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A WEAK PERTURBATION THEORY FOR APPROXIMATIONS OF

INVARIANT MEASURES IN M/G/1 MODEL

Badredine Issaadi*, Karim Abbas and Djamil Äıssani

Abstract. The calculation of the stationary distribution for a stochastic infinite matrix is generally
difficult and does not have closed form solutions, it is desirable to have simple approximations converg-
ing rapidly to this distribution. In this paper, we use the weak perturbation theory to establish analytic
error bounds for the M/G/1 model. Numerical examples are carried out to illustrate the quality of the
obtained error bounds.
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1. Introduction

Queueing models are more suitable for representing many practical problems. Specifically, the queueing mod-
els are used for the evaluation of performance measures of communication, computer, and manufacturing systems
[26]. The evaluation of performance measures of queueing models has been widely studied in the literature. Par-
ticularly, computing the stationary distribution associated with the queueing model is a challenging problem,
because all other important performance measures of the model can be obtained from the stationary distribu-
tion. A variety of approaches have been proposed in the literature for approximately or indirectly solving this
stationary distribution. The predominant approach is to obtain either the generating function of the stationary
distribution or an analytical expression for the stationary distribution containing a Laplace-Stieltjes transform;
see, for example [1]. Moreover, when there an infinite buffers for waiting customers in the system, the evaluation
of performance measures of such systems becomes more challenging and sometimes even problematic, because
the memory requirements and computation time of the used approaches grow exponentially with the number
of buffers in the system.

There are many methods for approximating stationary distribution of Markov chain with denumerable-state
space. Especially, the well-known technique applicable for limiting model sizes is state truncation [22]. Indeed,
approximating the performance measures of Markov chain with denumerable-state space by those corresponding
to Markov chains with a finite-state space is an interesting problem. Computationally, when we solve for the
stationary distribution of a Markov chain with denumerable-state space, the transition probability matrix of the
Markov chain has to be truncated in some way into a finite matrix. Then we will use the stationary distribution
of the truncated Markov chain as an approximation to that of the finite-state space, where we expect that
as the truncation size increases to infinity, the solution for the truncated Markov chain converges to that of
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the Markov chain with denumerable-state space. While for many application problems the justification of the
convergence could be made by the physical meanings of the finite and the countable state Markov chains, it
is not always easy to formally justify this claim. In this paper, we develop an algorithmic approach based on
the weak perturbation theory for constructing reliable approximations for performance measures of queueing
models. Specifically, we investigate if the perturbation analysis and the truncation estimation of the state-space
of Markov chains can be integrated into one framework.

Let P , a stochastic infinite matrix, irreducible and positive recurrent, then it admits a unique stationary
distribution π, the calculation of this distribution is generally difficult if not impossible. Truncation of the state
space then becomes necessary, i.e. one solution is to approach P by a finite stochastic matrix Pk, where we
assume that Pk has unique stationary distribution, denoted by πk. The advantage of using finite state space
Markov chains lies in the simplicity of the computation of stationary distributions, so that computational
procedures such as direct methods based on Gaussian elimination, iterative methods such as Gauss-Seidel
and decompositional methods are to be used. The question about the effect of switching from P to Pk on the
stationary behavior is expressed by π−πk, the difference between the stationary distributions. More specifically,
let ‖.‖TV denote the total variation norm, then the above problem can be phrased as follows: How to choose
the threshold k such that ‖π − πk‖TV (the distance between stationary probabilities of the truncated model
and that of the main model) be less than ε, for arbitrarily small ε? Finding a such bounds is of practicable
importance, which enables one to determine the needed threshold size.

Convergence proofs when the truncation size tends to infinity have been investigated by Sarymsakov [19]
and are crystallized most notably by Seneta [20, 21]. The existence of the stationary distribution πk has been
studied for various types of matrices Pk, in particular by Seneta [22, 23]. Most of their results are included
in a paper by Gibson and Seneta [7]. Wolf [29] was focused in particular on the approximation of stationary
distribution of an infinite matrix, irreducible, recurrent positive, by the stationary distributions of finite matrices,
he examines four types of finite matrices. For instance, Heyman [10] provided a probabilistic treatment of the
problem. Kalashnikov and Rachev [12] have also studied the problem of the approximation of an infinite Markov
chain, the main part of their work is oriented towards the uniform approximation of the initial chain by finite
chains constructed by augmentation of the first column. Simonot [25] was examine the case of an infinite
irreducible stochastic matrix, dominated by stochastically monotone chains, the rate of convergence of πk to π
was derived in terms of Foster-Lyapounov condition. Tweedie [27] provided simple error bound in the case of
geometrically ergodic chains, stochastically monotone chains, and those dominated by stochastically monotone
chains. Moreover, a computable bounds are obtained for polynomially and geometrically ergodic chains by Liu
[15]. Recently, Hervé and Ledoux [9] have provided explicit connections between the V -geometric ergodicity
of P and that of Pk approximating P . A special attention is paid to obtain an efficient way to specify the
convergence rate for P from that of Pk and conversely. Moreover, explicit bounds are obtained for the total
variation distance between πk and π.

The classical model M/G/1 queue is used to represent a large number of real-life computer and networking
applications. For example, M/G/1 queues have been applied to evaluate the performance of devices such as
volumes in a storage subsystem [3], web servers [18], or nodes in an optical ring network [2]. The contribution
of our paper is as follows. We are interested in computing the error bound of the stationary queue length
distribution of M/G/1 queueing model through finite truncation of some buffers, provided their stability holds.
It is then natural to approximate the stationary distribution of M/G/1 queueing model through truncating some
buffers. We may expect that such a truncation well approximates the original model as the truncation level (or
size) becomes large. Therefore, we use the weak perturbation theory [9]. More precisely, we are interested in the
perturbation of the structure of the transition probability matrix (which is not a parametric perturbation). And
we analyzed the effect of the perturbation of the size buffer (i.e. k which is the size of the transition probability
matrix) on the stationary characteristics of the M/G/1 model. Note that the change in the size buffer (k) is not
small enough. The approach presented in this paper is a transform-free approach as it avoids the use Laplace
transforms and/or numerical inversion techniques, which are predominantly used in the literature.

Indeed the stationary distribution of the M/G/1 queueing model can be found by using the well-known
Pollaczek-Khinchine formula [8]. This formula involves the use of Laplace transforms. However, if we assume
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the service time distribution is a heavy-tailed distribution, then its stationary distribution cannot be easily
computed, because Laplace transforms of such distributions oftentimes do not have an analytic closed form.
This is, in particular, the case for the Pareto and Weibull distributions. Therefore, the current analytical theory
of these systems, which use the Laplace transform of the heavy-tailed distributions, is of limited range and
difficult or even impossible to use in such cases [1]. When the stationary distribution of the M/G/1 queue
cannot be computed exactly it needs to be approximated.

The paper is organized as follows. Section 2 presents the necessary definitions and notation. Section 3 is
devoted to establish the bounds on the perturbation. Numerical examples are presented in Section 4.

2. Notations and preliminaires

In this section, we introduce necessary notations. For the basic theorems of the weak stability method, we
refer to [9]. Specifically, we take P to be the transition probability matrix on S = N, and π as an invariant or
stationary distribution for P . Let Sk = {0, . . . , k}, we are interested in procedures for approximating π using Pk,
where Pk is derived from the linear augmentation (in the last column) of the Sk × Sk ”northwest truncation”

of P . Let P̂k, k ≥ 1 be defined the associated (extended) sub-stochastic matrix of Pk on S, a typical instance

of sequence P̂k, k ≥ 1 is given by considering the extended by zeros of Pk on S (e.g. see [27]).
For any positive measure µ on S, and for any space of bounded measurable functions f = {f(x)}x∈S ∈ CS ,

we associate with each transition operator ∀k ∈ N∗ ∪ {∞}, P̂k the linear mappings:

(µP̂k)(k) =
∑
x∈S

µ(x)P̂k(x, k), (2.1)

(P̂kf)(k) =
∑
x∈S

f(x)P̂k(k, x), (2.2)

where by convention P̂∞ := P .
Consider any unbounded increasing sequence V = {V (x)}x∈S ∈ [1,+∞)S with V (0) = 1, and the associated
weighted space (B1, ‖ · ‖1) given by

B1 :=
{
f ∈ CS : ‖f‖1 = sup

x∈S
|f(x)|V (x)

−1
<∞

}
.

In the following, PV/V and each P̂kV/V are supposed to be bounded on S. Besides that, P (resp. every P̂k) is
supposed to have a stationary distribution π (resp. an invariant bounded positive measure π̂k) on S such that
π(V ) <∞ (resp. π̂k(V ) <∞), π̂k is the (extended) stationary distribution on S derived from πk the stationary
distribution of Pk on Sk. We consider the vectors 1Sk and 1S defined as follows:

∀x ∈ S, 1Sk = (1Sk(x))x∈S :=

{
1 if x ∈ Sk,

0 if x /∈ Sk,

and,

∀x ∈ S, 1S(x) := 1.

So, P̂k1Sk = 1Sk and π̂k(1Sk) = 1. Finally we assume that

lim
k→+∞

π(1Sk) = 1 and lim
k→+∞

π̂k(1S) = 1. (2.3)
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A necessary condition so that, the sequence {π̂k}k≥1 converges in total variation to π is given by: π(1Sk)− 1 =
(π − π̂k)(1Sk) and π̂k(1S)− 1 = (π̂k − π)(1S).

Next we introduce the concept of V -geometric ergodicity, see [17], for details.

Lemma 2.1. Suppose that P and P̂k are V -geometrically ergodic. Then the following conditions are holds:

1. there exist some rate ρ ∈ (0, 1) and constant C > 0 such that

∀n ≥ 0, sup
f∈B1,‖f‖1≤1

‖Pnf − π(f)1S‖1 ≤ C ρn, (V )

2. there exist some rate ρk ∈ (0, 1) and constant Ck > 0 such that

∀n ≥ 0, sup
f∈B1,‖f‖1≤1

‖P̂ n
k f − π̂k(f)1Sk‖1 ≤ Ck ρkn, (Vk)

The property (V ) is a consequence of drift inequality and conditions of irreducibility and aperiodicity of P .

Otherwise, the property (Vk) hold since the finite matrix P̂k is stochastic and 1 is the only eigenvalue of modulus

1 for P̂k, it is therefore a direct consequence of the irreducibility and aperiodicity of P̂k.
Now let define by (L(B0,B1), ‖ · ‖0,1) the space of all the bounded linear maps from B0 to B1, equipped with

its usual norm:

‖T‖0,1 = sup
{
‖Tf‖1, f ∈ B0, ‖f‖0 ≤ 1

}
, (2.4)

where (B0, ‖ · ‖0) is the Banach space of bounded measurable functions on S equipped with its usual norm:

B0 :=
{
f ∈ CS : ‖f‖0 = sup

x∈S
|f(x)| ≤ 1

}
.

The strong perturbation theory [13], requires that {P̂k}k≥1 converges to P in operator norm on B1. Unfortunately

the convergence of ‖P − P̂k‖1 to 0 is a condition quite demanding, so it is not always satisfied, even in simple
cases [5, 24, 25]. This is why we use the weak perturbation theory due to Keller and Liverani [14, 16] which
invokes the weakened convergence property

‖P̂k − P‖0,1 := sup
f∈B0,‖f‖0≤1

‖P̂kf − Pf‖1 −−−−−→
k→+∞

0. (C0,1)

Definition 2.2. For all P and P̂k defined previously, we have the following Uniform Weak Drift condition:

∃ δ ∈ (0, 1), ∃L > 0, ∀k ∈ N∗ ∪ {∞}, P̂kV ≤ δV + L1S , (UWD)

where by convention P̂∞ := P .

Hervé and Ledoux [9] have provided explicit connections between the V -geometric ergodicity of P and that

of P̂k approximating P . A special attention is paid to obtain an efficient way to specify the convergence rate
for P from that of P̂k and conversely. Moreover, explicit bounds are obtained for the total variation distance
between π̂k and π.

Reminder that the total variation distance between π̂k and π is given by

‖π̂k − π‖TV := sup
‖f‖0≤1

|π̂k(f)− π(f)|.
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The next theorem is relevant to estimate ‖π̂k − π‖TV .

Theorem 2.3 ([9]). Assume that Condition (UWD) holds. Set ∆k := ‖P̂k − P‖0,1 and A := 1 + L/(1− δ). If,

for some k ≥ 1, P̂k is V -geometrically ergodic with rate and constant (ρk, Ck) in (Vk), then

‖π̂k − π‖TV ≤ |1− π(1Sk)|+ L

1− δ

(
2Ck
ρk

+
A

ln(ρk −1)
| ln∆k|

)
∆k. (2.5)

If in addition (Vk) is satisfied for all k, then the constants Ck and ρk of (Vk) can be chosen such as, for all
k ≥ 1:

� the sequence (Ck) is bounded;
� lim sup ρk < 1.

These two non-trivial assertions derive from Keller-Liverani’s theorem (see [9]). Thus, under the assumptions
(UWD), (Vk) and (V ), then π̂k tends to π in total variation distance with the convergence speed |1− π(1Sk)|+
O(| ln∆k|∆k).

The advantage of inequality (2.5) is that it is true for every integer k ≥ 1. We have just to know Ck and ρk
(see Lem. 2.4).

Lemma 2.4 ([9]). The matrix P̂k is assumed to be V -geometrically ergodic, that is 1 is a simple eigenvalue
of the stochastic matrix Pk and is the unique eigenvalue of modulus one. Suppose that an explicit upper bound
ρ̃k ∈ (0, 1) of the second eigenvalue of Pk is known. Let any ρk be such that

ρ̃k < ρk < 1 (2.6)

and define s ≡ s(ρk) ∈ N∗ as the smallest integer such that

‖Pks − πk(·)1Sk‖1 ≤ ρks. (2.7)

Then, we obtain the following estimate

∀n ≥ 0, ‖P̂ n
k − π̂k(·)1Sk‖1 ≤ Ck ρkn ≤ Ck ρkn

with Ck :=
max0≤r≤s−1 ‖Pkr − πk(·)1Sk‖1

ρks−1
Ck :=

1− δ + 2L

(1− δ)ρ s−1k

, (2.8)

where the eigenvalue ρ̃k of Pk can be computed using any standard techniques. For example, Jacobi’s
techniques are still relevant and have led to popular and powerful algorithms, to compute the eigenvalues
of symmetric matrices. Another longstanding method that is of great significance and serves as the basis for
many algorithms is the Power iteration, e.g., Krylov methods, inverse iteration, QR-method (e.g. see [4, 6, 28]).

3. Analysis of the model

3.1. Model description

Consider an M/G/1 (FIFO,∞) queue. Customers arrive in a Poisson process with parameter λ and are served
by a single server. Let the service times of these customers be independent and identically distributed random
variables {Zn, n = 1, 2, 3, . . .} with P (Zn ≤ t) = H(t), t ≥ 0; E(Zn) = 1/µ; V(Zn) = σ2

z . We assume that Zn
is the service time of the nth customer. Let X(t) be the number of customers in the system at time t and identify
t0 = 0, t1, t2, . . . as the departure epochs of customers. As described above, at these points the remaining service
times of customers are zero. Let Xn = X(tn + 0) be the number of customers in the system soon after the nth
departure. We can show that {Xn, n = 0, 1, 2, . . .} is a Markov chain as follows.
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Let An be the number of customers arriving during Zn. With the Poisson assumption for the arrival process
we have

aj = P (An = j) =

∫ ∞
0

P (Xn = j|Zn)P (t < Zn ≤ t+ dt) (3.1)

=

∫ ∞
0

e−λt
(λt)j

j!
dH(t), j = 0, 1, 2 . . . . (3.2)

Hence {Xn, n = 0, 1, 2, . . .} is a Markov chain. Its parameter space is made up of departure points, and the
state space S is the number of customers in the system; S = {0, 1, 2, . . .}. Because of the imbedded nature of
the parameter space, it is known as an imbedded Markov chain.

Let

P (i, j) = P(Xn+1 = j|Xn = i) =

 aj if j ≥ 0, i = 0,
aj−i+1 if 1 ≤ i ≤ j + 1,
0 else.

(3.3)

The transition probability matrix P for the Markov chain is

P =



0 1 2 · · ·
0 a0 a1 a2 · · ·
1 a0 a1 a2 · · ·
2 a0 a1 · · ·
3 a0 · · ·
. . . · · ·

.

Let Sk = {0, . . . , k} for any k ≥ 1. Consider the northwest corner of the order k of the matrix P : Tk =

(p(i, j))(i,j)∈S2
k
. P being irreducible, there exists at least one line i for which

∑k
j=1 p(i, j) < 1 so that the

truncated matrix Tk is not stochastic.
From Tk we construct a stochastic matrix Pk = (pk(i, j))(i,j)∈S2

k
verifying Pk ≥ Tk, that is pk(i, j) ≥ p(i, j)

for (i, j) ∈ S2k ; this can be done as follows: The lost probability mass during the truncation of P is redistributed
on the last column of Tk, more precisely,

pk(i, j) = p(i, j) + 1k(j)
∑
`>k

p(i, `) for (i, j) ∈ S2k ,

where

1k(j) =

{
1 if j = k,

0 otherwise.

Using the probability distribution {aj , j = 0, 1, 2 . . .} defined in (3.2), we get the transition probability matrix

Pk =



0 1 2 · · · k

0 a0 a1 a2 · · · 1−
∑k−1

0 aj
1 a0 a1 a2 · · · 1−

∑k−1
0 aj

2 a0 a1 · · · 1−
∑k−2

0 aj
...

...
k 1− a0

.
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Such a matrix is generally called a linear augmentation (in the last column here) of the northwest corner
truncation of P . For other kinds of augmentations and related literature, see Seneta [22]. This system is the
same that M/G/1 queue described earlier, with the restriction that the capacity for the number of customers
in the system is k + 1. Since the state space for the imbedded Markov chain is the number in the system soon
after departure, k + 1 will not be included in the state space; Sk = {0, 1, 2, . . . , k}.

The associated (extended) sub-Markov kernel P̂k on S is defined by:

∀(i, j) ∈ S2, P̂k(i, j) :=

{
Pk(i, j) if (i, j) ∈ S2k ,

0 if (i, j) /∈ S2k .

Assume that stochastic matrix Pk has an invariant probability measure πk, then π̂k is the probability measure
on S defined by

∀x ∈ S, π̂k(x) :=

{
πk(x) if x ∈ Sk,

0 if x /∈ Sk.

3.2. Weak perturbation bounds

Consider any unbounded increasing sequence V := {V (x)}x∈S ∈ [1,+∞)S with V (0) = 1, and the associated
weighted space (B1, ‖ · ‖1) given by

B1 :=
{
f ∈ CS : ‖f‖1 = sup

x∈S
|f(x)|V (x)

−1
<∞

}
.

Specifically, for β > 1, we will choose,

V (x) = βx, for x ∈ S.

Lemma 3.1. Suppose that in the M/G/1 queueing system the following conditions holds:

(a) λE(ξ) < 1, where ξ is the service time (geometric ergodicity),

(b) ∃ θ > 0,E(eθξ) =

∫ ∞
0

eθt dH(t) <∞ (Cramér condition).

then, ∃ β0 > 1 such that

β0 = sup {β : ψ (λ (1− β)) < β} , (3.4)

where,

ψ (λ (1− β)) =

∫ ∞
0

e−(λ(1−β))x dH(x).

Proof. Let Ψ(β) = ψ (λ (1− β)). Ψ is continuous differentiable in [1, θ], so

Ψ ′(β) = λ

∫ ∞
0

x e−(λ(1−β))x dH(x),

Ψ ′′(β) = λ2
∫ ∞
0

x2 e−(λ(1−β))x dH(x).
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According to the relation between monotony and the sign of the derivative, then the function Ψ is strictly convex
in [1, θ]. Let us define the function:

Φ(β) =
Ψ(β)

β
=

1

β

∫ ∞
0

e−(λ(1−β))x dH(x).

For β = 1 we have Φ(1) = 1. Furthermore, Φ′(β) = (βΨ ′(β)− Ψ(β)) /β2. Then

Φ′(1) = Ψ ′(1)− Ψ(1) = λ

∫ ∞
0

x dH(x)−
∫ ∞
0

dH(x) = λE(ξ)− 1 < 0

where ξ is the service time. So in the neighborhood of 1, Φ is decreasing. Then, ∃ β > 1 such that Φ(β) < Φ(1)
(i.e. Ψ(β)/β < 1). Moreover, from the convexity of the function Ψ(β), ∃ β0 > 0 such that

∀ β ∈ (1, β0) : Φ(β) < 1 ⇒ ψ (λ (1− β)) < β.

Remark 3.2. Consider the function β = ψ (λ (1− β)). Then ψ has only one fixed-point and can then be used
to calculate β0 iteratively using successive substitution as follows:

βi+1 = ψ (λ (1− βi)) .

This method of solution is also called fixed-point iteration. The steps of this iterative process, are:
Step 1: Let β1 be such that β1 > 1,
Step 2: βi+1 =

∫∞
0
e−(λ(1−βi))x dH(x),

Step 3: The stopping criterion is given by the following formula:
∣∣∣βi+1−βi

βi+1

∣∣∣ < ε, where ε > 0 is a fixed tolerance.

Lemma 3.3. For all β such that 1 < β < β0, we have

∀k ∈ N∗ ∪ {∞}, P̂kV ≤ δV + L 1S (3.5)

with,

δ := δ(β) =
1

β
ψ (λ (1− β)) < 1, (3.6)

L := L(β) = (β − 1)δ(β) <∞, (3.7)

where by convention P̂∞ := P .

Proof. In a first step, we prove that

∃ δ ∈ (0, 1), ∃L > 0, PV ≤ δV + L 1S . (3.8)

According to equation (2.2), we have:

∀ i ∈ S, PV (i) =
∑
j∈S

V (j)P (i, j)
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(a) For i = 0:

PV (0) =

∫ ∞
0

e−(1−β)λt dH(t) = ψ (λ (1− β)) , (3.9)

(b) For i ≥ 1:

PV (i) = βi−1
∫ ∞
0

e−(1−β)λt dH(t) =
1

β
ψ (λ (1− β)) V (i). (3.10)

From (3.10), we take

δ := δ(β) =
1

β
ψ (λ (1− β)) . (3.11)

And, from (3.9), we have

PV (0) = δV (0) + L = δ + L = ψ (λ (1− β)) ,

Then, we define L as,

L := L(β) =

(
1− 1

β

)
ψ (λ (1− β)) = (β − 1)δ(β). (3.12)

The proof of,

∃ δ ∈ (0, 1), ∃L > 0, ∀k ∈ N∗, P̂kV ≤ δV + L 1S (3.13)

is similar by exchanging the role of P by P̂k.
Hence, according to equation (2.2), we have:

∀ i ∈ Sk, P̂kV (i) =
∑
j∈S

V (j)P̂k(i, j) =
∑
j∈Sk

V (j)Pk(i, j),

∀ i /∈ Sk, P̂kV (i) = 0.

(a) For i = 0:

P̂kV (0) =
∑
j<k

βjP (0, j) + βk
∑
j≥k

P (0, j)

≤
∑
j∈S

βjP (0, j) = ψ (λ (1− β)) ,
(3.14)

(b) For 1 ≤ i ≤ k:

P̂kV (i) =
∑

j∈Sk−1

βjP (i, j) + βk
∑
j≥k

P (i, j)

≤
∑
j∈S

βjP (i, j) =
1

β
ψ (λ (1− β)) V (i).

(3.15)
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Remark 3.4. We can notice that the relation (3.13) can be given in a simpler way, we have for all i ∈ Sk,

(P̂kV )(i) =

k−1∑
j=0

P (i, j)V (j) + V (k)
∑
j≥k

P (i, j) ≤ PV (i), (3.16)

so (P̂kV )(i) ≤ δV (i) + L.

Lemma 3.5. For all β such that 1 < β < β0, we have:

‖P̂k − P‖0,1 ≤ ∆k = max

2

1−
∑
j∈Sk

aj

 ,
2

βk

1−
∑
j∈S1

aj

 ,
1

βk+1

 . (3.17)

Proof. Using the definition of the weakened convergence property (C0,1), we have

‖P̂k − P‖0,1 ≤ sup
i∈S

1

V (i)

∑
j∈S
|P (i, j)− P̂k(i, j)|.

Let,

∀ i ∈ S : ∆(i) =

∑
j∈S |P (i, j)− P̂k(i, j)|

V (i)
.

(a) For i = 0:

∆(0) = 2
∑
j>k

aj = 2

1−
∑
j∈Sk

aj

 , (3.18)

(b) For 1 ≤ i ≤ k:

∆(i) =
2

βi

∑
j>k−i+1

aj =
2

βi

1−
∑

j∈Sk−i+1

aj

 , (3.19)

(c) For i > k:

∆(i) =
1

V (i)

∑
j∈S

P (i, j) =
1

βi
≤ 1

βk+1
, (3.20)

finally, we have

‖P̂k − P‖0,1 ≤ ∆k = max

2

1−
∑
j∈Sk

aj

 ,
2

βk

1−
∑
j∈S1

aj

 ,
1

βk+1

 .

−−−−−→
k→+∞

0

(3.21)
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The following theorem provides the total variation distance between stationary distributions π̂k and π. This
can be done by using Theorem 2.3.

Theorem 3.6. Assume that λ < µ, and for all β such that 1 < β < β0. Set

A := 1 +
L

1− δ
, (3.22)

then, we have the following estimation

‖π̂k − π‖TV ≤
(

1

βk+1
+

(
2Ck
ρk

+
A| ln∆k|
ln(ρ−1k )

)
∆k

)
(A− 1). (3.23)

Proof. From the Theorem 2.3, we have

‖π̂k − π‖TV ≤ |1− π(1Sk)|+ L

1− δ

(
2Ck
ρk

+
A

ln(ρk −1)
| ln∆k|

)
∆k,

where, |1−π(1Sk)| =
∑
j≥k+1 π(j) can be estimated as follows. From Lemma 3.3, for all β such that 1 < β < β0

the condition (3.5) holds. Then π(V ) ≤ δπ(V ) + L, hence π(V ) ≤ L/(1− δ), furthermore

∑
j≥k+1

π(j) ≤ 1

V (k + 1)

∑
j≥k+1

π(j)V (j)

≤ 1

βk+1
π(V )

=
L

(1− δ)βk+1

=
A− 1

βk+1
.

Hence, we obtain the following result

‖π̂k − π‖TV ≤ WSB(β, ρk) =

(
1

βk+1
+

(
2Ck
ρk

+
A| ln∆k|
ln(ρ−1k )

)
∆k

)
(A− 1)

with ∆k defined in (3.17), and the constants ρk and Ck can be calculated using the Lemma 2.4.

Note that the bound in Theorem 3.6 has β and ρk as a free parameters. This gives the opportunity to
minimize WSB(β, ρk) with respect to β and ρk. This leads to the following optimization problem.

(P )

min
β,ρk

WSB(β, ρk)

s.t. 1 < β < β0,

ρ̃k < ρk < 1,

where, we have supposed that ρ̃k ∈ (0, 1) the second eigenvalue of Pk is known, and β0, δ, L, Ck, A and ∆k

are already defined. By inserting ε > 0 small, all inequalities can be made strict and in the above optimization
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problem can be solved using any standard technique. In the sequel, we assume that (β, ρk) ∈ Θ = [1 + ε, β0 −
ε]× [ρ̃k + ε, 1− ε], so the optimization problem can be defined as follows

(P ) min
Θ

WSB(β, ρk).

WSB being continuous on Θ, so the function WSB is bounded and reaches its bounds, i.e. WSB has a global
minimum on Θ. A priori, these minimums may not be unique (can be reached several times on Θ).

4. Numerical example

In this section we will apply our bound put forward in Theorem 3.6.

4.1. Approximation algorithm

In this subsection we elaborate the algorithms which allows us to get the domain of the approximation
and to determine the error on the stationary distribution due to the approximation. Solve the optimization
problem (P ) is of great importance, this will allow us to define the best choice of the couple (β, ρk) on Θ
which gives the minimal value of the bound WSB(β, ρk) for error of the approximation ‖π̂k − π‖TV , such that
‖π̂k − π‖TV ≤WSB(β, ρk). The idea is then to go through the stability domain Θ with a fixed step size ε and
save the smallest value found in the sense of the objective function WSB.

Algorithm 1: Computing the perturbation bound WSB(βopt, ρopt).

INITIALISATION: Definition of the inputs ;
λ, µ, k and ε > 0 small;
Fix ρopt =∞, βopt =∞ and WSBopt =∞;

BEGIN
if The condition (λ < µ) hold then

Calculate Pk, πk (the invariant measure of Pk) and ρ̃k ∈ (0, 1) (the second eigenvalue of Pk);
Calculate β0 (from Rem. (3.2)) ;
ρk = ρ̃k;
while ρk < 1 do

ρk = ρk + ε;
β = 1;
while β < β0 do

β = β + ε;
Calculate δ(β) (from (3.6));
Calculate L(β) (from (3.7)), and A (from (3.22));
Calculate s and Ck (from Lem. 2.4);
Calculate WSB(β, ρk) (from Thm. 3.6);
if WSB(β, ρk) <WSBopt then

WSBopt = WSB(β, ρk);
βopt = β;
ρopt = ρk;

The optimization problem (P ) can be solved also using Acceptance-Rejection algorithm, we refer to [11].
Let θ denote the couple (β, ρk), then to introduce the idea implemented in this algorithm, we simulate
from bivariate uniform distribution on Θ, θ1, . . . , θN ∼ UΘ, and we use the approximation WSBopt =
min(WSB(θ1), . . . ,WSB(θN )).
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The all steps of this algorithm are given as follows:

Algorithm 2: Computation of the weak stability bound WSB(β, ρk).

INITIALISATION: Fix N . (must be very large);
Fix WSBopt =∞;

BEGIN
For i = 1 to N do

Generate (u1, u2) ∼ UΘ;
if WSB (u1, u2) <WSBopt then

WSBopt = WSB(u1, u2);
βopt = u1;
ρopt = u2;

where U is the bivariate uniform distribution on Θ and β0, ρ̃k, WSB and δ are already defined
previously;

4.2. Numerical validation

In order to examine the effectiveness of Algorithm 1, and to explore the stationary performance of the M/G/1
model compared to its truncated model, we provide a series of numerical results for different performance
of the model. The results obtained are shown in tables and figures. We consider four types of service time
distributions: Deterministic (D), Exponential (M), Hyperexponential (H2) and Erlang (E2). Meanwhile, for the
specified distributions of the service time, we obtain different coefficients of variation (CV).

4.2.1. A deterministic or fixed service time

We consider the chain embedded at departure times of an M/D/1 queue (i.e. with Poisson input rate, and
service times deterministic of unit length). The deterministic arrival process has CV = 0. The probability (3.2)
is given by:

aj =
λj

j!
e−λ, j = 0, 1, . . .

Let us choose, for example: λ = 0.6 and k = 10. The approximation domain has been determined using the
Algorithm 1:

β ∈ (1, β0) = (1, 2.57),

ρk ∈ (ρ̃k, 1) = (0.8545, 1).

So, we can give an idea about the error due to the approximation on the stationary distribution, by showing its
curve as function of β and ρk (Fig. 1). For that, we display the strong stability bound WSB(β, ρk) as function
of the norm parameter β and the parameter ρk. From the Figure 1, we see that this curve has a minimum with
respect to the parameter β and ρk. This is clearly shown in the Figure 2 where we have represented the curve
WSB(β, ρopt) in function of β and where we have fixed the parameter ρk to ρopt = 0.8645 (the optimal value of
ρk that minimise WSB(β, ρk) with respect to ρk). From this Figure we can notice that the curve has an unique
minimum at a certain point, denoted by βopt, this is well shown on the right part of Figure 2, where we have
zoomed it. Thereby, inducing that it has an unique minimum at a certain point, denoted by βopt. By applying
the above algorithms, one can obtain the smallest error at β = βopt = 2.08, and the corresponding error value
due to the approximation on the stationary distribution of the number of customers is:

||π − π̃||TV ≤WSB(2.08, 0.8645) = 2.8885.
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Figure 1. Weak stability bound WSB(β, ρk) as function of β and ρk.

Figure 2. Weak stability bound WSB(β, ρopt) as function of β.

Similarly, the obtained numerical results for the weak stability bounds in D/M/1 queue are given in the
following Table 1, where we set λ = 0.6.

4.2.2. Exponential service times

We consider the M/M/1 queue. The stationary distributions of the number of customers in the system at
departure points can be obtained in a similar way for the following fixed parameters: λ = 1 and µ = 2, then
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Table 1. Weak stability bounds for M/D/1 queue.

λ = 0.6, M/D1/1
k β0 β ρ̃k ρk δ L s Ck WSB(β, ρk)

5 2.5700 1.0100 0.7503 0.8701 0.9961 0.0100 2 2.1645 17.8228
10 2.5700 2.0800 0.8539 0.8645 0.9191 0.9926 2 3.1641 2.8885
15 2.5700 2.2400 0.8762 0.8865 0.9394 1.1649 2 5.6046 0.1044
20 2.5700 2.3300 0.8841 0.8945 0.9533 1.2678 2 8.3979 0.0024
25 2.5700 2.3800 0.8884 0.8982 0.9617 1.3271 2 11.1340 4.2030e-005
30 2.5700 2.4100 0.8905 0.9003 0.9669 1.3634 2 13.6706 6.5151e-007
35 2.5700 2.4300 0.8918 0.9016 0.9706 1.3879 2 16.0267 9.2071e-009
40 2.5700 2.4500 0.8921 0.9024 0.9742 1.4127 2 18.8869 1.2161e-010
45 2.5700 2.4700 0.8930 0.9029 0.9780 1.4377 2 22.4949 1.5309e-012
50 2.5700 2.4800 0.8932 0.9034 0.9799 1.4503 2 25.1450 1.8487e-014

Table 2. Weak stability bounds for M/M/1 queue.

λ = 1, µ = 2, M/M/1
k β0 β ρ̃k ρk δ L s Ck WSB(β, ρk)

5 2.0000 1.4000 0.6664 0.6767 0.8929 0.3571 2 1.5432 12.3777
10 2.0000 1.6600 0.8181 0.8283 0.8991 0.5934 2 1.6965 4.6573
15 2.0000 1.7700 0.8549 0.8651 0.9187 0.7074 2 2.8203 0.5796
20 2.0000 1.8200 0.8694 0.8791 0.9313 0.7636 2 3.8985 0.0458
25 2.0000 1.8500 0.8758 0.8860 0.9401 0.7991 2 4.9467 0.0029
30 2.0000 1.8800 0.8799 0.8898 0.9498 0.8359 2 6.3576 1.5725e-004
35 2.0000 1.8900 0.8823 0.8921 0.9533 0.8485 2 7.2144 7.8445e-006
40 2.0000 1.9100 0.8835 0.8937 0.9607 0.8742 2 8.8706 3.6723e-007
45 2.0000 1.9200 0.8844 0.8947 0.9645 0.8873 2 10.1435 1.6353e-008
50 2.0000 1.9200 0.8858 0.8955 0.9645 0.8873 2 10.6948 7.0014e-010

the associated traffic intensity is σ = λ/µ = 0.5 and the associated coefficient of variation is CV = 1. The
computational results for this example are shown in Table 2.

4.2.3. Erlang service times

The Erlang En is the simplest phase-type distribution and it represents the distribution of the time taken
by a Markov process to traverse n phases of exponential service. We may use this representation to provide a
Markov model for the number of customers in the system in queue M/En/1.

Consider the queue M/En/1. Suppose that the inter-arrival times are distributed according to the exponential
distribution with parameter λ, let the service time distribution be given as

f(t) = e−nµt
(nµt)n−1nµ

(n− 1)!
, t > 0.

Its coefficient of variation is defined as the ratio between the standard deviation and the average, then CV=
1/
√
n < 1. In our numerical computation, we take n = 2 with CV= 1/

√
2, and we use Table 3 to present the

error on the stationary distributions of the number of customers in the system at departure points under the
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fixed parameters: λ = 1 and µ = 2, we obtain:

Table 3. Weak stability bounds for M/E2/1 queue.

λ = 1, µ = 2, ` = 2, M/E2/1
k β0 β ρ̃k ρk δ L s Ck WSB(β, ρk)

5 2.4300 1.6600 0.6811 0.6914 0.8640 0.5702 2 1.4463 9.6148
10 2.4300 2.0100 0.8089 0.8191 0.8904 0.8993 2 2.5058 1.3707
15 2.4300 2.1400 0.8385 0.8482 0.9141 1.0420 2 4.2221 0.0615
20 2.4300 2.2100 0.8489 0.8591 0.9301 1.1254 2 6.0477 0.0018
25 2.4300 2.2500 0.8540 0.8643 0.9403 1.1754 2 7.7962 4.1335e-005
30 2.4300 2.2800 0.8575 0.8672 0.9485 1.2141 2 9.6679 8.3809e-007
35 2.4300 2.3000 0.8593 0.8690 0.9543 1.2405 2 11.4307 1.5541e-008
40 2.4300 2.3200 0.8602 0.8701 0.9602 1.2675 2 13.3504 2.6964e-010
45 2.4300 2.3300 0.8607 0.8709 0.9633 1.2811 2 34.9371 4.4853e-012
50 2.4000 2.3000 0.9000 0.9094 0.9900 1.3000 2 1.5006e+003 9.4280e-014

Table 4. Weak stability bounds for M/H2/1 queue.

λ = 1,µ1 = 2, µ2 = 2.5, p = 0.4, M/H2/1
k β0 β ρ̃k ρk δ L s Ck WSB(β, ρk)

5 2.2300 1.6200 0.6360 0.6559 0.8504 0.5272 2 1.5245 7.1528
10 2.2300 1.8800 0.7822 0.8019 0.8725 0.7678 2 1.8960 1.3147
15 2.2300 1.9800 0.8175 0.8374 0.8945 0.8766 2 2.9964 0.0866
20 2.2300 2.0400 0.8309 0.8511 0.9121 0.9486 2 4.2311 0.0038
25 2.2300 2.0800 0.8379 0.8577 0.9259 1.0000 2 5.5802 1.3153e-004
30 2.2300 2.1000 0.8417 0.8615 0.9335 1.0268 2 6.6871 4.0423e-006
35 2.2300 2.1200 0.8436 0.8638 0.9415 1.0545 2 8.0385 1.1388e-007
40 2.2300 2.1400 0.8451 0.8653 0.9501 1.0831 2 9.7699 3.0269e-009
45 2.2300 2.1400 0.8465 0.8663 0.9501 1.0831 2 10.2046 7.6274e-011
50 2.2300 2.1600 0.8469 0.8671 0.9592 1.1126 2 12.6322 1.8644e-012

4.2.4. Hyperexponential inter-arrival times

The hyperexponential process has CV ≥ 1. Thereby, we assume that the density function of the H2

distribution having a balanced means is defined as follows:

f(t) = qµ1e
−µ1t + (1− q)µ2e

−µ2t, t ≥ 0,

where 0 ≤ q ≤ 1 and µ−1 = qµ−11 + (1− q)µ−12 . By altering q, one can obtain different CVs. The corresponding
CV of this distribution is given by:

CV =

√
1 + (2q − 1)2

1− (2q − 1)2
.

In Table 4 we show the error on the stationary distributions of the number of customers in the system at
departure points for M/H2/1 queue. For this numerical example, we have fixed the parameters of the queueing
model as follows: λ = 1, µ1 = 2, µ2 = 2.5 and q = 0.4, and the associated coefficient of variation is CV = 1.0408.
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Figure 3. Bound of log(WSB(β, ρopt)) in function of log(k).

Figure 3, illustrates the behavior of the weak stability bound by varying the parameter k which is the rank
of the truncation, based on the results obtained in Tables 1–4 the approximation error is very small, which
does not allow to represent on the same scale the four curves corresponding to the four types of the service
times distributions considered previously, it’s for this reason that we represent the curves log(WSB(β, ρopt)) in
function of log(k).

From Figure 3, we observe that for the four types of service times distributions: Deterministic (D), Exponential
(M), Hyperexponential (H2) and Erlang (E2) the approximation error decreases by increasing the rank of the
truncation, and we can expect that when we increase the size of the truncation (k > 50) this error will tend
to 0 and becomes negligible, ie π(j) ' 0, ∀j > k, And therefore the stationary probabilities of the model with
infinite state space can be computed based only on the truncated model π(j) ' πk(j), ∀j ≤ k.

5. Conclusion

In this paper, we used the weak stability method, which is an analytical method that leads to qualitative
bounds, to estimate the error of approximation of the stationary distribution of the M/G/1 queue by those of
the troncated model. We proved the stability conditions and next obtained stability inequalities with exactly
computing of the constants. A series of numerical examples were used to illustrate the potential use of weak
stability bounds.
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