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A GUIDE TO CONIC OPTIMISATION AND ITS APPLICATIONS

Adam N. Letchford1,* and Andrew J. Parkes2

Abstract. Most OR academics and practitioners are familiar with linear programming (LP) and
its applications. Many are however unaware of conic optimisation, which is a powerful generalisation
of LP, with a prodigious array of important real-life applications. In this invited paper, we give a
gentle introduction to conic optimisation, followed by a survey of applications in OR and related areas.
Along the way, we try to help the reader develop insight into the strengths and limitations of conic
optimisation as a tool for solving real-life problems.
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1. Introduction

Most OR students, academics and practitioners are familiar with linear programming (LP). For many
problems arising in industry and elsewhere, LP is an attractive option, due to its simplicity, the ease of doing
sensitivity analysis, the existence of effective algorithms, and, perhaps most importantly, the availability of good
software. With modern software packages such as CPLEX, Gurobi or Xpress, it is now possible to routinely solve
LP instances with thousands of variables and/or constraints to proven optimality. These software packages can
also cope with integer-constrained variables.

Of course, in real-world applications, one often encounters problems that have non-linear aspects. Sometimes,
one can construct good linear approximations to such problems, perhaps with the help of binary variables, and
thereby make them amenable to solution with the above-mentioned packages. In other cases, however, the
nonlinearity is significant and must be faced head-on. For such cases, various non-linear programming (NLP)
algorithms have been developed (see, e.g., [13, 14]).

The purpose of this paper is to introduce a very important special case of NLP called conic optimisation
(CO). Despite having a very special structure, CO is remarkably powerful. It has a prodigious array of important
real-life applications, not only in OR, but also in related areas, such as statistics, computer science, engineering
and finance. Moreover, CO inherits some of the nice features enjoyed by LP, such as the existence of efficient
(polynomial-time) algorithms, a well-developed duality theory, and the availability of good software.

Apart from LP, the most important special cases of CO are second order cone programming (SOCP) and
semidefinite programming (SDP). There already exist several good surveys on both SOCP (e.g., [2, 53, 62])
and SDP (e.g., [44, 93, 94, 98]). There also exists an excellent monograph on CO in general (Nesterov and
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Figure 1. An idealised ice-cream cone.

Nemirovsky [73]). It is fair to say, however, that most of these works assume that the reader is a nonlinear
programming expert. This can make them rather inaccessible to the OR generalist.

In this work, we assume only minimal knowledge of LP, geometry and linear algebra. Moreover, we place an
emphasis on applications in OR and related areas, covering, e.g., inventory control, facility location, portfolio
optimisation, problems involving binary variables, and various methods for optimising under uncertainty, such
as mean-variance, chance-constrained and robust optimisation. Along the way, we try to help the reader develop
insight into the strengths and limitations of CO as a tool for modelling and solving real-life problems.

The paper is structured as follows. In Section 2, we define CO and present some basic theory. In Section 3,
we cover algorithms and complexity. In Section 4, we review the main applications of SOCP in OR and related
fields. In Section 5, we do the same for SDP. In Section 6, we list some of the available software packages, and
in Section 7, we make some concluding remarks.

Throughout the paper, R+, Rn
+ and Sn denote the non-negative reals, the real vectors with n non-negative

components, and the real symmetric matrices of order n, respectively. Moreover, given a vector x ∈ Rn, we let
||x||1 and ||x||2 denote

∑n
i=1 |xi| and

√∑n
i=1 x

2
i , respectively.

2. Definitions and basic theory

In this section, we define CO formally and present the minimal amount of theory and notation needed to
understand how it works. We start by defining cones in Section 2.1. We define CO itself in Section 2.2. We then
present elementary duality theory in Section 2.3.

2.1. Cones

If a non-mathematician hears the word cone, the thing most likely to come to mind is either an ice-cream
cone or a traffic cone. An idealised version of an ice-cream cone is displayed in Figure 1. The idealised version
is supposed to extend upward forever. One can check that it corresponds to the following set:{

x ∈ R3 : x3 ≥
√
x21 + x22

}
.

The ancient Greek astronomer Apollonius of Perga (c. 262 BC–c. 190 BC) discovered that, if one “slices”
the idealised ice-cream cone at various angles, one can obtain interesting convex shapes; see Figure 2. This
already gives a hint as to why cones could be of relevance to optimisation: whereas LP forces us to optimise over
polyhedra, we can optimise over various non-polyhedral convex sets by “slicing” cones in various ways. This
enables us to model and solve a variety of important nonlinear problems, as we will see in Sections 4 and 5.
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Figure 2. The conic sections (taken from Seligman [88]).

Mathematically speaking, a cone is a set of points (in some underlying space, such as Euclidean space) with
the following property: if a point x belongs to the cone, then so does the point λx for any λ ∈ R+. Note that
cones can be extremely complicated. Indeed, consider an arbitrary set S ⊂ Rn. The set

C(S) =
{

(x, λ) ∈ Rn × R+ : x = λx′ for some x′ ∈ S
}

is a cone, and it is “just as complicated” as S itself. Indeed, if we intersect C(S) with the hyperplane defined
by the equation λ = 1, the resulting “slice” is S (or, more precisely, an embedding of S into a space of higher
dimension).

If one wishes to say anything useful about cones, then, one must restrict attention to cones with a special
structure. In the optimisation context, one is typically interested in so-called proper cones. A cone C is called
proper if it is:

• convex: if x1, x2 ∈ C, then µx1 + (1− µ)x2 ∈ C for all µ ∈ [0, 1];
• closed: C contains all of its limit points;
• full-dimensional: there is no hyperplane containing C;
• pointed: if x ∈ C, then −x /∈ C.

One can check that the idealised ice-cream cone is proper. The following five proper cones arise frequently
in various contexts:

• the non-negative cone, which is simply R+;
• the second-order cone of order n, which is{

(x, t) ∈ Rn × R+ : t ≥ ||x||2
}

;

• the positive semidefinite (psd) cone of order n, which is{
X ∈ Sn : vTXv ≥ 0 (∀v ∈ Rn)

}
; (2.1)
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the copositive cone of order n (first defined by Motzkin [71]), which is{
X ∈ Sn : vTXv ≥ 0 (∀v ∈ Rn

+)
}

;

• the completely positive cone of order n (first defined by Hall [40]), which is{
X ∈ Sn : X = ATA for some real non-negative matrix A

}
.

(There are several other cones of interest to optimisation, such as the correlation cone [27], the pth-order cone
[33], the exponential cone [32] and the relative entropy cone [21], but we do not give details, for the sake of
brevity.)

The second-order cone is a natural generalisation of the ice-cream cone to higher dimensions. It is sometimes
called the Lorentz cone, after the Dutch physicist Hendrik Lorentz (1853–1928). (Indeed, for those familiar with
special relativity, the second-order cone with n = 3 is the forward light cone of the origin, where x represents
space and t represents time.)

The psd cone of order n is usually denoted by Sn+. It can be defined in many different ways. It is known (see,
e.g., Horn [48]) that a matrix X ∈ Sn belongs to Sn+ if and only if any of the following (equivalent) conditions
hold:

• the quadratic function f(v) = vTXv is non-negative for all v ∈ Rn
(
this is just definition (2.1)

)
;

• the same function f(v) is convex;
• the region {v ∈ Rn : vTXv ≤ 1} is an ellipsoid;
• all eigenvalues of X are non-negative;
• all principal submatrices of X have non-negative determinants;
• there exists a lower-triangular matrix A ∈ Rn×n such that X = ATA (Cholesky factorisation);
• there exist vectors u1, . . . , un ∈ Rn such that Xij = ui · uj for all i, j (Gram representation);
• X can be written as a non-negative linear combination of symmetric rank-1 real matrices of the form vvT .

From these definitions, one can see that, for a given value of n, the completely positive cone is contained in Sn+,
which in turn is contained in the copositive cone.

To make the above ideas more concrete, we give some examples. The matrix

(
5 1
1 1

)
is completely positive,

since it has the factorisation (
2 1
0 1

)(
2 0
1 1

)
.

The matrix

(
5 −1
−1 1

)
is psd, since it has the factorisation:

(
2 −1
0 1

)(
2 0
−1 1

)
.

It is not however completely positive, since it contains negative entries. Finally, the matrix X =

(
0 1
1 0

)
is

copositive, since vTXv = 2v1v2 ≥ 0 for all v ∈ R2
+. It is however not psd, since(

0 1
1 0

)(
1
−1

)
=

(
−1
1

)
,
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and therefore it has −1 as an eigenvalue.

2.2. Conic optimisation

A conic programme or conic optimisation problem is a problem that can be modelled as the problem of
optimising a linear function over the intersection of a hyperplane and a proper cone. That is, a CO problem
can be written in the form

sup
{
cTx : Ax = b, x ∈ C

}
, (2.2)

where c ∈ Zn, b ∈ Zm, A ∈ Zm×n and C ⊂ Rn is a proper cone. (We have to use supremum rather than
maximum here, for technical reasons. See the last example in this subsection.)

Actually, as it stands, the definition (2.2) is too general, since it includes NP-hard problems as special cases
(see the next section). Nesterov and Nemirovsky [73] showed that particularly effective solution methods could
be devised for CO when the proper cones in question are symmetric. For brevity, we do not define symmetric
cones here. Instead, we just remark that most symmetric cones of interest can be constructed using three basic
building blocks; namely, the non-negative, second order and psd cones mentioned in the previous subsection.
More specifically:

• The product of n non-negatives cones is Rn
+. This is a symmetric cone, and it is the cone used in LP.

• The product of a finite number of second-order cones is symmetric. Cones of this type are used in second-
order cone programming or SOCP (sometimes also called conic quadratic programming or CQP).

• The product of a finite number of psd cones is also symmetric. Cones of this type are used in semidefinite
programming (SDP).

It might seem at first that restricting attention to products of cones is a big limitation, since it implies
that each cone must involve a different set of variables. However, this apparent limitation can be overcome
by “splitting” variables into two or more copies. For example, if we wish to impose the second-order conic
constraints t ≥ ||

(
x
y

)
||2 and s ≥ ||

(
x
z

)
||2 simultaneously, where the vector x is involved in both constraints, we

replace the vector x with two vectors, say x′ and x′′, add the constraints t ≥ ||
(
x′

y

)
||2 and s ≥ ||

(
x′′

z

)
||2, and add

the (linear) constraint x′ = x′′.
It turns out that SDP generalises SOCP, which in turn generalises LP. Indeed, the second-order conic

constraint t ≥ ||x||2 is equivalent to (
t xT

x tIn

)
∈ Sn+1

+ ,

where In is the identity matrix of order n; and the non-negativity constraint t ≥ 0 is implied by t ≥ ||x||2 together
with xi = 0 for i = 1, . . . , n. (Geometrically speaking, the non-negative cone is a “slice” of the second-order cone,
which is in turn a “slice” of the psd cone.)

In the case of LP and SOCP, it is usual to view the variables as being arranged in a vector, which is usually
denoted by x. In the case of SDP, however, it is usual to view them as being arranged in a square symmetric
matrix, which is usually denoted by X. Accordingly, people sometimes refer to vector variables and matrix
variables. When X is a matrix variable, the cone C is to be thought of as a subset of Sn rather than Rn.

To help the reader, we now give a couple of examples.

Example 2.1. Consider the following SOCP:

sup

{
x1 : x1 − x2 = 0, x3 + x4 = 2, x3 ≥

√
x21 + x22, x4 ≥ 0

}
.
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The largest value that x3 can take is 2, which means that x21 + x22 cannot exceed 2. The optimal solution is
therefore x∗1 = x∗2 =

√
2, x∗3 = 2 and x∗4 = 0, with a profit of

√
2.

Example 2.2. Consider the following SDP:

sup

{
X12 +X21 : X11 = 1, X22 = 3, X =

(
X11 X12

X21 X22

)
∈ S2+

}
.

Note that the determinant of X is X11X22 −X12X21, and this must be non-negative. Since X11X22 must equal
3, and X12 must equal X21, the profit is maximised by setting X12 and X21 to

√
3. This yields a profit of 2

√
3.

The above examples show that an SOCP or SDP can have a unique optimal solution in which one or more
variables take irrational values. The following example shows that it is also possible for the supremum not to
be attainable in an SOCP:

Example 2.3. Consider the following SOCP:

sup

{
x1 − x3 : x2 = 1, x3 ≥

√
x21 + x22

}
.

This is equivalent to:

sup

{
x1 −

√
x21 + 1 : x1 ∈ R

}
.

We can bring the profit arbitrarily close to 0 (by making x1 arbitrarily large), but we cannot actually reach 0.

In a similar way, it can be shown that the supremum may not be attainable in an SDP.

2.3. Duality

There is an elegant duality theory for CO, which can be viewed as a generalisation of LP duality. First,
assume that we are working with a vector variable x ∈ Rn. Associated with any cone C ⊂ Rn we can define the
dual (a.k.a. polar) cone

C∗ :=
{
x ∈ Rn : yTx ≥ 0 (∀y ∈ C)

}
.

If we are dealing with a matrix variable X ∈ Sn instead, and a cone C ⊂ Sn, then the definition of the polar
cone must be modified slightly to:

C∗ := {X ∈ Sn : X • Y ≥ 0 (∀Y ∈ C)} ,

where X • Y denotes the matrix inner product
∑n

i=1

∑n
j=1XijYij , which is also equal to tr(Y TX).

It is easy to show that (a) the dual of a proper cone is proper, (b) if a cone is proper, then it is the dual
of its dual, (c) the dual of the completely positive cone is the copositive cone (and vice-versa), and (d) the
non-negative, second-order and psd cones are self-dual. (This is a property shared by all symmetric cones.)

The following fact can be shown, e.g., by an application of Lagrangian relaxation:

Theorem 2.4 (Weak Duality for CO). For any proper cone C ⊂ Rn, and any c ∈ Rn, b ∈ Rm and A ∈ Rm×n,
we have:

sup
{
cTx : Ax = b, x ∈ C

}
≤ inf

{
bT y : AT y − c ∈ C∗, y ∈ Rm

}
.
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Specialised to the case of LP, Theorem 2.4 reduces to the well-known fact that

max
{
cTx : Ax = b, x ∈ Rn

+

}
≤ min

{
bT y : AT y ≥ c, y ∈ Rm

}
.

In that case, we have strong duality, i.e., the inequality can be changed to an equation. For CO in general,
however, strong duality is not guaranteed. Fortunately, it is guaranteed to hold under certain conditions that
commonly occur in practice. For example, it holds if the Slater condition is satisfied, i.e., if there is a feasible
x that lies in the interior of C (see, e.g., [14, 73]).

Even when duality is strong, however, some care must be taken when interpreting the dual. For example,
although the optimal dual solution y∗ provides meaningful dual prices, the components of the vector AT y∗ − c
are not always meaningful “reduced costs” (see, e.g., Helmberg [43]). Moreover, concepts such as degeneracy,
dual degeneracy and complementary slackness must be handled carefully (e.g., Alizadeh et al. [3]).

3. Algorithms and complexity

Now we turn our attention to algorithms for solving CO problems. To begin, it is helpful to recall the following
facts about LP:

1. The simplex method (Dantzig [22, 23]) is typically very fast in practice, but takes exponential time in the
worst case.

2. The ellipsoid method (Khachiyan [51]) runs in polynomial time in the worst case, but is too slow to be of
practical use.

3. There exist various interior-point methods (IPMs) that run in polynomial time in the worst case, and tend
to be reasonably fast in practice (see, e.g., Gondzio [37]).

The situation for CO is a bit more complicated:

1. There is no known effective analogue of the simplex method for general CO, nor indeed for SOCP or SDP
in particular.

2. The ellipsoid method can solve CO in polynomial time (Grötschel et al. [39]), but only to fixed precision,
and only when two technical conditions are met: (i) it must be possible to test in polynomial time whether
a given rational point lies in the given cone, and (ii) the feasible region must be explicitly bounded (e.g.,
by the addition of a constraint which forces the solution to lie inside a ball of known centre and radius).
Unfortunately, as in the case of LP, this result is of little use in practice.

3. There exist IPMs that can solve SOCPs and SDPs in polynomial time, but again, only to fixed precision
and only when the feasible region is bounded (Nesterov and Nemirovsky [73]). The best of these IPMs are
now fast enough to be of practical use.

To see why COs can only be solved to fixed precision, recall from Section 2.2 that even SOCPs and SDPs
can have irrational solutions. Such solutions cannot be represented exactly with a finite number of bits. (For a
discussion on how one might represent solutions exactly as algebraic numbers, see Nie et al. [75].) One conse-
quence of this limited precision is that even testing feasibility of an SOCP or SDP is a non-trivial problem, if
one wants a precise answer. In fact, it is not known whether it can be done in polynomial time; see Ramana
[84] for a discussion.

The other technical condition mentioned above is that the feasible region must be explicitly bounded. To see
why, consider the following constraints:

x3 − x2 = 1, x4 − 2x2 = 1, x3 ≥
√
x21 + x22.

These can be shown to imply x4 ≥ x21. Chaining such constraints together, we can get x7 ≥ x24, x10 ≥ x27, and

so on. At the end, we get x3p+1 ≥ x
(2p)
1 . If we add the constraint x1 = 2, we find that x3p+1 ≥ 2(2

p). So there
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exist SOCPs such that it takes an exponential number of bits to represent any feasible solution. An analogous
example for SDPs is given in Alizadeh [1]. Requiring the feasible region to lie inside a ball eliminates such
“pathological” SOCP and SDP instances.

As for the question of testing membership of a cone, testing whether a given x∗ ∈ Q lies in the non-negative
cone is trivial, and so is testing whether a given rational point (x∗, t∗) lies in the second-order cone. Less
obviously, one can also check whether a given rational matrix X∗ ∈ Sn belongs to Sn+ in polynomial time, via a
modified form of Gaussian elimination [39]. (In practice, one can just compute the minimum eigenvalue of X∗,
to some desired precision, and check whether it is non-negative.)

On the other hand, testing whether a rational matrix is completely positive is NP-hard [72]. (By duality,
testing copositivity is co-NP-hard.) In fact, Burer [16] showed that any mixed 0–1 linear or quadratic program
can be transformed into a completely positive program, i.e., a conic optimisation problem over the completely
positive cone. As a result, completely positive programming is NP-hard in the strong sense. (By duality,
copositive programming is co-NP-hard in the strong sense.) For a survey of results on completely positive and
copositive programming, see Burer [17].

At the end of the previous subsection, we mentioned that dual information for SOCP or SDP, such as reduced
costs and dual prices, must be interpreted with care. The lack of a simplex method leads to some other issues.
For example:

• It can be hard to exploit sparsity in the constraint matrix (e.g., Benson et al. [10]).
• It is not trivial to re-optimise SOCPs and SDPs efficiently after, e.g., adding a constraint or variable (e.g.,

[69, 92]). In other words, it is difficult to do “warm starts”.

Work on these issues is ongoing within the CO community.
We now wish to mention two other remarkable papers. Ben-Tal and Nemirovski [12] proved that one can

“simulate” an SOCP with n variables to arbitrary precision ε using an LP with O(n log(1/ε)) variables. This
means that one can solve an SOCP approximately by solving a single LP of reasonable size. Conversely, Braun
et al. [15] proved that one cannot simulate SDPs by LPs or SOCPs in an analogous way, thereby proving that
SDP is, in some sense, fundamentally more powerful than LP or SOCP.

Finally, we mention that there exist several other algorithms for solving SDPs, such as the spectral bundle
method (Helmberg and Rendl [46]), the boundary point method (Povh et al. [82]), augmented Lagrangian
methods [67, 96], cutting-plane methods (Krishnan and Mitchell [52]), and a method that works directly with
the Cholesky factorisation (Burer and Monteiro [19]).

4. Applications of SOCP

In this section, we give some examples of the kinds of problems that can be tackled using SOCP. For additional
examples, see, e.g., [2, 53, 62, 73].

4.1. Problems involving convex quadratic functions

SOCP includes as a special case all convex nonlinear programs involving quadratic functions. For brevity, we
give just two examples, one from finance and one from statistics.

In the famous portfolio selection model of Markowitz [68], there are n stocks, for which we have a vector
r ∈ Rn of expected returns and a psd matrix Q ∈ Rn×n of covariances. We have a vector x ∈ Rn

+ of decision
variables, where xi represents the proportion invested in stock i. The expected return of a portfolio x is then
rTx and the variance (a measure of risk) is xTQx. Minimising risk subject to a lower bound L on the expected
return is then equivalent to the following convex quadratic program:

min
{
xTQx : rTx ≥ L, ||x||1 = 1, x ∈ Rn

+

}
.
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If we compute the Cholesky factorisation Q = ATA, then the objective function is equivalent to ||Ax||22. So we
can reformulate the problem as:

min
{
t : t ≥ ||y||2, y = Ax, rTx ≥ L, ||x||1 = 1, x ∈ Rn

+, y ∈ Rn, t ∈ R+

}
.

This is an SOCP. Similarly, the problem of maximising expected return subject to an upper bound U on the
variance can be modelled as the SOCP:

max
{
rTx : t ≥ ||y||2, y = Ax, t ≤

√
U, ||x||1 = 1, x ∈ Rn

+, y ∈ Rn, t ∈ R+

}
.

In statistical estimation, one often encounters problems of the form:

min


m∑
j=1

wj ||yj − x||22 : x ∈ S

 ,

where

• y1, . . . , ym are observations of a random n-vector with unknown mean;
• x is an estimate of the mean (to be determined);
• S ⊂ Rn is a convex set representing some prior information on x;
• wj is the weight (importance) given to the jth observation;
• the objective is to minimise a weighted sum of squared residuals.

By introducing a new variable z ∈ R+ and new vectors of variables u ∈ Rm
+ and t1, . . . , tm ∈ Rm, we can

reformulate the estimation problem as:

min z

s.t. z ≥ ||u||2
uj ≥ ||tj ||2 (j = 1, . . . ,m)

tj =
√
wj(y

j − x) (j = 1, . . . ,m)

x ∈ S
(z, u, t) ∈ R1+m+m×n

+ .

If S is a polyhedron, the reformulated problem is an SOCP. If S is defined by a mixture of linear and convex
quadratic constraints, the problem can be easily converted into an SOCP.

4.2. Problems involving hyperbolic functions

Now recall from Section 2.1 that the hyperbola is a cross-section of the ice-cream cone. More precisely, the
convex set {

(x, t) ∈ R2
+ × R : t ≥ ||x||2, x2 = 1

}
is easily shown to be an affine image of the convex set{

(x, y) ∈ R2
+ : y ≥ 1/x

}
,

the boundary of which is a hyperbola. For this reason, one can easily force the feasible region to be a hyperbola
via SOCP.
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Note that the function y ≥ 1/x is equivalent to xy ≥ 1. More generally, a hyperbolic function is any function
of the form t1t2 ≥ ||Ax||2, where t1, t2 ∈ R+ and x ∈ Rn are variables, and A is a real matrix with n columns.
It is shown in [62] that any convex nonlinear program involving a combination of linear, convex quadratic and
hyperbolic functions can be converted to an SOCP. (The feasible region of a constraint involving a hyperbolic
function is sometimes called a hyperboloid.)

Here is a simple example of an OR problem that involves hyperbolic functions. The classic inventory control
model of Harris [41] is

min
{
hx/2 + cd/x : x ∈ R+

}
,

where x is the order quantity (to be determined), h is the annual cost of holding one unit in stock, c is the charge
for a delivery, and d is the annual demand. Harris solved this problem by calculus, and the optimal value of x
is the well-known economic order quantity (EOQ). Ziegler [99] considered the following multi-item extension of
this model:

min

n∑
i=1

(hixi/2 + cidi/xi)

s.t.

n∑
i=1

bixi ≤ b0

`i ≤ xi ≤ ui (i = 1, . . . , n).

Here, for a given product i, xi represent the order quantity, hi is the annual holding cost, ci is the delivery
charge, di is the annual demand, bi is the space occupied by one unit, and `i and ui are lower and upper bounds
on the order quantity. The constant b0 represents the storage space available.

Kuo and Mittelmann [53] showed that this problem can be transformed into an SOCP as follows. Define new
variables si and ti satisfying:

xi = (si − ti)/2
1/xi = (si + ti)/2.

Then model the problem as:

min
∑n

i=1 ((hi/2 + cidi)si + (hi/2− cidi)ti)
s.t.

∑n
i=1 bi(si − ti) ≤ 2b0

2`i ≤ si − ti ≤ 2ui (i = 1, . . . , n)

si ≥
√
t2i + 2 (i = 1, . . . , n)

s, t ∈ Rn.

4.3. Problems involving norms

SOCP can also be used to model problems involving Euclidean or other norms. For brevity, we give three
examples.

The first example concerns facility location. Suppose we have n facilities in the plane and wish to locate a new
facility so as to minimise the sum of the weighted distances from the existing facilities. This can be modelled
as:

min
∑n

i=1 wi

√
(xi − x̃)2 + (yi − ỹ)2

s.t. (x̃, ỹ) ∈ R2,
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where (xi, yi) are the co-ordinates of the ith existing facility, and (x̃, ỹ) are the co-ordinates of the new facility.
(This problem is sometimes called the Fermat-Weber problem.) Defining new variables d1, . . . , dn, representing
the Euclidean distance from the new facility to each of the existing facilities, the problem can be converted into
the following SOCP:

min

n∑
i=1

widi

s.t. di ≥
√
u2i + v2i (i = 1, . . . , n)

ui = xi − x̃ (i = 1, . . . , n)

vi = yi − ỹ (i = 1, . . . , n)

(x̃, ỹ) ∈ R2

u, v, d ∈ Rn.

Moreover, SOCP can also easily handle extensions of this problem in which there are linear, convex quadratic
and/or hyperbolic constraints on the co-ordinates x̃ and ỹ and/or the distances di.

Our second example is a modified version of the Markowitz portfolio selection model (see Sect. 4.1). Suppose
we wish to maximise expected return subject to a chance constraint, which states that the probability of the
return not exceeding some quantity α ∈ R must be less than some small quantity β > 0. (For example, we may
require that there is only a 0.1% chance of losing one million euros or more.) The chance constraint can be
written as:

rTx+ Φ−1(β)
√
xTQx ≥ α,

where Φ is the Cumulative Distribution Function of the Normal distribution. Using again the Cholesky
factorisation Q = AAT , the constraint can be written as:

rTx+ Φ−1(β)||Ax||2 ≥ α.

To handle this with SOCP, we just add new variables y ∈ Rn and z ∈ R, and add the constraints:

y = Ax

z ≥ ||y||2
rTx+ Φ−1(β)z ≥ α.

(Actually, this transformation only works when Φ−1(β) < 0. Fortunately, this is always the case in practice,
since β is always less than 1/2.)

Our third and final example comes from robust optimisation. Consider the LP

min
{
cTx : Ax ≤ b, x ∈ Rn

+

}
,

and suppose that the precise values of the components of the matrix A are uncertain. Ben-Tal and Nemirovski
[11] suggest writing the LP as:

min
{
cTx : aTi x ≤ bi (i = 1, . . . ,m), x ∈ Rn

+

}
,
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and then considering the case in which, for i = 1, . . . ,m, the vector ai is known to lie inside the ellipsoid{
âi +Qiu : ||u||2 ≤ 1

}
,

where the vectors âi and the matrices Qi are known. They then show that the problem of minimising the
worst-case cost, the so-called robust counterpart of the LP, can be formulated as:

min
{
cTx : âTi x+ ||Qix||2 ≤ bi (i = 1, . . . ,m), x ∈ Rn

+

}
.

This is again easy to handle via SOCP.

5. Applications of SDP

Although SOCP is a useful modelling tool, SDP is much more powerful. In this section, we give just a
few examples of the kinds of problems that can be tackled using SDP. For additional examples, see, e.g.,
[4, 44, 73, 93, 94, 97, 98].

5.1. Problems involving special types of matrices

Covariance and correlation matrices play a fundamental role in statistics, probability and (as we saw in
Sects. 4.1 and 4.3) finance. It is well known that a real symmetric matrix is a covariance matrix if and only if
it is psd, and a correlation matrix if and only if, in addition, it has 1s on the main diagonal. This means that
one can use SDP to solve various optimisation problems involving such matrices, such as:

• The positive semidefinite matrix completion problem: given a matrix with missing entries, check if it can
be completed to a covariance (or corrrelation) matrix (see, e.g., Johnson [50]).

• The nearest correlation matrix problem: given a matrix that is not a correlation matrix, find a correlation
matrix that is as close as possible, where “close” is measured according to, e.g., an L1, L2 or L∞ norm
(see, e.g., Higham [47]).

Somewhat less well known are Euclidean distance (ED) matrices. A matrix M ∈ Sn is an ED matrix if and
only if there exist points x1, . . . , xn ∈ Rn such that, for i, j = 1, . . . , n, Mij = ||xi − xj ||22, i.e., the square of the
Euclidean distance between xi and xj . A classic result of Schoenberg [87] states that a given matrix M ∈ Sn is
an ED matrix if and only if the symmetric matrix M ′ belongs to Sn−1+ , where:

M ′ii = Mi,n (i = 1, . . . , n− 1)

M ′ij =
1

2
(Min +Mjn −Mij) (1 ≤ i < j ≤ n− 1)

Laurent [55] observes that one can therefore also use SDP to solve various optimisation problems involving ED
matrices. This includes problems in, e.g., computational biology (such as molecular conformation problems) and
engineering (such as wireless sensor network localisation problems); see Liberti et al. [61] for a survey.

5.2. Combinatorial optimisation

SDP has proven to be a remarkably useful tool for constructing strong bounds for various combinatorial
optimisation problems. For brevity, we consider just two examples: the stable set and max-cut problems. For
other examples, see, e.g., [1, 34, 35, 60, 64, 86, 98].

Let G = (V,E) be an undirected graph. A set S ⊂ V is called stable if no two nodes in S are adjacent in
G. The stability number, denoted by α(G), is the maximum cardinality of a stable set in G. The stable set
problem calls for a stable set of maximum cardinality. It is not only NP-hard in the strong sense, but hard to
approximate [42].
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A simple 0–1 LP formulation of the stable set problem is:

max
∑
i∈V

xi

s.t. xi + xj ≤ 1({i, j} ∈ E) (5.1)

x ∈ {0, 1}n.

Unfortunately, the LP relaxation of this formulation yields an extremely weak upper bound, since one can
just set every variable to 1/2. Padberg [77] noted that one can strengthen the LP relaxation by replacing the
constraints (5.1) with clique inequalities of the form

∑
i∈C xi ≤ 1, where C is a maximal clique (set of pairwise-

adjacent nodes) in G. Unfortunately, the number of cliques is in general exponential in |V |. Even worse, the
separation problem for the clique inequalities (i.e., the problem of detecting when an LP solution violates a
clique inequality) is NP-hard (e.g., Grötschel et al. [39]).

In his seminal paper, Lovász [63] defined a new upper bound for the stable set problem, which he called θ(G).
Grötschel et al. [38, 39] showed that θ(G) can be computed by solving an SDP. One way to do it is as follows.
We begin by formulating the stable set problem as the following continuous quadratic optimisation problem:

max
∑
i∈V

xi

s.t. x2i − xi = 0(i ∈ V ) (5.2)

xixj = 0({i, j} ∈ E) (5.3)

x ∈ R|V |.

Now we introduce the matrix

Y =

(
1
x

)(
1
x

)T

=

(
1 xT

x xxT

)
,

and note that Y should be psd and have rank 1. We then replace xxT with a matrix variable X, and replace
the quadratic terms in (5.2) and (5.3) with the corresponding entries in X. This yields the following alternative
formulation of the stable set problem:

max
∑
i∈V

xi

s.t. Xii − xi = 0(i ∈ V ) (5.4)

Xij = 0({i, j} ∈ E) (5.5)

Y =

(
1 xT

x X

)
∈ Sn+1

+ (5.6)

rank(Y ) = 1.

Dropping the rank constraint, which is non-convex, we obtain the desired SDP relaxation. The corresponding
upper bound is θ(G).

The following result is due to Grötschel et al. [39]. To help the reader, we give a short proof here.

Proposition 5.1. If (x,X) ∈ Rn × Sn satisfies (5.4)–(5.6), then x satisfies all clique inequalities.
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Proof. Given any clique C ⊆ V , let v(C) ∈ {0, 1}n be a vector with a “1” in position i if and only if node i
belongs to C. From constraint (5.6) and the first definition of psd-ness in Section 2.1, we have

(
−1
v(C)

)T (
1 xT

x X

)(
−1
v(C)

)
≥ 0,

or, equivalently,

2
∑
i∈C

xi −
∑
i∈C

∑
j∈C

Xij ≤ 1. (5.7)

Now, due to constraints (5.4) and (5.5), we have Xii = xi for all i ∈ C and Xij = 0 for all {i, j} ⊆ C. Thus,
(5.7) reduces to 2

∑
i∈C xi −

∑
i∈C xi ≤ 1, which is equivalent to the clique inequality on C.

Although easy to prove, this result is remarkable, given the above-mentioned fact that clique separation is NP-
hard. Indeed, it is a good illustration of the power of SDP relative to LP. Intuitively, the extra power comes
from the fact that imposing psd-ness is equivalent to imposing an infinite number of linear inequalities.

Now we move on to max-cut. Given a graph G = (V,E) and an arbitrary set S ⊆ V , the set

{
{i, j} ∈ E : i ∈ S, j ∈ V \ S

}
is called an edge cutset or simply cut. Suppose we are also given a vector w ∈ R|E| of edge weights. The max-cut
problem calls for a cut of maximum total weight. The problem is NP-hard in the strong sense (Garey et al.
[31]).

A simple 0–1 LP formulation of max-cut is:

max
∑
e∈E

wexe

s.t. xij + xik + xjk ≤ 2 ({i, j, k} ⊂ V ) (5.8)

xik + xjk ≥ xij ({i, j} ⊂ V, k ∈ V \ {i, j}) (5.9)

xij ∈ {0, 1} ({i, j} ⊂ V ).

Unfortunately, the LP relaxation can be rather weak. Poljak and Tuza [81] showed that, even when w ≥ 0, the
upper bound from the relaxation can approach twice the weight of the optimal cut.

An SDP relaxation of the max-cut problem was proposed by Schrijver (unpublished), and then studied in,
e.g., [26, 36, 57, 79]. For each i ∈ V , let zi be a variable taking the value 1 if i ∈ S, and −1 otherwise. Then the
max-cut problem can be formulated as:

max
1

2

∑
{i,j}∈E

(1− zizj)

s.t. z2i = 1 (i ∈ V )

z ∈ R|V |.
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The corresponding SDP relaxation is:

max
1

2

∑
{i,j}∈E

(1− Zij)

s.t. Zii = 1 (i ∈ V )

Z ∈ Sn+.

In a major breakthrough, Goemans and Williamson [36] proved that, when w ≥ 0, the upper bound from
the SDP is no more than 1.131 times the weight of the optimal cut. (They did this by showing how to compute
a cut whose weight is at least 0.878 times the SDP bound.)

Observe that the feasible region to the SDP can be projected into x-space via the identities Zij = 1− 2xij . It
turns out that the projection “wraps” rather closely around the convex hull of cut vectors. For example, from a
consideration of 3-by-3 principal submatrices of Z, it can be shown that a point in the projection cannot violate
any of the triangle inequalities (5.8) and (5.9) by more than 1/4. This provides a partial explanation for the
strength of the SDP bound; see, e.g., [8, 30, 57, 58] for more details.

In a similar way, one can construct SDP relaxations of any problem that can be formulated as a 0–1 LP. In
fact, it is possible to construct entire hierarchies of SDP relaxations; see, e.g., [56, 59, 65, 85, 89]. Moreover,
SDP has been successfully applied to many 0–1 quadratic programs; see [45, 60, 80, 91] for early work on the
subject, and [24, 95] for some recent applications.

5.3. Non-convex quadratic (and polynomial) optimisation

Finally, we consider general quadratic optimisation problems, and their natural generalisation, polynomial
optimisation problems.

A quadratically constrained quadratic program (QCQP) is a problem of the form:

inf xTQ0x+ c0 · x
s.t. xTQkx+ ck · x ≤ bj(k = 1, . . . ,m)

x ∈ Rn,

where Qk ∈ Sn, ck ∈ Rn and bk ∈ R for k = 0, . . . ,m. If Q0, . . . , Qm are all psd, then the QCQP is convex and
can be converted into an SOCP (see Sect. 4.1). In general, however, QCQP is NP-hard in the strong sense.
(Indeed, this follows from the fact that the stable set and max-cut problems can be formulated as QCQPs; see
the previous subsection). Moreover, non-convex QCQPs arise in many contexts besides OR, including economics
and finance (Horst et al. [49]) and signal processing (Luo et al. [66]).

Ramana [83] proposed the following natural SDP relaxation of QCQP:

inf Q0 •X + c0 · x
s.t. Qk •X + ck · x ≤ bk (k = 1, . . . ,m)(

1 xT

x X

)
∈ S+n+1.

The derivation of this relaxation is similar to the one for the stable set problem described in the previous
subsection. (Earlier, Shor [90] derived essentially the same relaxation, but in dual form.)

A hierarchy of SDP relaxations for QCQP, similar to the one of Lovász and Schrijver for 0–1 LPs, was
proposed by Fujie and Kojima [29]. Some results on the quality of the SDP bound, similar to the result of
Goemans and Williamson [36], are surveyed in Nesterov et al. [74].



1102 A.N. LETCHFORD AND A.J. PARKES

In practice, the vector x is usually constrained to be non-negative, or even to lie in a hypercube. This fact
can be exploited to derive stronger SDP relaxations; see, e.g., [5, 7, 9, 18, 28]. The best such relaxations are
shown by Anstreicher [6] to dominate many other known relaxations. There is also evidence that SDP-based
algorithms for QCQP can be effective in practice; e.g., [5, 20, 66].

A natural generalisation of QCQP is polynomial optimisation, in which the objective and constraint functions
can be arbitrary polynomials. Polynomial optimisation is a fascinating inter-disciplinary field, with relevance
not only to OR, but also to statistics, computer science, engineering, and branches of pure mathematics such as
algebraic geometry, commutative algebra and moment theory [4, 25]. Interesting and powerful SDP relaxations
and hierarchies for polynomial optimisation have been proposed by, e.g., Lasserre [54] and Parrilo [78]. However,
the complexity of solving the SDPs in the hierarchies is still not fully settled; see O’Donnell [76].

6. Software

Finally, we mention some of the available software systems. We cover modelling interfaces in Section 6.1 and
solvers in Section 6.2. For brevity, we do not cover all systems, and refer the reader to Mittelmann [70] for a
more comprehensive survey. (Readers may also find the “Decision Tree for Optimization Software”1 useful.)

6.1. Modelling interfaces

We are aware of the following five modelling interface systems:

• CVX2 is an influential and long-established system for conic programming based on MatLab. The CVX

website states “CVX is a popular modeling framework for disciplined convex programming that... turns
MatLab into a modeling language, allowing constraints and objectives to be specified using standard
MatLab syntax.”

• CVXOPT3 is similar to CVX but based on Python. It can be used within the open-source mathematics software
system SageMath.

• JuliaOpt4 now contains a modelling language called JuMP.
• YALMIP5 is also based on MatLab, and acts as a convenient front-end to many solvers.
• PICOS6 provides a front-end to many solvers and is based on Python. It also does some automatic refor-

mulation (e.g., it has a function that “replaces quadratic constraints by equivalent second order cone
constraints”).

We remark that, although using modelling languages makes it much easier to model and solve problems, there
is usually a computational overhead, in terms of both time and memory.

6.2. CO solvers

Now we list some of the commonly-used solvers. (A more comprehensive list can be found on the YALMIP
site.7)

• CSDP8 is a C library for solving SDPs using an interior-point method. It is now part of COIN-OR.9

• ECOS10 is an SOCP solver designed for embedded systems. It is written using less than a thousand lines
of C code, and it can also handle constraints involving the exponential cone.

1http://plato.asu.edu/guide.html
2http://cvxr.com/
3http://cvxopt.org/
4http://www.juliaopt.org
5http://yalmip.github.io/allsolvers/
6http://picos.zib.de
7https://yalmip.github.io/allsolvers/
8https://projects.coin-or.org/Csdp/wiki/CSDPUsed
9https://projects.coin-or.org/

10https://www.embotech.com/ECOS

http://plato.asu.edu/guide.html
http://cvxr.com/
http://cvxopt.org/
http://www.juliaopt.org
http://yalmip.github.io/allsolvers/
http://picos.zib.de
https://yalmip.github.io/allsolvers/
https://projects.coin-or.org/Csdp/wiki/CSDPUsed
https://projects.coin-or.org/
https://www.embotech.com/ECOS
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• MOSEK11 has supported both SOCP and SDP since version 7.0. A recent blog entry12 reports on the solution
of an SOCP with over 0.5 million variables (on a powerful parallel processor).

• PENNON13 is an implementation of a generalized augmented Lagrangian algorithm for SDPs. It can solve
SDPs with general convex objective and constraint functions.

• SDPA14 is a collection of C++ routines for SDP, based on a primal-dual interior-point method. It is designed
to exploit sparsity in the constraints.

• SDPLR15 is a C library for SDP, based on the augmented Lagrangian method.
• SDPT316 is a library of MatLab routines that can solve SOCPs, SDPs, and various other problems. An

infeasible path following algorithm is used.
• SeDuMi17 is another useful MatLab toolbox, based on the concept of “self-dual embedding”.

Finally, we mention two MatLab packages that are specifically designed for solving polynomial optimisation
problems: GloptiPoly18 and SOSTOOLS19.

7. Conclusions

In this guide, we hope to have convinced the reader that Conic Optimisation is an elegant and powerful
generalisation of standard linear programming, which allows one to capture many forms of non-linearity that
arise in practical problems. In particular, both SOCP and SDP enable one to model many convex non-linearities
arising in practice (such as convex quadratic and hyperbolic functions, and functions involving norms or eigenval-
ues); and SDP also provides good bounds and approximation algorithms for many non-convex (and NP-hard)
problems, including a wide range of combinatorial and global optimisation problems.

Moreover, software for SOCP and SDP, and CO in general, is developing rapidly. This includes not only
solvers, but also modelling languages and procedures for automatic reformulation. Hence, although CO is more
difficult to master than LP, we believe that it will soon become a standard technique for both practitioners and
researchers in optimisation, just as LP is at present.
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