indeed, by considering the assignment: all
variables true, and: all variables false, it follows that each clause is true in at least
in one of both assignments.) We have:

OPT (R(I)) ≤ 3n + 9r =
9
2
r + 9r ≤ 27v = 27 ·OPT (I).

The first inequality follows from the fact that 3 cliques can be selected from each
H1i, i = 1, . . . , n to cover its nodes, and 9 cliques can be selected from each
subgraph H2j, j = 1, . . . , r to cover its nodes. Since n ≤ 3

2r, the inequality
follows.
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Consider now an arbitrary solution to R(I), that is any (monochromatic) clique
cover s in G with size c(s). We will map this solution s using an intermediate
solution s′ to a solution of MAX 3-SAT-3, called S(s). To do this we need the
following definition. A clique cover s in G is called consistent iff for each i =
1, . . . , n, the following property holds: either the nodes from V 1i are in cliques
that contain only T edges and are maximal, or the nodes from V 1i are in cliques
that contain only F edges and are maximal.

Now we state a procedure which takes as input a clique cover s. The output
of the procedure is a consistent clique cover called s′ with the property that c(s′)
≤ c(s).

Procedure. Consider s. For i = 1, . . . , n, consider V 1i. If V 1i fails the property
because a clique in s is not maximal, this is easily fixed by enlarging one or more
cliques by adding the appropriate p-node (and perhaps adjusting the clique cover
in an obvious manner). If it fails the property because it has a T edge as well
as an F edge from H1i in a clique we do the following. Notice that in this case
at least 4 cliques are used for the nodes in H1i. Consider the p-nodes that are
contained in cliques used to cover nodes of H1i. Now, if among those p-nodes there
are at least 2 false p-nodes take the 3 maximal F -cliques, else take the 3 maximal
T -cliques. And, if necessary, take as a single clique the p-node not covered by
these maximal T or F cliques (there can be at most 1, so c(s′) ≤ c(s)).

End of Procedure

After applying this procedure to any clique cover s in G, a consistent solution s′

is delivered with c(s′) ≤ c(s). Since s′ is consistent, it is now straightforward to
identify the corresponding solution S(s) in MAX 3-SAT-3: simply set variable xi,
i = 1, . . . , n true if all T -edges in subgraph H1i are in the clique cover s′, else set
xi false. How many clauses in I are satisfied by this truth assignment? Observe
that the construction of G implies that if for some consistent clique cover s a
p-node from some H2j is contained in a clique that covers also nodes from some
H1i we need 8 cliques to cover H2j. Let there be l triangles for which at least one
p-node is gone in this way. This implies that l clauses in I are satisfied by this
truth assignment.

Again, let v = OPT (I), and let c(S(s)) = l. The following (in)equalities are
true:

• c(s) ≥ c(s′) (by construction);
• c(s′) = 3n + 8l + 9(r − l) = 3n + 9r − l (by construction), and
• OPT (R(I)) ≤ 3n+8v+9(r−v) = 3n+9r−v (consider the truth assignment

that is optimum for I; evidently, we can exhibit in R(I)) a corresponding
clique cover of size 3n + 9r − v).

Thus

c(s)−OPT (R(I)) ≥ 3n + 9r − l − (3n + 9r − v) = v − l = OPT (I)− c(S(s)),

which finishes the proof.
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Notice that the theorem remains true when the number of intervals that share a
column is bounded by 3. When formulating Theorem 5.1 in graph theoretic terms
we get:

Corollary 5.2. Finding a monochromatic clique cover in a graph that is the edge-
union of an interval graph with bounded degree and a matching is MAX SNP
complete.
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