
RAIRO-Oper. Res. 52 (2018) 1351–1376 RAIRO Operations Research
https://doi.org/10.1051/ro/2018023 www.rairo-ro.org

A GENETIC ALGORITHM FOR THE STEEL CONTINUOUS

CASTING WITH INTER-SEQUENCE DEPENDENT SETUPS AND

DEDICATED MACHINES

Abdelkader Sbihi1,* and Makram Chemangui2

Abstract. The steel continuous casting planning and scheduling problem namely SCC is a particular
hybrid (flexible) flowshop that includes stages: (i) the converters (CV), (ii) the refining stands (RS)
and (iii) the continuous casting (CC) stages. In this paper we study the SCC with inter-sequence
dependent setups and dedicated machines at the last stage. The batch sequences are assumed to be
pre-determined for one of the CC devices with a non preemptive scheduling process. The aim is to
schedule the batches for each CC machine including the times setup between two successive sequences.
We model the problem as a MILP where the objective is to minimize the makespan Cmax that we
formulate as the largest completion time taking account of the setup times for each CC. Then, we
propose an adapted genetic algorithm that we call Regeneration GA (RGA) to solve the problem. We
use a randomly generated instances of several sizes to test the model and for which we do not know
an optimal solution. The method is able to solve the problems in an acceptable time for medium and
large instances while a commercial solver was able to solve only small size instances.

Mathematics Subject Classification. 90B35, 90B50, 90C11, 90C59

Received May 4, 2017. Accepted March 11, 2018.

1. Introduction

The steel continuous casting problem (SCC) is a particular scheduling problem that arises from the steel
making industry. The problem comprises three main stages that are the converters (CV), the refining stands
(RS) and the continuous castings (CC) where each stage includes one or more parallel devices. Each charge is
to be process on one device at each stage while each device has to process only one charge separately. With
this configuration (Figs. 1 and 2), the SCC can be seen as a hybrid flowshop (HFS) (or flexible flowshop (FFS))
problem (see [14, 28]). However, the difference with HFS resides in the continuous processing (non preemptive
process) of the charges while taking into account the inter-sequence dependent setup times at the last stage
(CC).

To show the difference between the HFS and the SCC, we make in the following a comparative study.
For a manufacturing system, the production is organized with regards to a given number of operations or

stages to be accomplished with respect to the same order. Hence, the devices are supposed to carry setup

Keywords and phrases: SCC, GA, scheduling, Cmax, setup.

1 Université Le Havre Normandie, LMAH, FR CNRS 3335, ISCN, 76600 Le Havre, France.
2 Audencia Business School, 8 route de la Jonelière, 44312 Nantes, France.

* Corresponding author: abdelkader.sbihi@univ-paris1.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2018023
https://www.rairo-ro.org/
mailto:abdelkader.sbihi@univ-paris1.fr
http://www.edpsciences.org

1352 A. SBIHI AND M. CHEMANGUI

Figure 1. A generic SCC configuration.

Figure 2. A ((Pi)
m1
i=1,(Qj)

m2
j=1,(Rk)m3

k=1 || σ | Cmax) configuration.

times and two different cases are considered: (i) asynchronous transfer of the product flow from a current stand
to the next one, (ii) and synchronized transfer of the product flow from one device to another. In general, the
asynchronous transfer case is called a flowshop. The classical flowshop problem (FSP) considers only one machine
at each stage, while its generalization considers a set of devices in series with multicapacity in parallel, called a
hybrid flowshop problem (HFS). On one hand, the hybrid flowshop problem (HFS) can be seen as a set of parallel
machines in series. On the other hand, the SCC planning and scheduling problem is a complex hybrid flowshop
(HFS) scheduling problem with the added properties: (i) job grouping in sequences, (ii) precedence constraints,
(iii) no preemptive scheduling process for the same sequence of charges, (iv) and setup time constraints on the
last stage (CC stage).

More generally, the objective of the SCC is to determine the sequences order, the schedules and the system
of devices assignments for the entire production processes. Moreover, we may notice that the SCC problem is
known in the literature as a hard scheduling problems (see [11, 34, 36]).

In the following, we represent the SCC problem as a 3 stages scheduling problem with mr (r = 1, . . . , 3)
parallel machines at each stage r:

(1) m1 identical parallel machines CV at the 1st stage (noted (Pi)
m1
i=1),

(2) m2 uniform parallel machines RS at the 2nd stage (noted (Qj)
m2
j=1),

(3) m3 unrelated parallel machines CC at the 3rd stage (noted (Rk)m3

k=1).

Similarly to the notation by [7], we write the SCC problem as a 3-stages hybrid flowshop (HFS):
(Pi)

m1
i=1,(Qj)

m2
j=1,(Rk)m3

k=1 || σ | Cmax, where || stands for a parallel system and σ is the inter-sequence setup
time (Fig. 2).

At the last stage the system includes the setup times that represent the inter-sequence times necessary to a
CC machine between the processing termination of the current sequence and the processing start of the next
sequence (between the last charge of the current sequence and the first charge of the next sequence) such that:

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1353

• the sojourn (transit) time is minimized;
• the due date is met;
• the continuity constraints are satisfied;
• no machine breakdown is considered.

The scheduling problems are mostly NP-hard optimization problems (see [5, 13]) and in the papers by [22],
the authors showed that HFS problems with the objective to minimize the makespan are NP-complete. Also,
the m-stages HFS with unrelated parallel machines and dependent setup times has been proven to be NP-hard
(see [14, 16]). Also, there exist many variants of the SCC problem (see [25, 29, 37]) which they differ by the
objective to optimize and/or by the set of constraints to handle. In many literature works, the setup time is
considered as a constant or a parameter given in an interval (see [3, 31]).

In this paper we propose an MILP to model the SCC production problem. The objective function includes
the setup time as a decision variable which contributes to minimize the makespan by reducing the gap between
sequences on the same CC machine at the last stage. Also, we consider the makespan to minimize as the largest
completion time for all the CC machines. Moreover, we recall that the proposed problem has a very complex
structure, where small size problems could be difficult to solve to their optimum in a reasonable run time.

To overcome this difficulty, we intend to develop an approximate approach to solve the SCC. The novelty of
the proposed planning and scheduling approach resides in optimizing the casting sequencing and the steelmaking
scheduling simultaneously. The Regeneration GA is designed with specific components based on the schedule
optimization search. We, first, compare the numerical experiments obtained by the standard GA with those
obtained by the RGA approach. This enables us to claim the high efficiency of RGA regarding the standard GA.
We used the quality of the solution and the consuming time by both GA and RGA. Then, we set the algorithm
parameters to their best settings to test a set of instances of different sizes.

In the remainder, the paper is organized as follows. In Section 2, we give a literature survey on the hybrid (flex-
ible) flowshop and the steel-making scheduling problems. We recall several exact and approximate approaches
that have been developed for such problems. Section 3 describes the problem and details its structure. Section 4
presents the SCC problem, formulates the makespan Cmax and details the mathematical formulation as a MILP
subject to a set of constraints where the objective is to minimize Cmax. In Section 5, we develop a genetic based
approach to approximately solve the SCC problem. We explain the start time computation for each charge at
the first stage (CV) and detail the procedures used to compute an efficient solution. We also explain and discuss
the main steps of the RGA approach and the auxiliary procedures. In Section 6, we detail and discuss the
numerical experiments by showing the efficiency of our approach. Finally in Section 7, we give a conclusion
that summarizes the study and shows some potential research perspectives to improve the current results.

2. Literature survey and problem positioning

Numerous research works have been developed to solve several HFS and SCC variants. In this section, we
review the most known approaches (exact and approximate) that have been developed in previous research
works to address the HFS in general and the SCC in particular. In the paper by [36], the authors reviewed
and proposed a classification of several SCC models. In [2, 11], the authors detailed both mathematical and
non-mathematical techniques used to solve these variants.

Moreover, optimization methods such as local search, genetic algorithms (see [42]), swarm intelligence opti-
mization (see [12]) or mathematical programming (see [3, 31]) have been developed to solve the SCC problem.
In the papers by [8, 24, 43] several types of metaheuristics have been applied to the SCC problem. Hybrid
approaches have also been tailored for a continuous steel plant (see [1, 4, 10]).

We also may recall that simulation techniques (see [44]) have been applied to simulate the production envi-
ronment and efficient solutions have been computed for such problems. In [9], the authors have designed a
multi-agent based system to evaluate a dynamic casting schedule. Other techniques such as graphs theory and
mathematical programming approaches have also been used. For instance, in [20], the authors have developed

1354 A. SBIHI AND M. CHEMANGUI

a continuous slab caster schedule using interval graphs class. In the paper by [17], the authors have applied a
multiple knapsack problem based ILP to avoid distortion between the surplus inventory and orders.

In [35], the authors have used a general heuristic based Lagrangean relaxation and dynamic programming for a
non-linear programming model to address the machines conflicts. In [15], the authors developed a decomposition
method of the MILP to solve large size scheduling problems. One can cite the paper by [37] in which the authors
have relaxed the capacity constraints, then applied a dynamic programming for solving the relaxed problem.
In the paper by [40], an approach based on the production control has been developed to identify the best
steelmaking operations level. The paper by [38] proposed another approach to minimize the total weighted
termination time by relaxing the precedence constraints.

In [26], the SCC problem has been solved by a beam search method. Tabu search (see [39]) has been applied for
the SCC to schedule the production in order to maximize the production quality while minimizing the costs and
other penalties. In [41], the authors presented an approximate approach to minimize the completion time based
on batch decoupling. Also, in [25], the authors developed a Lagrangean relaxation coupled with cuts generation
to compute better bounds for the relaxed capacity constraints problem. Particular SCC problems with different
configurations have also been solved. For instance, in the article by [23], the authors have developed a 3-stages
heuristic procedure to schedule jobs for a complex steel plant with 3 CV, 2 RS and 4 CC to improve the schedule
by using an LP model.

Also several evolutionary based algorithms have been applied to the SCC. One can cite the paper by [19] in
which an evolutionary algorithms has been developed for a two-strands CC scheduling system. In the paper by
[6], the authors proposed a GA to identify the efficient solutions in the Pareto front after running some extensive
search. In the paper by [33], the authors have developed a GA they called hybrid constructive genetic algorithm
(HCGA) to solve the HFS. Their approach used two fitness functions (total cost and local search optimization)
to evaluate an individual. A multi-objective GA to minimize the makespan and tardiness penalties has been
developed by [18]. Recently, in [21], the authors have presented a self-adaptive GA to optimize the casts in order
to minimize the makespan and the total idle times.

During the last two decades, other evolutionary approaches such as ant colony (ACO), bee colony (BCO) or
swarm optimization (SO) have also been applied for the SCC. In the article by [1], one can find an approach
based on the combination of ACO and nonlinear optimization methods. In [28], the authors have developed
a BCO heuristic. In the paper by [27], the author has proposed a cooperative co-evolutionary artificial BCO
algorithm with two sub-swarms to solve the SCC by using some self-adaptive neighborhood operators.

Due to the NP-hardness of SCC, we develop an adapted genetic algorithm that we call Regeneration GA
(RGA) based heuristic to solve the SCC. The choice of the genetic based optimization is efficient since this
algorithm fits well with the structure of the SCC problem. In particular, coding the chromosome fits well with
the solution structure of the problem to assign the charges to each CV, RS or CC machine while ensuring
the validity of the individual. The proposed approach solves the problem by optimizing the order and the
schedules with inter-sequence dependent setup times on each dedicated CC device. The approach combines: (i)
the planning of the casting of the batches and (ii) the steelmaking scheduling of the total charges. These two
components are integrated in the model. In the next sections, we describe the GA features by detailing the
used genetic operators. We also present the approach performance obtained by the experiments on a random
generated set of instances inspired by a real production situation.

3. Problem statement

In the SCC problem ≡ Pm1 ,Qm2 ,RMm3 || σ | Cmax, the production orders are represented by a set of the cast
sequences (batch) where each sequence is dedicated to a CC machine at the last stage. At the first stage, the
charges can be processed individually on any one of the available converters (CV). Then they are transferred
to the first available refining stand (RS). However, at the stage 3, the processing of the charges on the CC is
predetermined. That means that the actual allocation of charges and sequence of charges on each CC line is
predetermined and only the timing of the charges needs to be established.

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1355

Figure 3. A 2 CV-2 RS-2 CC Gantt chart.

We assume that the sojourn (transit) time for the charges between their termination at the first stage and
their start at the last stage (CC) is limited. The processing time for each charge at the last stage is a bounded
value. Also, we add an availability date for each converter so that the start time at the first stage is different
for all the converters. We set the objective as to maximize the productivity by minimizing the Cmax.

3.1. Process, sequences and continuity constraints

The planning system is detailed in the following:

• a sequence is a set of charges dedicated to a CC with precedence constraints for the charges;
• any converter CV can be used in the first stage with a constant processing time;
• the charge has a limited sojourn time between the termination in the CV and the start at CC;
• there is no idle time for the charges on the CC due to the continuous constraints;
• the processing times at the CC stage are decision variables belonging to a given interval;
• the sequence start times at CC are bounded and the waiting time between two successive sequences

represents the setup time.

The example in Figure 3 shows the sequencing of a batch composed of 4 sequences on a (2CV-2RS-2CC)
system. The first batch is composed of 2 sequences noted (1, 2, 3, 4)×(c, d, e) with respectively 4 and 3 charges
which are dedicated to CC1, while the second batch is composed of 2 sequences noted (5, 6, 7)×(a, b) with
respectively 3 and 2 charges and are dedicated to CC2. Between CV and RS stages the charges are processed
individually, while the sequences are re-assembled to be processed on their assigned CC. For example, the charge
noted “a” is belonging to the second sequence and is to be processed on CC2. It starts at time 50 on CV2, is
transferred to RS1 at time 101 then it is transferred to CC2 and starts at time 142.

4. Continuous casting of the pre-ordered sequences

In this section we give a mathematical formulation for the SCC problem taking into account the set of
constraints and the objective function to optimize. The obtained MILP aims at minimizing the makespan. The
production environment is a deterministic one and the number of charges together with their intrinsic data are
assumed to be known in advance. Also, we assume that the number of parallel machines at each stage is known
in advance.

1356 A. SBIHI AND M. CHEMANGUI

4.1. Notations

To better understand the problem, we detail the used notations and all the data in the next sections.

4.1.1. Sets, constants and indices

(1) (r = 1, 2, 3) denote the stages (CV,RS,CC);
(2) mr: number of machines at the stage r;
(3) i = 1, . . . ,m1 (resp. j = 1, . . . ,m2) (resp. k = 1, . . . ,m3) denotes the index of a machine at the 1st stage

(resp. the 2nd stage) (resp. the 3rd stage) such that (CVi,RSj ,CCk) is a production line;
(4) Sk: number of the sequences sk to process on the machine CCk (sk = 1, . . . , Sk);
(5) sk: a sequence to process on CCk (k = 1, . . . ,m3);
(6) nsk = |sk|: number of the pre-ordered charges (jobs) c for a sequence sk on CCk;

(7) nk =

Sk∑
sk=1

nsk : total number of charges to process on CCk (k = 1, . . . ,m3);

(8) c: index of a charge of the sequence sk dedicated to CCk (c = 1, . . . , nk);

(9) N =

m3∑
k=1

nk: total number of charges in the system.

We also have the following assumptions:

(1) πi: position of a charge on the first (m1 − 1) CVi (πi = 1, . . . ,Πi;

i = 1, . . . ,m1 − 1) where Πi = b
∑m3

k=1 nk+1

m1
c;

(2) πm1
: position of a charge on the last machine CVm1

(πm1
= 1, . . . ,Πm1

) where Πm1
= b

∑m3
k=1 nk

m1
c.

4.1.2. Data, parameters and settings

(1) p1: processing time of a charge c (c = 1, . . . , nk) on the converters CVi (i = 1, . . . ,m1) at the 1st stage;
(2) p2j : processing time of a charge c on the refining stand RSj (j = 1, . . . ,m2) at the 2nd stage;

(3) [Pmin
k,c , P

max
k,c]: interval of the processing time p3k,c of a charge c dedicated to CCk;

(4) [σmin
sk

, σmax
sk

]: interval of σsk , the inter-sequence dependent setup time between sequences sk and (sk + 1)
(sk = 1, . . . , Sk − 1);

(5) di: availability date for CVi;
(6) Tk,c: maximum allowed sojourn time for a charge c between the processing termination in any CVi and

its start in CCk;
(7) τ12 (resp. τ23): transfer time of a charge between CVi (stage 1) and RSj (stage 2) (resp. RSj (stage 2)

and CCk (stage 3)).
(8) dk,c: due date for a charge c dedicated to CCk

4.1.3. Decision variables

We have identified both continuous and binary decision variables for the proposed model. For any CCk
k = 1, . . . ,m3:

(1) xrk,c: start time of the charge c (c = 1, . . . , nk) dedicated to CCk at stage r (r = 1, 2, 3);

(2) p3k,c: processing time of charge c (c = 1, . . . , nk) dedicated to CCk at the 3rd stage;
(3) σsk : setup time between two successive sequences sk and (sk + 1) to process at CCk (between the last

charge nsk of sk and the first charge 1(sk+1) of sk+1) for sk = 1, . . . , Sk − 1.

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1357

(4)

yπi

k,c =

{
1 if the dedicated charge c to CCk is assigned to a position πi in CVi,
0 otherwise.

c = 1, . . . , nk, πi = 1, . . . ,Πi, i = 1, . . . ,m1.

4.2. A SCC mathematical model

The model computes the processing start time of the charge defined by its position at the first stage (CV)
regarding the precedence constraint. It also respects the charge assignment to the CC machine.

4.2.1. Constraints

For each CCk (k = 1, . . . ,m3), the constraints are formulated as follows:

m1∑
i=1

Πi∑
πi=1

yπi

k,c = 1; c = 1, . . . , nk; (4.1)

m3∑
k=1

nk∑
c=1

yπi

k,c = 1; πi = 1, . . . ,Πi; (4.2)

and

m3∑
k=1

y11,1 = 1;

yti+1
k,c+1 ≤

m1−1∑
i=1

ti∑
πi=1

yπi

k,c; c = 1, . . . , nk − 1; ti = 1, . . . ,Πi − 1; (4.3)

y
tm1

k,c+1 ≤
m1∑
i=1

ti∑
πi=1

yπi

k,c − y
tm1

k,c ; c = 1, . . . , nk − 1; ti = 1, . . . ,Πi; (4.4)

x1k,c =

m1∑
i=1

Πi∑
πi=1

[di + p1(πi − 1)]yπi

k,c; c = 1, . . . , nk (4.5)

Refining stage

x2k,c+1 ≥ x2k,c + p2j ; c = 1, . . . , nk − 1, j = 1, . . . ,m2; (4.6)

x2k,c ≥ x1k,c + p1 + τ12; c = 1, . . . , nk; (4.7)

Continuous casting stage

x3k,c ≥ x2k,c + p2j + τ23; c = 1, . . . , nk, j = 1, . . . ,m2; (4.8)

x3k,c+1 = x3k,c + p3k,c; ∀c /∈ {n1, n1 + n2, . . . ,

Sk∑
sk=1

nsk},∀k = 1, . . . ,m3; (4.9)

x3k,c+1 ≥ x3k,c + p3k,c + σ`; ∀c =
∑̀
sk=1

nsk , ` = 1, . . . , Sk − 1; (4.10)

1358 A. SBIHI AND M. CHEMANGUI

p3k,c ∈ [Pmin
k,c , P

max
k,c]; c = 1, . . . , nk; (4.11)

x3k,c − (x1k,c + p1) ≤ Tk,c, ; c = 1, . . . , nk; (4.12)

σsk ∈ [σmin
sk

, σmax
sk

]; sk = 1, . . . , Sk − 1; (4.13)

x3k,c + p3k,c ≤ dk,c; c = 1, . . . , nk. (4.14)

Constraint (4.1) means that a charge c (c = 1, . . . , nk) is assigned to one and only one machine CVi and at
one and only one position πi.

Constraint (4.2) means that a converter CVi has to process one and only one charge c at a specific position
πi (i = 1, . . . ,m1). Also, only the charge c = 1 dedicated to CC1 has to be assigned to the first position at the
converter CV1.

Constraint (4.3) requires that the charge (c + 1) has to be processed on the converter CV1 (i = 1) at the
position (t1 + 1) only if the charge c is to process on one of the (m1− 1) first converters CVi and at any positions
between 1 and ti.

Similarly to the constraint above, constraint (4.4) means the same in the case of the last converter CVm1
for

two successive charges c and (c+ 1).
Constraint (4.5) stands for the start time to process the charges in the first stage CVi (i = 1, . . . ,m1);
Constraint (4.6) means that for two successive charges to process on the same refining stand (RSj), the

second charge can be processed only if the first one has reached its end time.
Constraints (4.7) and (4.8) require that for two successive operations for the same charge, the second operation

can only start once the first one has reached its end time and the charge has been transferred to the next stage.
Moreover, constraints (4.7) (resp. constraint (4.8)) stands for the precedence rules between CVi and RSj

(resp. between RSj and CCk).
Constraint (4.9) stands for the continuity constraints between charges c and (c+ 1) for a given sequence sk

(no preemptive process).
Constraint (4.10) stands for inter-sequence dependent setup times between two successive sequences (i.e.

between the last charge of the current sequence and the first charge of the next sequence) for the same CCk
machine at stage 3.

Constraints (4.11) defines the interval for the processing time on the machine CCk at the stage 3 for a
charge c.

Constraint (4.12) means that the sojourn time (transit) of a charge c is limited.
Constraint (4.13) defines the interval of the inter-sequence setup times at stage 3.
Constraint (4.14) defines the due dates for the charges that are processed on a CC device.

4.3. The objective function

First we formulate the total completion time on each CCk (k = 1, . . . ,m3). Then we formulate the makespan
(Cmax) as the maximal total value of the completion time of the last sequence Sk and the corresponding setup
time for all the CCk devices. This formulation allows us to minimize both the completion and setup times of
the entire production process and by the way to reduce the waiting time between two successive sequences.

Hence the Cmax has the following mathematical formulation:

Cmax := max
1≤k≤m3

{
σ

S
k

+ x3k,nSk
+ p3k,nSk

}
On one hand, the identification of charges is independent of the sequences. However, their order numbers in

the corresponding sequence are preserved. On the other hand, for each device, the sequencing is achieved by
mean of the charges assignment variables. Also, constraints (4.9), (4.12) and (4.14) ensure that the continuity
at the last stage, the allowed sojourn (transit) times and the due dates are met.

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1359

To solve the problem, we set the objective as to minimize the makespan Cmax subject to all the identified
constraints. The problem can formally be written as follows:

(minCmax)


C?

max = Minimize Cmax

Subject to (1)− (14);
Cmax ≥ σS

k
+ x3k,nSk

+ p3k,nSk
, ∀k = 1, . . . ,m3; (4.15)

x3k,nSk
, p3k,nSk

, Cmax ≥ 0, σS
k
∈ [σmin

sk , σmax
sk]. (4.16)

The MILP above brings a novelty by considering the makespan as the sum of the inter-sequence setup time at
the last stage and the total completion time. This formulation permits: (i) to minimize the setup time values, (ii)
to respect the continuity constraints and (iii) to tighten the charges flows in order to optimize the productivity.

The MILP can be extended to a multi-stage batch production with continuity constraints and setup times at
the last stage. This latter is generalizing in turn the multi-stage hybrid flowshop with continuity constraints. The
production is processed on multi-sequential production stages where each stage is guaranteeing a multicapacity
of parallel machines. However, all the devices located on the first (r − 1) stages are allowed to process jobs of
any sequence where at the last stage, the sequence jobs are processed on their dedicated machine. Continuity
constraints are imposed at the last stage with new introduced decision variables that are the times setup between
two successive sequences of a batch production. This constitutes a novelty in our MILP.

5. A genetic algorithm for the SCC with inter-sequence
dependent setup time

For HFS problems, [30] were the first to apply a hybrid GA to the HFS with setup times. The method has
been applied to minimize the makespan for a m-stages system with unrelated parallel machines, setup times and
machines eligibility. For HFS problems, most of the GA approaches usually separate assignment and sequencing
(see [29, 32]). Generally, these methods, are first sequencing by permutation flowshop procedures and then are
assigning charges to devices at each stage by some priority rules or by machine availability. However, these
strategies yield poor solutions quality in general. In the next sections, we detail the RGA based heuristic to
solve the proposed problem.

5.1. Encoding chromosomes and an initial solution

To obtain high quality solutions, we used an encoding strategy which integrates both sequencing and assign-
ment of the charges at stages 1 and 2 and continuity constraints at stage 3. The chromosome is defined as a
sequence of the total N charges that are assigned to their CC machines. Each gene is represented by a couple
(k, c) meaning that a charge c of a certain sequence is assigned to CCk. The gene has a machine assignment
index k that refers to CCk and a sequencing index c that refers to the charge of a certain sequence sk.

So that (1, c), c = 1, . . . , n1, represents all the genes associated with sequences to process on machine CC1,
(2, c) the sequences to be processed on machine CC2,. . . The total number of genes is the total number of charges

N =

m3∑
k=1

nk where nk =

Sk∑
sk=1

nsk .

At stage 1, the order in which the charges start their processing time is obtained by the position of the genes
in the chromosomes, that means we assign charges to converters with regards to their availability and possible
slowdown dates.

The chromosome shown in Figure 4 means that a total of 10 charges have to be processed on 3 CC machines
(CC1,CC2,CC3) such that CC1 must process a sequence of 4 charges, CC2 a sequence of 3 charges and CC3

has to process a sequence of 3 charges. For example, the couple (3, 1) represents the gene (k, c) such that the
machine CC(k=3) has to process the first charge c = 1.

1360 A. SBIHI AND M. CHEMANGUI

Figure 4. A chromosome encoding configuration.

Figure 5. Gener(): an initial population P1.

In the following, we show how to generate a first feasible solution. We also consider the fitness function

f =
1

1 + Cmax
to build fittest solutions. A chromosome is said to be healthier if it has the lowest makespan

value Cmax. We add 1 to the denominator of the ratio to avoid a possible dividing by 0. The schedule with the
minimal makespan value is considered as the best solution.

We recall that for HFS it is not always easy to determine the start time at the first stage. Based on the
assignment constraints (4.3) and (4.4) on one hand, and on the precedence constraints (4.6), (4.7) and (4.8) on
the other hand, we compute (constraint (4.5)) the start time of the charges at the first stage according to the
minimal sojourn time.

One can also use a heuristic procedure to fix the machine assignments and precedence relationships as
parameters so that the obtained model carries only continuous variables that is easy to solve in this case.
We call the first feasible solution obtained in Section 5.1 chromosome(1). Then from chromosome(1), a first
population P1 is generated using the following steps:

Once a first feasible solution is obtained, we apply the Gener() procedure to generate an initial population
P1 of size size (Fig. 5).

For each generated individual, we consider the objective function such that:

• to minimize the makespan Cmax,
• to meet with the continuity constraints at the CC stage,
• to reduce the charges sojourn times,
• to meet with due dates.

5.2. GA operators

5.2.1. Crossover

Several crossover techniques were developed by the past for GA. To ensure constructing feasible sequences
while performing crossover operations, we use a tailored order crossover that is adapted from the classical OX
operator. Our crossover operator consists: (i) to generate two children by swapping genes information of two

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1361

Figure 6. A crossover mechanism.

parents that are selected with a selection probability, (ii) to identify by mean of a random cut the left and right
cut sides of each parent and (iii) to generate the children by selecting the first part of the first parent while
keeping the order of the genes of the second parent.

The example (Fig. 6) shows how we adapt the crossover operation. We consider 2 chromosomes representing
a configuration of 10 charges dedicated to 3 CC where CC1 has to process 5 charges, CC2 has to process 2
charges and CC3 has to process 3 charges. The cut is selected at the 6th gene.

The crossover operator works as follows:

• we randomly select a cut position;
• for each portion and starting from the left side, we remove one by one all the genes that are common with

the other parent;
• we complete each survival with the remaining genes of the other survival in their recorded order to obtain

an offspring.

We can see that the crossover is automatically ensuring the feasibility of the obtained chromosome since it
is preserving the CC machines assignment at the last stage.

1362 A. SBIHI AND M. CHEMANGUI

Figure 7. A RGA for SCC.

5.2.2. Mutation

We use some classical mutation operators (the exchange, swap or shift operators). We compute the mutation
probability for each gene with regards to its position in the chromosome. Then, the mutation operator shifts a
random selected position in the sequence and relocates it at a random position (at the left or the right) where
the charges between the two shifted positions change also their positions regarding the shifted charges. If the
obtained child is not valid, then a repairing step is performed.

5.3. The GA algorithm

We use the following parameters: the population size (size), the number of generations (G), the selection
probability, the crossover probability (πχ) and the mutation probability (πµ). The population evolves for a fixed
number of generations. However we may encounter the difficulty such that for a given generation, the solution
is not improved enough due to poor population diversity. In this case, we integrate a regeneration mechanism
based on the idea proposed by [30].

A new feature for our RGA is that it is generalizing the regeneration mechanism since we adapt it to a set of
jobs sequences. Also, at each generation, we record the value that realizes the minimum makespan Cmax value.
If for a certain number of iterations (or treshold) no improvement is observed for the fitness value, then we
apply the regeneration mechanism to regenerate the population in order to escape local optimum (Fig. 7).

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1363

Figure 8. The Regeneration() procedure.

The Eval() function computes the fitness value of the individuals. Then GA generates at each generation g
a new population Pg by mating two random selected parents parent1 and parent2 from Pg−1. The selection is

performed thanks to the selection probability
fi∑size
i=1 fi

.

The derived GA namely RGA comprises 2 phases and is detailed as follows:
In the GA phase, we apply the Crossover() operator to generate a child noted child. Then, if the mutation

probability πµ is acceptable, we apply the Mutation() operator on child and we add child to Pg.
The repairing is applied to eliminate infeasibility such as discontinuities and large sojourn times by modifying

the sequences start time. We reiterate the process until we generate size chromosomes to add to the new
population Pg. We evaluate the individuals and select the fittest one as the solution (best Cmax) to SCC.

Another new feature of our approach resides in the procedure Find Fittest() which uses the MILP model of
Section 4.2 as a neighborhood search optimization to improve locally the solution. If the continuity and sojourn
time constraints are not violated, then we reach a local optimum for the makespan and the SCC obtains an
efficient solution. Otherwise, there exists no feasible solution in the considered neighborhood space.

At a given generation g which is not improved enough, a counter of no improvement records the current state
and is incremented by one unit until it reaches a maximum value fixed in advance, then the Regeneration()
phase (Fig. 8) of the algorithm is activated (Steps 23–26).

6. Experimental tests

In this section, we detail the numerical experiments carried out in order to test the proposed approach. We
have coded the GA with C++ language on a Ubuntu Linux 14.04 Hp ProBook Core i3, 2.4 Ghz and 6
Go of Ram. The CPU time, the completion time and the makespan are computed in seconds while the model
run time is related to the instance configuration (sequences and charges numbers). Thus attempting to solve the
SCC to its optimality may leads the computation time to grow fast with the size of the problem. Even though
only small problems can be solved by mathematical programming techniques, there are still benefits to study
the model in order to develop efficient approximate approaches.

The mathematical model that we present helps to better understand the problem structure and its complexity.
However to the best of our knowledge, the model herein presented has not been studied so far. Consequently, no
existing results are available in the literature to compare with our numerical results. We have based the design
of our benchmark on the paper by [31] and other instances of large size were randomly generated with the same
industrial context.

The population size size defines the number of chromosomes which conformed the population. If we have
too small population sizes, the algorithm converges faster to a local optimum. In the case of a large population
size, the computation time becomes disadvantageous. The number of generated populations G stands for the
number of evolutions steps to apply and a small number of generations usually leads to an early optimization
break. Also a large number of generations is too time consuming and no possible improvement can be performed
after a certain number of generations.

1364 A. SBIHI AND M. CHEMANGUI

Table 1. Cplex results for a 2 CC problem with different sequences size.

Inst. (n11
, . . . , n

S1
)x(n12

, . . . , n
S2

) CPU CC1 compl. time CC2 compl. time

1 (5, 5)× (5, 5) 27.67 887.58 864.43
2 (14, 21)× (5, 5, 5) 917.25 1087.01 974.26
3 (15, 10, 12)× (5, 5, 5) out of mem. err. N/A N/A
4 (10, 13, 17, 8)× (5, 5, 5, 5, 5) out of mem. err. N/A N/A
5 (18, 11, 23, 15, 27)× (5, 5, 5, 5, 5, 5, 5, 5, 5, 5) out of mem. err. N/A N/A

Table 2. Cplex results for a 3 CC problem with different sequences size.

Inst. (n
11
, . . . , n

S1
)× (n

12
, . . . , n

S2
) CPU C1 compl. time C2 compl. time C3 compl. time

×(n
13
, . . . , n

S3
)

1 (5)× (5)× (5) 2.56 363.45 396.78 382.88
2 (10, 10)× (10, 10) 1261.27 676.31 692.26 713.10

×(10, 10)
3 (5, 15, 19)× (7, 10, 8) 2321.38 1496.34 1389.38 1214.19

×(5, 7, 12)
4 (5, 5, 8)× (6, 4) out of mem. err. N/A N/A N/A

×(5, 4, 5)× (6, 6, 7)
5 (5, 15, 5, 10) out of mem. err. N/A N/A N/A

×(10, 10, 10, 5)× (5, 5, 5, 5)
6 (5, 10, 5, 10, 5) out of mem. err. N/A N/A N/A

×(10, 10, 10, 5, 5)× (5, 5, 5, 5, 5)

Table 3. Optimization performance study for RGA and standard GA.

Configuration Pop. size Approach Av. Cmax Av. Std. Dev Av. 100
(

CmaxRGA
−CmaxGA

CmaxGA

)
2CV-2RS-2CC

(14,21) × (5,5,5)

100
RGA 1245.15 0.58 −17.6%
GA 1512.23 0.37

200
RGA 1207.23 0.59 −15.6%
GA 1431.40 0.44

3CV-3RS-3CC
(15,15,19)× (7,10,8)

100
RGA 1625.54 0.57 −23.5%
GA 2125.17 0.46

200
RGA 1572.71 0.54 −18.6%
GA 1932.35 0.38

Table 4. Comparison of the averages consuming time for RGA and standard GA.

Configuration Pop. size Av. Comp. time for RGA Av. Comp. time for std. GA

2CV-2RS-2CC
(14,21)× (5,5,5)

100 1643.24 6812.27
200 1843.12 7207.13

3CV-3RS-3CC (15,15,19)

× (7,10,8)× (5,7,12)

100 1987.22 8145.30
200 2317.38 9045.87

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1365

Table 5. A Cmax sensitivity analysis for SCC([14, 21]× [5, 5, 5]).

Size C?max C??max Cmax sd Err.

25 1230.202

1198.202

1231.642 0.737 2.670
30 1223.023 1224.186 1.002 2.071
35 1219.332 1219.922 0.442 1.763
40 1213.063 1214.439 1.217 1.240
45 1200.001 1201.783 0.770 0.150
50 1198.202 1199.277 0.933 0.0

Table 6. A Cmax sensitivity analysis for SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 2]).

Size C?max C??max Cmax sd Err.

25 1590.304 1591.817 0.967 0.762
30 1588.031 1589.492 0.689 0.618
35 1584.086 1585.042 0.632 0.368
40 1586.147 1578.274 1586,993 0.555 0.498
45 1578.274 1579.113 0.577 0.0
50 1578.788 1579.305 0.416 0.032

The crossover probability πχ stands for the intensity to pair chromosomes and the mutation probability πµ
determines the level to modify the configuration of the chromosomes. All these parameters needs to be well
defined for high quality solutions.

As a first step of our study, we show the validity of the model and its hardness to obtain an optimal solution
for medium and large size instances. We use a commercial solver (Cplex V12.71) and we report the CPU time.
All the tested instances by the solver are 2 CC and 3 CC configurations at the last stage (Tabs. 1 and 2).

The numerical results presented herein and based on a real-life sequences show the validity of our model for
the planning of several sequences for a 2 CC and a 3 CC systems. Cplex failed to solve some of the instances
with 2 CC and 3 CC and for all the systems with 4CC and higher due to a lack of memory.

6.1. Performance of the RGA

To study the performance of the RGA, we have first applied the standard GA without Regeneration()
procedure and have compared the obtained results to those of the RGA. We have run two tests with population
sizes of 100 and 200 each (for a crossover probability πχ = 0.8 and a mutation probability πµ = 0.03) on a
2CV-2RS-2CV and a 3CV-3RS-3CC configurations. For each case, we used 10 sets of instances that have been
tested 10 times repeatedly. In Table 3, we report the performance of RGA based an a comparison study of
the average results from each test case (population size). We can observe that our approach is able to provide
on average a smaller makespan Cmax than the standard GA for the 2 population sizes and a lower standard
deviation. The gaps between GA and RGA represent −17.6% and −15.6% for the 2CV-2RS-2CC and −23.5%
and −18.6% for the 3CV-3RS-3CC configuration for 100 and 200 individuals respectively. From these outputs,
we can easily state that the solutions obtained by RGA are likely to be of better quality that those obtained
by the standard GA.

Moreover, we have considered the computational time to measure the performance of the RGA. We reported
in Table 4 the average time obtained for all the tests cases. From these results, we can remark that the RGA
is nearly 4 times less consuming time than the standard GA. We can explain it by the fact that our algorithm
manages well the SCC scheduling by saving the time to build a schedule for a batch.

1366 A. SBIHI AND M. CHEMANGUI

Table 7. A Cmax sensitivity analysis for SCC([5, 5, 8]× [6, 4]× [5, 4, 5]× [6, 6, 7]).

Size C?max C??max Cmax sd Err.

25 2611.066 2611.406 0.246 0.717
30 2604.069 2605.442 0.888 0.447
35 2601.176 2602.449 0.938 0.336
40 2594.216 2592.458 2595.521 0.927 0.067
45 2593.058 2594.143 0.732 0.023
50 2592.458 2593.048 0.400 0.0

6.2. Sensitivity analysis and parameters setting

To test the efficiency of our algorithm, we make a sensitivity analysis study. The aim is:

• to test the influence of the population size;
• to investigate the relationship between the total number of populations for a population with a fixed size.

For each chosen instance, we have launched 20 runs. Tables 5–8 detail the best makespan noted C?max for each
fixed size, the best found makespan noted C??max which corresponds to the best settings for all the fixed sizes,
the average makespan of the 20 runs noted Cmax, the standard deviation noted sd and the relative percentage
error noted err.

Since we do not know any optimal solution for the tested instances or any alternative approach that has
been tested by the past, we compare the results with the best found solution so far. We compute the relative

percentage error as err = 100× C?
max−C

??
max

C?
max

and compute the standard deviation noted sd.

6.2.1. Sensitivity analysis of the population size

We have set the number of populations to G = 150, varied the size of each population in the set
{25, 30, 35, 40, 45, 50} and we have run the RGA algorithm 20 times. Tables 5–7 give the results for the
three instances SCC([14, 21]× [5, 5, 5]), SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 2]) and SCC([5, 5, 8]× [6, 4]× [5, 4, 5]×
[6, 6, 7]).

For the 3 problem instances, RGA has been running 20 times for each chosen population size (size). C?max

corresponds to the best found solution so far among the 20 computed ones and C??max corresponds to the best
settings.

Note that as we increase the size of the population, the variance value (sd2) decreases quickly to zero value
from size = 30 to size = 40 and with a small decrease from size = 40 to size = 50. This means that from a
certain size of the population RGA gives the solutions for 20 runs with comparable quality. For example, for
the problem instance SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 2]), the algorithm always gives the best C?max for sizes
value starting from 150. The size value can then be limited to 150 with no need to increase it more. This allows
us to save computational time.

Table 8. A Cmax sensitivity analysis for SCC([5, 5, 8]× [6, 4]× [5, 4, 5]× [6, 6, 7]).

G C?max C??max Cmax sd Err. CPU(s)

50 2609.10 2699.23 1.27 4.25 863.8
100 2663.02 2665.61 2.28 2.93 1014.1
150 2599.96 2587.04 2602.44 1.02 0.49 1523.5
250 2590.25 2592.28 3.32 0.12 1987.4
300 2587.04 2590.79 2.54 0.0 2021.5

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1367

6.2.2. Sensitivity analysis of the number of populations

For this study, we set the population size to 50. Table 8 shows the best C?max resulting from 20 runs
of the RGA algorithm for a SCC instance and for different number of generations G taken from the set
{50, 150, 200, 250, 300}. The Computation time was also reported.

Table 8 shows that the RGA is able to obtain good solutions with an “acceptable” computational time. The
best generations calibration is around 150. For big generations number, RGA consumes huge amount of time
without a substantial improvement of the solution. Also for a small generations number, RGA leads “rapidily”
to a solution whose quality is less than the best known so far.

6.3. Numerical tests

For the model presented in Section 4.2, we have developed and tested a 2-phases RGA based heuristic on
a set of SCC real instances and other randomly generated ones that simulate a production plan. For memory
amount considerations, we have limited our examples to 2 SCC configurations. The first configuration is a 2 CC
machines and the second one is a 3 CC machines. All the related parameters to the 2 SCC systems are known
and the solution is highlighted in bold characters.

Table 9. The RGA paramaters.

Parameters RGA

of generations G 150
Population size size 50
Crossover prob. πχ 0.8
Mutation prob. πµ 0.03
Regeneration() maxCount 25

Table 10. Performance comparaison between RGA and HCGA.

N × 3×m HCGA RGA %Improvement CPUHCGA (s) CPU RGA (s) %Improvement

60× 3× 4 227.0140 227.0140 0.0000 27.5000 11.3792 −0.5862
60× 3× 8 126.9580 126.9580 0.0000 40.1000 21.4347 −0.4656
60× 3× 12 94.3647 94.0580 −0.0033 65.5000 39.9107 −0.3907
60× 3× 16 78.1323 77.7080 −0.0054 95.4000 63.2675 −0.3368
80× 3× 4 319.0330 319.0330 0.0000 36.4000 34.7705 −0.0448
80× 3× 8 174.6420 174.6420 0.0000 65.3000 55.7230 −0.1467
80× 3× 12 127.4397 127.0000 −0.0035 92.8000 78.2667 −0.1566
80× 3× 16 103.8413 103.3000 −0.0052 122.6000 89.2809 −0.2718
80× 3× 20 90.1456 89.4000 −0.0083 238.8000 234.5156 −0.0179
100× 3× 8 338.7683 338.5000 −0.0008 79.3000 78.8036 −0.0063
100× 3× 12 241.1030 240.0000 −0.0046 155.8000 87.5064 −0.4383
100× 3× 16 192.7576 191.8447 −0.0047 247.6000 170.8258 −0.3101
100× 3× 20 164.4252 163.7000 −0.0044 498.8000 455.9293 −0.0859
120× 3× 6 334.6000 329.9237 −0.0140 698.0000 533.5807 −0.2356
120× 3× 10 287.5000 283.9800 −0.0122 765.0000 613.0737 −0.1986
120× 3× 14 423.7000 420.6253 −0.0073 987.0000 586.7541 −0.4055
150× 3× 4 298.6000 294.7603 −0.0129 1002.0000 591.6787 −0.4095
150× 3× 8 409.7000 406.3901 −0.0081 1579.0000 918.2093 −0.4185
150× 3× 10 475.6700 469.9805 −0.0120 1987.0000 1894.6503 −0.0465

Average −0.0056 −0.2501

1368 A. SBIHI AND M. CHEMANGUI

Table 11. A RGA results for CC1 for Problem SCC([14, 21]× [5, 5, 5]).

Charge (k, c) x1k,c CVi x2k,c x3k,c p3k,c Comp. time Sojourn cont.

1 30 1 89 126 24 150 52 **
2 50 1 112.3698 149.3698 42.9453 192.3151 55.3698 <0.1
3 94 2 154.6849 191.6849 42.9453 234.6302 53.6849 <0.1
4 138 1 197.0000 234.0000 30.3619 264.3619 52 <0.1
5 162 2 226.7317 263.7317 40.8049 304.5366 57.7317 <0.1
6 206 2 266.9064 303.9064 42.9453 346.8517 53.9064 <0.1
7 226 2 309.2215 346.2215 30.3619 376.5834 76.2215 <0.1
8 270 2 338.9532 375.9532 30.3619 406.3151 61.9532 <0.1
9 294 1 368.6849 405.6849 42.9453 448.6302 67.6849 <0.1
10 314 1 411 448 42.9453 490.9453 90 <0.1
11 382 2 453.3151 490.3151 28.5115 518.8266 64.3151 <0.1
12 402 1 475.3151 518.1964 28.5115 546.7079 72.1964 <0.1
13 426 1 509.0777 546.0777 35.8389 581.9166 76.0777 <0.1
14 470 2 531.0777 581.2864 37.3438 648.6302 67.2864 <0.1

1 514 2 573 648 20.6302 668.6302 90 **
2 534 2 631 668 24.6302 692.6302 90 <0.1
3 558 1 655 692 36.6641 728.6641 90 <0.1
4 602 2 677 728.0339 23.8634 751.8973 82.0339 <0.1
5 646 1 705 751.2671 37.8265 789.0936 61.2671 <0.1
6 666 2 751.4634 788.4634 24.9705 813.4339 78.4634 <0.1
7 710 1 773.4634 812.8037 37.8265 850.6302 58.8037 <0.1
8 754 2 813 850 39.0664 889.0664 52 <0.1
9 778 1 837 888.4362 28.1953 916.6315 66.4362 <0.1
10 798 1 879.0013 916.0013 23.2397 939.241 74.0013 <0.1
11 842 2 901.6108 938.6108 24.0194 962.6302 52.6108 <0.1
12 866 2 925 962 24.0194 986.0194 52 <0.1
13 886 1 947 985.3892 24.0194 1009.4086 55.3892 <0.1
14 910 1 969 1008.7784 24.0194 1032.7978 54.7784 <0.1
15 930 1 991 1032.1676 24.0194 1056.187 58.1676 <0.1
16 954 2 1018.5568 1055.5568 24.0194 1079.5762 57.5568 <0.1
17 974 2 1041.946 1078.946 24.0194 1102.9654 60.946 <0.1
18 998 1 1063.946 1102.3352 24.0194 1126.3546 60.3352 <0.1
19 1018 1 1088.7244 1125.7244 27.1379 1152.8623 63.7244 <0.1
20 1042 2 1115.2321 1152.2321 36.7771 1189.0092 66.2321 <0.1
21 1062 1 1151.379 1188.379 36.7771 1225.1561 82.379 <0.1

The analysis study (Sect. 6.2) allows to better tune the parameters. Table 9 summarizes the parameters
settings for RGA.

At a first stage and based on the above tuned parameters, we have tested the performance of our RGA on
some HFS benchmark taken from [33] and another generated one.

We have adapted the RGA algorithm to the HFS model in order to solve a set of instances and their results
are presented in Table 10.

As it was noted above, a SCC problem is a particular HFS problem with 3 stages. A HFS problem is such
that jobs are single and are not belonging to a sequence. The batch is simply a set of jobs while in a SCC
configuration, a batch is represented by a set of sequences of charges to process.

Table 10 presents the performance of RGA with regards to HCGA presented in [33]. To do so, we solve
each combination of the total number of jobs in the system (N = 60, 80, 100, 120 and 150 and total number of

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1369

Table 12. A RGA results for CC2 for SCC([14, 21]× [5, 5, 5]).

Charge (k, c) x1k,c CVi x2k,c x3k,c p3k,c3 Comp. time Sojourn cont.

1 15 2 74 121 41.5 162.5 62 **
2 35 1 115.5976 162.5976 58.1391 220.7367 83.5976 <0.1
3 103 1 173.8343 220.8343 58.1391 278.9734 73.8343 <0.1
4 147 2 232.071 279.071 59.959 339.03 88.071 <0.1
5 211 1 292.1276 339.1276 59.959 399.0866 84.1276 <0.1

1 279 2 382.1842 429.1842 44.1837 503.3679 106.1842 **
2 367 2 426 473.4655 61.8963 535.3618 62.4655 <0.1
3 387 1 458 535.4594 61.8963 597.3557 104.4594 <0.1
4 475 1 534 597.4533 61.8963 659.3496 78.4533 <0.1
5 519 1 578 659.4472 63.5079 722.9551 96.4472 <0.1

1 607 2 706.0527 753.0527 39.123 822.1757 102.0527 **
2 651 2 738.0527 792.2733 54.8113 847.0846 97.2733 <0.1
3 719 2 800.1822 847.1822 54.8113 901.9935 84.1822 <0.1
4 763 1 855.0911 902.0911 54.8113 956.9024 95.0911 <0.1
5 851 2 910 957 54.8113 1011.8113 62 <0.1

machines m = m1 + m2 + m3 = 4, 8, 12, 16 and 20) with no specification on the number of machines mr per
stage r = 1, . . . , 3.

As we have noted above, a SCC problem is a HFS (FFS) problem where jobs are single and are not belonging
to a sequence. The batch is simply a set of jobs where in a SCC configuration, a batch is a set of sequences of
charges to process.

Table 10 presents the performance of RGA with regards to HCGA presented in [33]. To do so, we solve
each combination of number of jobs n=60, 80, 100,120 and 150 and number of machines m = 4, 8, 12, 16 and
20. We report the solution obtained by both CGHA and RGA in columns 2 and 3. Column 4 represents the
improvement rate recorded by RGA with regards to HCGA. The average CPU times consumed by both HCGA
and RGA are shown in columns 6 and 7.

We report the solutions obtained by both CGHA and RGA in columns 2 and 3. Column 4 represents the
improvement rate recorded by RGA with regards to HCGA. The average CPU times consumed by both HCGA
and RGA are shown in columns 5 and 6.

For medium instances, RGA obtain on average the same solution found by CGHA but in a very small time
while for large size instances RGA performs better and in a small time as well. The improvement average for
the solution is about 5.6% (column 4) and the improvement average for the CPU consuming time is about 25%
(column 7) which shows that RGA is much more faster than HCGA.

For each Tables (11 and 15), column 1 represents the charge as a couple representing the dedicated CC and
the charge number of a sequence, columns 2-4-5 represent the computed start times xrk,c (r = 1, . . . , 3) at each
stage (CVi-RSj-CCk) of a charge. Column 3 shows the CVi number for which a charge is assigned at the first
stage. Column 6 represents the computed processing time p3k,c of a charge at the last stage CCk. Columns 7-8-9
represent respectively the completion time, the sojourn (transit) time and the continuity constraints for each
charge c dedicated to CCk.

We have run our numerical tests in order to study the behavior of the GA algorithm when its is running on
problem instances of several types and configurations.

From Tables 11 and 12, the maximum completion times for both CC devices are respectively equal to 1225.15
and 1011.81. Thus the makespan Cmax is equal to 1225.15 min of the production order. This efficient solution is
reached for the charge number 21 of the sequence number 2 on CC1 device. Our approach was able to compute
the obtained solution with a CPU time of 2321.60 s.

1370 A. SBIHI AND M. CHEMANGUI

Table 13. A RGA results for CC1 for SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 12]).

Charge (k, c) x1k,c CVi x2k,c x3k,c p3k,c3 Comp. time Sojourn Cont.

1 10 1 69 106 21.3 127.3 52 **
2 24 3 89 127.24 41.094 168.334 59.24 <0.1
3 68 1 127 168.27 29.795 198.065 56.27 <0.1
4 104 2 163 198 37.385 235.385 50 <0.1
5 112 3 200.32 235.32 29.795 265.115 79.32 <0.1
6 148 2 225 265.05 29.795 294.845 73.05 <0.1
7 186 2 245 294.79 29.795 324.585 64.79 <0.1
8 200 1 289.52 324.52 29.795 354.315 80.52 <0.1
9 244 3 309.52 354.25 27.944 382.194 66.25 <0.1
10 274 3 333 382.13 27.944 410.074 64.13 <0.1
11 288 1 353 410.01 27.944 437.954 78.01 <0.1
12 324 3 402.89 437.89 27.944 465.834 69.89 <0.1
13 332 2 430.77 465.77 35.272 501.042 89.77 <0.1
14 368 1 465.98 500.98 35.272 536.252 88.98 <0.1
15 412 2 485.98 536.19 16.647 602.837 80.19 <0.1

1 450 3 567.78 602.78 22.556 625.336 108.78 **
2 464 1 590.27 625.27 22.556 647.826 117.27 <0.1
3 500 2 612.76 647.76 23.296 671.056 103.76 <0.1
4 508 1 636 671 22.565 693.565 119 <0.1
5 544 3 658.5 693.5 22.565 716.065 105.5 <0.1
6 552 1 681 716 23.527 739.527 120 <0.1
7 582 2 701 739.46 22.672 762.132 113.46 <0.1
8 632 3 721 762.07 22.672 784.742 86.07 <0.1
9 670 1 749.68 784.68 22.672 807.352 70.68 <0.1
10 684 2 772.29 807.29 23.452 830.742 79.29 <0.1
11 714 2 795.68 830.68 23.452 854.132 72.68 <0.1
12 758 1 819.07 854.07 23.452 877.522 52.07 <0.1
13 772 1 842.46 877.46 39.825 917.285 61.46 <0.1
14 808 3 882.22 917.22 23.452 940.672 65.22 <0.1
15 816 1 905.61 940.61 23.452 1014.062 80.61 <0.1

1 904 3 979 1014 25.474 1039.474 66 **
2 940 2 999 1039.4 23.452 1062.852 55.4 <0.1
3 948 3 1027.8 1062.8 39.825 1102.625 70.8 <0.1
4 992 1 1067.6 1102.6 39.825 1142.425 66.6 <0.1
5 1028 3 1107.3 1142.3 39.825 1182.125 70.3 <0.1
6 1080 2 1147.1 1182.1 23.452 1205.552 58.1 <0.1
7 1110 3 1169 1205.5 23.452 1228.952 51.5 <0.1
8 1124 1 1193.9 1228.9 23.452 1252.352 60.9 <0.1
9 1154 2 1217.3 1252.3 23.452 1275.752 54.3 <0.1
10 1168 1 1240.6 1275.6 26.571 1302.171 63.6 <0.1
11 1198 2 1267.1 1302.1 36.21 1338.31 60.1 <0.1
12 1212 1 1303.3 1338.3 36.21 1374.51 82.3 <0.1
13 1242 3 1339.4 1374.4 23.452 1397.852 88.4 <0.1
14 1292 2 1362.8 1397.8 23.452 1421.252 61.8 <0.1
15 1300 3 1386.2 1421.2 23.452 1444.652 77.2 <0.1
16 1344 2 1409.6 1444.6 23.452 1468.052 56.6 <0.1
17 1374 3 1433 1468 26.571 1494.571 50 <0.1
18 1388 2 1453 1494.5 36.21 1530.71 62.5 <0.1
19 1424 3 1495.7 1530.7 36.21 1566.91 62.7 <0.1

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1371

Table 14. A RGA results for CC2 for SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 12]).

Charge (k, c) x1k,c CVi x2k,c x3k,c p3k,c3 Comp. time Sojourn Cont.

1 25 1 84 124 43.85 167.85 54 **
2 69 2 128 168 69.734 237.734 54 <0.1
3 127 3 186 237.88 61.966 299.846 65.88 <0.1
4 201 2 260 300 59.907 359.907 54 <0.1
5 251 3 320.06 360.06 71.918 431.978 64.06 <0.1
6 333 1 392.12 432.12 46.94 479.06 54.12 <0.1
7 377 3 439.21 479.21 74.243 583.453 57.21 <0.1

1 427 1 543.61 583.61 74.243 657.853 111.61 **
2 559 1 618 658 61.844 719.844 54 <0.1
3 611 2 679.99 719.99 61.844 781.834 63.99 <0.1
4 647 2 741.99 781.99 39.071 821.061 89.99 <0.1
5 699 1 781.21 821.21 54.759 875.969 77.21 <0.1
6 735 3 836.12 876.12 54.759 930.879 96.12 <0.1
7 817 2 891.03 931.03 54.759 985.789 69.03 <0.1
8 867 1 945.94 985.9 54.759 1040.659 73.9 <0.1
9 905 3 1000.8 1040.8 39.071 1079.871 90.8 <0.1
10 949 2 1040.1 1080.1 54.759 1164.859 86.1 <0.1

1 993 3 1125 1165 54.759 1219.759 127 **
2 1037 1 1179.9 1219.9 54.759 1274.659 137.9 <0.1
3 1175 2 1234.8 1274.8 54.759 1329.559 54.8 <0.1
4 1219 1 1289.7 1329.7 39.071 1368.771 65.7 <0.1
5 1227 3 1328.9 1368.9 54.759 1423.659 96.9 <0.1
6 1307 2 1383.8 1423.8 54.759 1478.559 71.8 <0.1
7 1351 3 1438.7 1478.7 54.759 1533.459 82.7 <0.1
8 1389 1 1493.6 1533.6 55.942 1589.542 99.6 <0.1

From Tables (13–15), the maximum completion times for the three CC devices are respectively equal to
1566.91, 1589.54 and 1470.58. The makespan Cmax is then obtained for the value 1589.54 min of the production
order. The sojourn time of this charge is equal to 99.6 min while the maximum allowed sojourn time is equal to
150 min. The makespan corresponds to the charge number 8 of the sequence number 3 of the production order
on CC2. The solution is computed within a CPU time of 1267 s.

One can also remark that the continuity constraints are met for all the tests (col. 9) where the gap is less
that 0.1. This ensures computing feasible schedules for all the system.

In Table 16, column 1 represents the sequence number dedicated to a CC, column 2 represents the charge
number c of a sequence noted as a couple (k, c), columns 3-5-6 represent the start times at each stage (CVi-RSj-
CCk) of a charge c = 1, . . . , nk. Column 4 represents the CV number for which a charge c is assigned to at the
first stage. Column 7 represents the processing time computed for a charge at the last stage CC. Columns 8-9-10
represent respectively the completion time (Cmax), the sojourn (transit) time and the continuity constrains for
each charge. Column 11 represents the setup time between two successive sequences for the same CC device.
Column 12 represents the dedicated CC machine to which a charge of a sequence is assigned. Moreover, we can
remark that all the obtained continuity constraints are mostly met with an acceptable charges continuity.

The solutions are presented in Table 16 and the efficient makespan for the problem is equal to Cmax= 2605.966
and was obtained for a total CPU of 1750 s. The sojourn time of this charge is of 128 min where the maximum
allowed sojourn time for the CC2 is equal to 150 min. This efficient makespan is delivered for the processing
termination time of the charge number 4 of the sequence number 2 dedicated to CC2 machine at the last stage.

In the Table 16, the RGA approach was running on a set of production orders with a 4 CC devices system
at the last stage.

1372 A. SBIHI AND M. CHEMANGUI

Table 15. A RGA results for CC3 for SCC([15, 15, 19]× [7, 10, 8]× [5, 7, 12]).

Charge (k, c) x1k,c CVi x2k,c x3k,c p3k,c3 Comp. time Sojourn cont.

1 7 3 77 118 53.2 171.2 59 **
2 54 3 121 171.14 71.924 243.064 65.14 <0.1
3 136 1 203 243 73.08 316.08 55 <0.1
4 186 1 253 316.02 62.056 378.076 78.02 <0.1
5 230 1 338.01 378.01 62.056 440.066 96.01 <0.1

1 312 2 398 470.01 62.056 532.066 106.01 **
2 370 2 461 532 44.062 576.062 110 <0.1
3 414 2 486 576 42.311 618.311 110 <0.1
4 488 1 574 618.25 40.283 658.533 78.25 <0.1
5 532 2 599 658.47 54.971 713.441 74.47 <0.1
6 590 1 673.38 713.38 54.971 768.351 71.38 <0.1
7 620 3 698.38 768.29 54.971 823.261 96.29 <0.1

1 714 3 813.2 853.2 54.971 908.171 87.2 **
2 796 3 868.11 908.11 54.971 963.081 60.11 <0.1
3 846 1 923.01 963.01 39.283 1002.293 65.01 <0.1
4 854 1 962.23 1002.23 39.283 1041.513 96.23 <0.1
5 884 2 1001.46 1041.5 54.971 1096.471 105.5 <0.1
6 978 2 1045 1096.4 54.971 1151.371 66.4 <0.1
7 1030 1 1111.3 1151.3 54.971 1206.271 69.3 <0.1
8 1066 3 1166.2 1206.2 54.971 1261.171 88.2 <0.1
9 1110 2 1221.1 1261.1 54.971 1316.071 99.1 <0.1
10 1154 1 1276 1316 71.062 1387.062 110 <0.1
11 1280 1 1347 1387 44.364 1431.364 55 <0.1
12 1324 3 1391.3 1431.3 39.283 1470.583 55.3 <0.1

The numerical results detailed in Table 16 show that RGA obtains the solutions in less than 1 s for the
first set of instances (small ones) (see Tab. 9). On the other hand, RGA computes the solution in a CPU time
of 2105.31 s for instances that comprise up to 144 charges partitioned in 2 sequences and for a 2 CC system.
However, for larger problems instances one should allow extra time to run the RGA and for big sets. For all
these , there were no generated discontinuities (the gap between the end time and start time of a charge on
a CC for two successive charges). We remark that there is no charge that has been exceeding the maximum
allowed transit time Tk,c.

Table 17 shows that RGA succeed to obtain an efficient solution within a CPU time equal to 85.31 s for the
case of a 2 CC with 2 sequences of a total of 144 charges. While the algorithm was able to compute the solution
within a CPU time of 1678.23 s for the case of a 3 sequences of a total of 100 charges for a 3 CC system. Also,
one can remark that the problem becomes big time consuming for the problems with more than 2 CC system.

Based on the tables above, we have shown the performance of the proposed RGA for several SCC instances
and with different parameters.

We also have demonstrated that in the most cases the obtained solution gives the best trade-off between
an acceptable running time, a minimal inter-sequence dependent setup times and minimal discontinuities. Also
RGA ensures that in all cases, the maximum allowing sojourn time is respected.

7. Conclusion

This article considers a novel model to study a particular configuration of the SCC that is the inter-sequence
dependent setup times SCC planning and scheduling problem. It is able to assign and sequence a big number
of batches into several continuous casting devices. The problem can be seen as a particular case of the hybrid

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1373

Table 16. A RGA results for a 4 CC with large problem SCC([5, 5, 8]× [6, 4]× [5, 4, 5]× [6, 6, 7]).

Seq. sk Charge (k, c) x1k,c CVi x
2
k,c x3k,c p3k,c Comp. time Sojourn Cont. σsk CCk

1 1 2 1 72 135 64.967 199.967 88 1
2 27 2 97 200 64.579 264.579 128 0.033 1
3 132 1 202 265 64.589 329.589 88 0.421 1
4 177 2 247 330 64.079 394.079 108 0.411 1
5 222 3 292 485 64.546 639.546 128 90 90 1

2 1 327 2 397 550 64.888 614.888 88 1
2 392 2 462 615 64.489 679.489 88 0.112 1
3 437 1 507 680 64.986 744.986 108 0.511 1
4 487 3 557 745 64.996 809.996 123 0.014 1
5 587 1 657 855 64.259 964.259 88 45 45 1

3 1 627 2 697 920 64.67 984.67 113 1
2 717 3 787 985 64.454 1049.454 88 0.33 1
3 767 2 837 1050 64.375 1114.375 103 0.546 1
4 807 3 877 1115 64.329 1179.329 128 0.625 1
5 1002 2 1072 1180 95.982 1275.982 88 0.671 1
6 1067 1 1137 1275 95.305 1370.305 118 −0.982 1
7 1157 3 1227 1370 95.448 1465.448 123 −0.305 1
8 1257 1 1327 1510 95.581 1650.581 118 45 45 1

1 1 1342 2 1412 1605 95.677 1700.677 128 2
2 1437 2 1507 1700 95.156 1795.156 128 −0.677 2
3 1632 1 1702 1795 85.985 1880.985 88 −0.156 2
4 1677 3 1747 1880 85.863 1965.863 128 −0.985 2
5 1782 3 1852 1965 85.994 2050.994 108 −0.863 2
6 1882 2 1952 2110 85.334 2255.334 93 59.006 60 2

2 1 1937 2 2007 2195 85.932 2280.932 123 2
2 2017 1 2087 2280 85.721 2365.721 128 −0.932 2
3 2142 1 2212 2365 85.942 2450.942 88 −0.721 2
4 2187 2 2257 2485 85.966 2605.966 128 34.058 35 2

1 1 132 1 202 305 50.188 355.188 128 3
2 182 3 252 355 50.392 405.392 128 −0.188 3
3 237 3 307 405 50.492 455.492 123 −0.392 3
4 282 1 352 455 50.652 505.652 128 −0.492 3
5 332 1 402 550 50.422 600.422 128 44.348 45 3

2 1 482 3 552 600 50.019 650.019 88 3
2 532 2 602 650 50.223 700.223 88 −0.019 3
3 582 2 652 700 50.282 750.282 88 −0.223 3
4 632 1 702 785 50.93 940.93 88 0.718 35 3

3 1 672 1 742 802 50.417 955.417 98 3
2 752 1 822 852 60.915 1015.915 128 −0.417 3
3 812 2 882 912 60.594 1075.594 128 −0.915 3
4 912 1 982 972 60.251 1135.251 88 −0.594 3
5 932 2 1002 1062 60.511 1255.511 128 29.749 30 3

1 1 992 3 1062 1122 60.875 1285.875 128 4
2 1092 2 1162 1182 60.639 1345.639 88 −0.875 4
3 1112 2 1182 1242 60.389 1405.389 128 −0.639 4
4 1212 2 1282 1302 60.414 1465.414 88 −0.389 4
5 1292 2 1362 1362 50.684 1515.684 128 −0.414 4
6 1342 3 1412 1472 50.426 1685.426 128 59.316 60 4

1374 A. SBIHI AND M. CHEMANGUI

Table 16. (Continued)

Seq. sk Charge (k, c) x1k,c CVi x
2
k,c x3k,c p3k,c Comp. time Sojourn Cont. σsk CCk

2 1 1392 1 1462 1522 50.074 1675.074 128 4
2 1482 3 1552 1572 50.343 1725.343 88 −0.074 4
3 1492 1 1562 1622 50.834 1775.834 128 −0.343 4
4 1542 3 1612 1672 50.354 1825.354 128 −0.834 4
5 1677 1 1762 1722 55.11 1880.11 103 −0.354 4
6 1747 1 1817 1807 55.522 1995.522 88 29.89 30 4

3 1 1802 2 1872 1862 55.24 2020.24 88 4
2 1827 3 1927 1917 55.068 2075.068 118 −0.24 4
3 1872 1 1942 1972 55.866 2130.866 128 −0.068 4
4 1927 3 1997 2027 55.6 2185.6 128 −0.866 4
5 1982 3 2052 2082 55.026 2240.026 128 −0.6 4
6 2037 3 2117 2137 55.306 2295.306 128 −0.026 4
7 2092 1 2162 2192 55.754 2350.754 128 −0.306 4

Table 17. RGA experiment results for different CC systems.

Inst. Batch Best Cmax CPU (sec) Tot. charges

1 (5)× (5)× (5) 427.58 1.09 15
2 (14, 21)× (5, 5, 5) 1225.15 2.12 50
3 (15, 10, 12)× (5, 5, 5) 1559.00 5.75 52
4 (15, 14, 30)× (5, 5, 5) 1807.01 6.55 74
5 (10, 13, 17, 8)× (5, 5, 5, 5, 5) 1756.72 40.99 73
6 (18, 11, 23, 15, 27)× (5, 5, 5, 5, 5, 5, 5, 5, 5, 5) 2506,04 85.31 144
7 (10, 10)× (10, 10)× (10, 10) 706.07 7.45 60
8 (15, 15, 19)× (7, 10, 8)× (5, 7, 12) 1589.54 8.31 98
9 (5, 15, 5, 10)× (10, 10, 10, 5)× (5, 5, 5, 5) 1239.34 67.23 90
10 (5, 10, 5, 10, 5)× (10, 10, 10, 5, 5)× (5, 5, 5, 5, 5) 1678.23 217.12 100
11 (5, 5, 5)× (6, 4)× (5, 4, 5)× (6, 6, 7) 2605.96 90.86 58
12 (10, 10, 10, 10)× (10, 10, 10,)× (5, 5, 5)× (5, 5) 1543.27 387.12 95
13 (5, 5, 5, 5, 5)× (10, 5, 10, 5)× (5, 5, 5)× (5, 5)× (10, 5) 1278.65 567.35 95

flowshop problem (HFS) with 3 stages which is also known as the flexible flowshop problem. The objective
stated as the Makespan is to minimize the maximum completion time of the last charge of the last sequence
while considering the inter-sequence dependent setup times between sequences at the last stage. We developed
a generalized model that could consider any number of the underlying devices at each stage and for any number
of the dedicated sequences. One of the remarks that we can make is that the studied problem is very difficult
and handles a huge number of decision variables that make it intractable for big size instances with a production
bottleneck at the last stage.

The proposed RGA approach provides suitable operations to avoid infeasible solutions by including two infor-
mations in each gene (k, c) that are the controlling and coding operations. The first information controls coding
of the genes. The second information contains the genetic information. These strategies show the flexibility and
ability to produce efficient solutions for the studied problem.

We have recorded some promising results by considering setup times that exist between sequences. In fact,
setup times are only to take into account for the last charge for a sequence and the first charge of the next
sequence to process on the same CC device. We have ensured that: (i) the sojourn time must be satisfied,
(ii) the setup times must be minimized and (iii) the continuity constraints must be satisfied. The RGA approach

A RGA FOR SOLVING THE SCC WITH THE SETUP TIMES AND DEDICATED MACHINES 1375

that we developed gives satisfactory results in terms of the number of the processed sequences with different
sizes and densities. Our approach were specifically tailored for the studied problem with specific chromosomes
encoding and specific evolutionary operators (crossover, mutation,. . .). The algorithm was set to run on both
real life similar problems and other randomly generated ones to establish the limits of the run time.

To overcome the complexity and the hardness of the SCC, some future research may consider to embed an
high performance computing based GPU to minimize the total run time to be able to solve very large instances
for the SCC industrial system.

References
[1] A. Atighehchian, M. Bijari and H. Tarkesh, A novel hybrid algorithm for scheduling steelmaking continuous casting production.

Comput. Oper. Res. 36 (2009) 2450–246.

[2] S. Basu and G. Dutta, A Survey of the Non-Optimization techniques used in an integrated steel plant. Manag. Dyn. 6 (2006)
33–68.

[3] A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning. Int. J. Prod.
Econom. 104 (2006) 260–270.

[4] A. Bellabdaoui, A. Fiordaliso and J. Teghem, A heuristic algorithm for scheduling the steelmaking continuous casting process.
Pac. J. Optim. 1 (2005) 447–464.

[5] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Scheduling Computer Manufacturing Processes. Springer (1996).
[6] N. Chakraborti, R. Kumar and D. Jain, A study of the continuous casting mold using a pareto-converging genetic algorithm.

Appl. Math. Model. 25 (2001) 287–297.
[7] P.C. Chang and S.H. Chen, Integrating Dominance Properties with Genetic Algorithms for Parallel Machine Scheduling

Problems with Setup Times. Appl. Soft Comput. 11 (2011) 1263–1274.
[8] L. Chen, N. Bostel, P. Dejax, J.C. Cai and L.F. Xi, A tabu search algorithm for the integrated scheduling problem of container

handling systems in a maritime terminal. Eur. J. Oper. Res. 181 (2007) 40–58.
[9] P.I. Cowling, D. Ouelhadj and S. Petrovic, Dynamic scheduling of steel casting and mill using multi-agents. Prod. Plan. Control

15 (2004) 495–501.

[10] B. de Schutter, Designing optimal timing and sequencing strategies for a continuous steel foundry, in Proceedings of the
European Control Conference 1999 (ECC’99), Karlsruhe, Germany, Paper 160/BP–2.6, Aug.–Sept. (1999).

[11] G. Dutta and R. Fourer, A survey of mathematical programming application in integrated steel plants. Manuf. Service Oper.
Manag. 3 (2001) 387–400.

[12] I. Ferretti, S. Zanoni and L. Zavanella, Production-inventory scheduling using ant system metaheuristic. Int. J. Prod. Econom.
104 (2008) 317–326.

[13] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of Np-Completness. W.H. Freeman and
Company, San Francisco (1979).

[14] J.N.D. Gupta, Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39 (1988) 359–364.
[15] I. Harjunkoski and I.E. Grossmann, A decomposition approach for the scheduling of a steel plant production. Comput. Chem.

Eng. 25 (2001) 1647–1660.
[16] M. Helal, G. Rabadi and A. Al-Salem, A tabu search algorithm to minimize the makespan for the unrelated parallel machines

scheduling problem with setup times. Int. J. Oper. Res. 3 (2006) 182–192.
[17] J.R. Kalagnanam, M.W. Dawande, M. Trumbo and H.S. Lee, The surplus inventory matching problem in the process industry.

Oper. Res. 48 (2000) 505–516.
[18] C.-H. Ko and S.-F. Wang, Precast production scheduling using multi-objective genetic algorithms. Expert Syst. Appl. 38

(2011) 8293–8302.
[19] H.S. Lee, S.S. Murthy, S.W. Haider and D.V. Morse, Primary production scheduling at steelmaking industries. IBM J. Res.

Develop 40 (1996) 231–252.
[20] K. Lee, S.Y. Chang and Y. Hong, Continuous slab caster scheduling and interval graphs. Prod. Plan. Control 15 (2004)

495–501.
[21] L. Li, Q. Tang, P. Peng Zheng, L. Zhang and C.A. Floudas, An improved self-adaptive genetic algorithm for scheduling steel-

making continuous casting production, in Proceedings of the 6th International Asia Conference on Industrial Engineering and
Management Innovation (IEMI2015), Core Theory and Applications of Industrial Engineering, 1: 399–410, Tianjin, July
25–26th (2015).

[22] R. Linn and W. Zhang, Hybrid flow shop scheduling: a survey. Comput. Ind. Eng. 31 (1999) 57–61.
[23] H. Missbauer, W. Hauber and W. Stadler, A scheduling system for the steelmaking-continuous casting process. A case study

from the steel-making industry. Int. J. Prod. Res. 47 (2009) 4147–4172.

[24] B. Naderi, M. Zandieh, A.K.G. Balagh and V. Roshanaei, An improved simulated annealing for hybrid flowshops with sequence-
dependent setup and transportation times to minimize total completion time and total tardiness. Expert Syst. Appl. 36 (2009)
9625–9633.

[25] T. Nishi, Y. Hiranaka and M. Inuiguchi, Lagrangian relaxation with cut generation for hybrid flow shop scheduling problems
to minimize the total weighted tardiness. Comput. Oper. Res. 37 (2010) 189–198.

1376 A. SBIHI AND M. CHEMANGUI

[26] D. Pacciarelli and M. Pranzo, Production scheduling in a steelmaking-continuous casting plant. Comput. Chem. Eng. 28
(2004) 2823–2835.

[27] Q.K. Pan, An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur. J.
Oper. Res. 250 (2016) 702–714.

[28] Q.K. Pan, L. Wang, K. Mao, J.H. Zhao and M. Zhang, An effective artificial bee colony algorithm for a real-world hybrid
flowshop problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 10 (2013) 307–322.

[29] C. Rajendran and D. Chaudhuri, A multi-stage parallel processor flowshop problem with minimum flowtime. Eur. J. Oper.
Res. 57 (1992) 11–122.

[30] R. Ruiz and C. Maroto, A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility.
Eur. J. Oper. Res. 169 (2006) 781–800.

[31] A. Sbihi, A. Bellabdaoui and J. Teghem, Solving a mixed integer linear program with times setup for the steel-continuous
casting planning and scheduling problem. Int. J. Prod. Res. 52 (2014) 7276–7296.

[32] H. Sherali, S. Sarin and M. Kodialam, Models and algorithms for a two-stage production process. Prod. Plan. Control 1 (1990)
27–39.

[33] D.F. Shiau, S.C. Cheng and Y.M. Huang, Proportionate flexible flow shop scheduling via a hybrid constructive genetic
algorithm. Expert Syst. Appl. 34 (2008) 1133–1143.

[34] L. Tang, and G. Wang, Decision Support system for the batching problems of steelmaking and continuous-casting production.
Omega Int. J. Manag. Sci. 36 (2008) 976–991.

[35] L. Tang, J. Liu, A. Rong and Z. Yang, A mathematical programming model for scheduling steelmaking-continuous casting
production. Eur. J. Oper. Res. 120 (2000) 423–435.

[36] L. Tang, J. Liu, A. Rong and Z. Yang, A review of planning and scheduling systems and methods for integrated steel production.
Eur. J. Oper. Res. 133 (2001) 1–20.

[37] L. Tang, P.B. Luh, J. Liu and L. Fang, Steel-making process scheduling using Lagrangian relaxation. Int. J. Prod. Res. 40
(2002) 55–70.

[38] L. Tang, H. Xuan and J. Liu, A new lagrangian relaxation algorithm for hybrid flow shop scheduling to minimize total weighted
completion time. Comput. Oper. Res. 33 (2006) 3344–3359.

[39] L. Tang, X. Wang and J. Liu, Color-coating production scheduling for coils in inventory in steel industry. Autom. Sci. Eng.
IEEE Trans. 5 (2008) 544–549.

[40] W.S. Um, Computer simulation of the steelmaking process with ARENA. J. Korean Soc. Maint. Eng. 7 (2002) 77–90.

[41] H. Xuan and L. Tang, Scheduling a hybrid flow shop with batch production at the last stage. Comput. Oper. Res. 34 (2007)
2178–2733.

[42] J. Yang, H. Che, F.P. Dou and T. Zhou, Genetic algorithm-based optimization used in rolling schedule. J. Iron Steel Res. Int.
5 (2008) 18–22.

[43] V. Yaurima, L. Burtseva and A. Tchernykh, Hybrid flowshop with unrelated machines, sequence dependent setup time,
availability constraints and limited buffers. Comput. Ind. Eng. 56 (2009) 1452–1463.

[44] D.F. Zhu, Z. Zheng and X.Q. Gao, Intelligent optimization-based production planning and simulation analysis for steelmaking
and continuous casting process. J. Iron Steel Res. Int. 17 (2010) 19–24.

	A Genetic Algorithm for the Steel Continuous Casting with inter-sequence Dependent Setups and Dedicated Machines
	1 Introduction
	2 Literature survey and problem positioning
	3 Problem statement
	3.1 Process, sequences and continuity constraints

	4 Continuous casting of the pre-ordered sequences
	4.1 Notations
	4.1.1 Sets, constants and indices
	4.1.2 Data, parameters and settings
	4.1.3 Decision variables

	4.2 A SCC mathematical model
	4.2.1 Constraints

	4.3 The objective function

	5 A genetic algorithm for the SCC with inter-sequence dependent setup time
	5.1 Encoding chromosomes and an initial solution
	5.2 GA operators
	5.2.1 Crossover
	5.2.2 Mutation

	5.3 The GA algorithm

	6 Experimental tests
	6.1 Performance of the RGA
	6.2 Sensitivity analysis and parameters setting
	6.2.1 Sensitivity analysis of the population size
	6.2.2 Sensitivity analysis of the number of populations

	6.3 Numerical tests

	7 Conclusion

	References

