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DUALITY OF VARIATIONAL PROBLEMS WITH A NEW

APPROACH

S.K. Padhan*

Abstract. The present investigation introduces the third order duality in variational problems, as
because, in certain situations, first and second order duality do not yield solutions but it succeeds in
finding the desired results. The duality results for the pair of variational primal problems and their
corresponding third order dual problems are demonstrated. Counterexamples are provided to justify
the importance of the current research work. It is found that many reported results of the literature
are particular cases of this paper.
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1. Introduction

Calculus of variation is an important tool for solving several real life problems like optimization of orbits,
dynamics of rigid bodies, theory of variations, etc. To find the optimal value of a definite integral involving
a certain function subject to fixed point boundary conditions is the main objective in the field of science and
engineering. Based on the earlier work of Friedrichs [7], Courant and Hilbert [6] established the duality of an
unconstrained variational problem. Afterwards, Hanson [10] observed some of the duality results of mathematical
programming which had analogues in variational calculus. Mond and Hanson [16] formulated a constrained
variational problem as a mathematical programming problem considering the above mentioned ideas in the
classical calculus of variations. Again, they used the optimality conditions of Valentine [29] to obtain the Wolfe
type dual variational problem under convexity. The first order duality for a class of variational problems with
differential inequality constraints was discussed by Mond and Hanson [16]. Later, Bector et al. [2] studied the
Mond-Weir type duality for the problems of Mond and Hanson [16] to weaken the convexity requirement using
pseudoconvexity and quasiconvexity. After that, Chen [3] and Mond et al. [17] introduced the notion of invexity
in variational problems. Nahak and Nanda [18] formulated Wolfe and Mond-Weir type duals for multiobjective
variational problems and established different duality theorems under invexity assumptions. Later on, Nahak
and Nanda [19] generalized their results [18] under pseudoinvexity assumptions. Further, Mishra and Mukherjee
[15] generalized results under (F, ρ)-convexity introduced by Preda [26]. Based on it, Ahmad and Gulati [1]
established the duality results in multiobjective variational problems. Nahak and Nanda [20, 21] studied the
symmetric duality assuming pseudoinvexity in variational problems and established optimality conditions and
duality results for the multiobjective variational problems under V -invexity assumptions. Since mathematical
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programming and classical calculus of variations have undergone independent developments, it felt that, the
mutual adoption of ideas and techniques may prove fruitful for further development in this field. Targeting the
above outputs, Husain and Jabeen [11] formulated a class of constrained variational problems with higher order
derivatives and established a number of duality results for the Wolfe and Mond-Weir type duals under invexity
and generalized invexity assumptions.

The central concept of optimization is the duality theory. Some recent developments of duality in vector
optimization problems are [9, 28]. Mangasarian [14] introduced second and higher order duality for the nonlinear
programming problems and proved suitable duality results. Following the procedure adopted by Mangasarian
[14], Chen [5] formulated the second order duality for a class of constrained variational problems and obtained
appropriate second order duality results (weak, strong and converse duality results) under invexity assumptions.
Later, Gulati and Mehndiratta [8] studied the optimality conditions and the converse duality result for the second
order multiobjective variational problems. A number of weakening situations in the second and higher order
duality of the nonlinear variational problems had been discussed by many authors (see [4, 8, 12, 13, 22, 25]).
Again, Sharma [27] established the higher order mixed type dual model for the variational control primal
problem and proved weak, strong and strict converse duality results under higher order (F,G, ρ)-convexity
assumptions. Recently, the concept of third order duality for the general nonlinear programming problems with
a new approach was developed by Padhan and Nahak [24] and proved appropriate duality results. It was also
shown that the third order duality of a nonlinear programming problem had solutions, whereas; the first and
second order dual failed.

In this paper, especially the third order dual of the constrained variational primal problems have been studied
and obtained duality relationships between the variational primal and its third order dual for the first time.
Furthermore, the importance of the present study is exploited through numerical examples.

2. Notations and preliminaries

Through out this paper, let I = [s0, s1] be a closed interval of the real line R. Consider the function
f(t, s(t), ṡ(t)), where s : I → Rn and ṡ denotes the derivative of s with respect to t. Here t is an indepen-
dent variable. The symbol zT stands for the transpose of a vector z. Let fs and fṡ denote the first partial
derivatives of f with respect to s, and ṡ, respectively, that is, f with respect to s, and ṡ, respectively, that is,

fs =

(
∂f

∂s1
,
∂f

∂s2
, . . . ,

∂f

∂sn

)T

,

fṡ =

(
∂f

∂ṡ1
,
∂f

∂ṡ2
, . . . ,

∂f

∂ṡn

)T

.

The Hessian matrix of f with respect to s(t) is denoted by fss and is defined as

fss =



∂2f
∂s1∂s1

∂2f
∂s1∂s2

. . . ∂2f
∂s1∂sn

∂2f
∂s2∂s1

∂2f
∂s2∂s2

. . . ∂2f
∂s2∂sn

. . . .

. . . .

. . . .
∂2f

∂sn∂s1

∂2f
∂sn∂s2

. . . ∂2f
∂sn∂sn


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and the m× n Jacobian matrix gs with respect to s is written as

gs =



∂g1

∂s1

∂g1

∂s2
. . . ∂g1

∂sn
∂g2

∂s1

∂g2

∂s2
. . . ∂g2

∂sn
. . . .
. . . .
. . . .

∂gm

∂s1

∂gm

∂s2
. . . ∂gm

∂sn


.

Similarly, fṡ, fṡs, fsṡ and gṡ, are defined.
Now the n× n2 matrix fsss = fTs ⊗ fss is defined as

fsss =



∂3f
∂s1∂s1∂s1

. . . ∂3f
∂s1∂s1∂sn

. . . ∂3f
∂s1∂sn∂s1

. . . ∂3f
∂s1∂sn∂sn

∂3f
∂s2∂s1∂s1

. . . ∂3f
∂s2∂s1∂sn

. . . ∂3f
∂s2∂sn∂s1

. . . ∂3f
∂s2∂sn∂sn

. . . . . . .

. . . . . . .

. . . . . . .
∂3f

∂sn∂s1∂s1
. . . ∂3f

∂sn∂s1∂sn
. . . ∂3f

∂sn∂sn∂s1
. . . ∂3f

∂sn∂sn∂sn


.

Again, fssṡ, fsṡṡ and fṡṡṡ can be defined accordingly.
Let S(I,Rn) be the set of all piecewise smooth functions s with norm ‖s‖ = ‖s‖∞ + ‖Ds‖∞, where the

differentiation operator D is given by

s̄ = Ds⇔ s(t) = ᾱ+

∫ t

s0

s̄(x)dx, (2.1)

and ᾱ is a given boundary value; thus d
dt = D except at discontinuities. Consider the constrained variational

primal problem

(VP) min

∫ s1

s0

f (t, s(t), ṡ(t)) dt,

subject to

g (t, s(t), ṡ(t)) ≤ 0, t ∈ I, (2.2)

s(s0) = γ1, s(s1) = γ2; ṡ(s0) = δ1, ṡ(s1) = δ2, (2.3)

where f and g are thrice continuously differentiable functions from I × Rn × Rn into R and Rm, respectively.
The first order dual of (VP) formulated by Mond and Hanson [16] is given by:

(VFD) max

∫ s1

s0

{
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

}
dt
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subject to

fs (t, s̄(t), ˙̄s(t)) + gs (t, s̄(t), ˙̄s(t))
T
ᾱ(t)− d

dt

[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
= 0, t ∈ I, (2.4)

s̄(s0) = γ1, s̄(s1) = γ2; ˙̄s(s0) = δ1, ˙̄s(s1) = δ2, (2.5)

ᾱ(t) ∈ Rm
+ , t ∈ I. (2.6)

Taking the approach of Mangasarian [14], Chen [5] formulated the following second order duality (VSD) for the
class of constrained variational problems (VP).

(VSD) max

∫ s1

s0

{
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

−1

2
β̄(t)T

[
fss (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

−2
d

dt

(
fsṡ (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
+

d2

dt2

(
fṡṡ (t, s̄(t), ˙̄s(t)) +

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

) ]
β̄(t)

}
dt

subject to

fs (t, s̄(t), ˙̄s(t)) + gs (t, s̄(t), ˙̄s(t))
T
ᾱ(t)− d

dt

[
fṡ (t, s̄(t), ˙̄s(t))

+gṡ (t, s̄(t), ˙̄s(t))
T
ᾱ(t)

]
+
[
fss (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

−2
d

dt

(
fsṡ (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
+

d2

dt2

(
fṡṡ (t, s̄(t), ˙̄s(t)) +

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

) ]
β̄(t) = 0, t ∈ I, (2.7)

s̄(s0) = γ1, s̄(s1) = γ2; ˙̄s(s0) = δ1, ˙̄s(s1) = δ2, (2.8)

ᾱ(t) ∈ Rm
+ , β̄(t) ∈ Rn, t ∈ I. (2.9)

Again, Padhan and Nahak [23] studied the higher order duality (VHD) of the primal (VP) by introducing two
different functions h : I × Rn × Rn × Rn −→ R and k : I × Rn × Rn × Rn −→ Rm. That is,

(VHD) max

∫ s1

s0

[
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t)) + h (t, s̄(t), ˙̄s(t), p) + ᾱ(t)T k (t, s̄(t), ˙̄s(t), p)

]
dt

subject to

∇ph (t, s̄(t), ˙̄s(t), p) +∇pᾱ(t)T k (t, s̄(t), ˙̄s(t), p) = 0, t ∈ I, (2.10)
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s̄(s0) = γ1, s̄(s1) = γ2; ˙̄s(s0) = δ1, ˙̄s(s1) = δ2, (2.11)

ᾱ(t) ∈ Rm
+ , t ∈ I, (2.12)

where ∇ph (t, s̄(t), ˙̄s(t), p) and ∇pᾱ(t)T k (t, s̄(t), ˙̄s(t), p) are the gradient of h and ᾱk, respectively, with respect
to p. This is due to Mangasarian [14].

Motivated with the work of Padhan and Nahak [24], a new type of duality for the variational primal (VP) is
introduced which is named variational third order dual (VTD) by taking the cubic approximations on f and g.
The present study is quite different from Mangasarian [14] as it is not a particular case of any existing methods.

The third order duality (VTD) of (VP) is defined as

(VTD) max

∫ s1

s0

{
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

−1

2
β̄(t)T

[
fss (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

−2
d

dt

(
fsẋ (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
+

d2

dt2

(
fṡṡ (t, s̄(t), ˙̄s(t)) +

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

) ]
β̄(t)

−5

6
β̄(t)

[
fsss (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
s

−3
d

dt

(
fssṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
ṡ

)
+3

d2

dt2

(
fsṡṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

)
− d3

dt3

(
fṡṡṡ (t, s̄(t), ˙̄s(t)) +

((
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

)]
β̄2(t)

}
dt

subject to

fs (t, s̄(t), ˙̄s(t)) + gs (t, s̄(t), ˙̄s(t))
T
ᾱ(t)− d

dt

[
fṡ (t, s̄(t), ˙̄s(t))

+gṡ (t, s̄(t), ˙̄s(t))
T
ᾱ(t)

]
+
[
fss (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

−2
d

dt

(
fsṡ (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
+

d2

dt2

(
fṡṡ (t, s̄(t), ˙̄s(t)) +

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

) ]
β̄(t)

+
[
fsss (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
s

−3
d

dt

(
fssṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
ṡ

)
+3

d2

dt2

(
fsṡṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

)
− d3

dt3

(
fṡṡṡ (t, s̄(t), ˙̄s(t)) +

((
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

)]
β̄2(t) = 0, t ∈ I, (2.13)
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s̄(s0) = γ1, s̄(s1) = γ2; ˙̄s(s0) = δ1, ˙̄s(s1) = δ2, (2.14)

ᾱ(t) ∈ Rm
+ , β̄(t) ∈ Rn, t ∈ I, (2.15)

where β̄2(t) = β̄(t)⊗ β̄(t), a matrix of order n2 × 1.
Let

H (t, s̄(t), ˙̄s(t), ᾱ(t)) = fss (t, s̄(t), ˙̄s(t)) +
(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

−2
d

dt

[
fsṡ (t, s̄(t), ˙̄s(t)) +

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

]
+

d2

dt2

[
fṡṡ (t, s̄(t), ˙̄s(t)) +

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

]
and

I (t, s̄(t), ˙̄s(t), ᾱ(t)) = fsss (t, s̄(t), ˙̄s(t)) +
((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
s

−3
d

dt

[
fssṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
s

)
ṡ

]
+3

d2

dt2

[
fsṡṡ (t, s̄(t), ˙̄s(t)) +

((
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

]
− d3

dt3

[
fṡṡṡ (t, s̄(t), ˙̄s(t)) +

((
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
ṡ

)
ṡ

]
.

Then H is an n× n symmetric matrix and I an n× n2 matrix. Now the above dual (VTD) can be expressed as

(VTD) max

∫ s1

s0

[
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

−1

2
β̄(t)TH (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)− 5

6
β̄(t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt

subject to

fs (t, s̄(t), ˙̄s(t)) + gs (t, s̄(t), ˙̄s(t))
T
ᾱ(t)− d

dt

[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
+H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t) + I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t) = 0, t ∈ I, (2.16)

s̄(s0) = γ1, s̄(s1) = γ2; ˙̄s(s0) = δ1, ˙̄s(s1) = δ2, (2.17)

ᾱ(t) ∈ Rm
+ , β̄(t) ∈ Rn, t ∈ I. (2.18)

Remark 2.1.

(1) If β̄(t) = 0, then (VTD) becomes the first order duality defined by Mond and Hanson [16].
(2) If the third order derivatives are zero, then it reduces to second order dual of Chen [5] and Padhan and

Nahak [22].
(3) If s is independent of t then the results of Padhan and Nahak [24] are particular cases of the present work.
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(4) The third order duality can be extended for any positive integer order by taking suitable approximations
on f and g.

Lemma 2.2. [5] If (VP) attains a local (global) minimum at s̄ ∈ S, then there exist Lagrange multiplier τ ∈ R
and piecewise smooth λ : I → Rm such that,

τfs(t, s̄(t), ˙̄s(t)) + gs(t, s̄(t), ˙̄s(t))Tλ(t) =
d

dt
[τfṡ(t, s̄(t), ˙̄s(t)) + gṡ(t, s̄(t), ˙̄s(t))Tλ(t)], t ∈ I (2.19)

λ(t)T g(t, s̄(t), ˙̄s(t)) = 0, t ∈ I (2.20)

(τ, λ(t)T ) ≥ 0, t ∈ I. (2.21)

Remark 2.3. Equations (2.19)–(2.21) give the Fritz-John necessary conditions for (V P ), and they become
Kuhn-Tucker conditions if τ = 1.

3. Third order duality results

In this section, the weak, strong and converse duality relationships between the variational primal (VP) and
the corresponding third order dual (VTD) are established. An alternative proof of converse duality theorem is
also discussed.

Theorem 3.1 (Weak duality). Let s(t) ∈ S(I,Rn), and (s̄(t), ᾱ(t), β̄(t)) be the feasible solutions of (VP)

and (VTD), respectively. Suppose

∫ s1

s0

f(t, ., .)dt and

∫ s1

s0

ᾱ(t)T g(t, ., .)dt are convex functions in s and ṡ. If

there exist real valued functions m (t, s̄(t), ˙̄s(t), ᾱ(t)) > 0, M (t, s̄(t), ˙̄s(t), ᾱ(t)) > 0, n (t, s̄(t), ˙̄s(t), ᾱ(t)) > 0 and
N (t, s̄(t), ˙̄s(t), ᾱ(t)) > 0 on I × Rn × Rn × Rm with the following conditions:

β̄(t)H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t) ≥ m (t, s̄(t), ˙̄s(t), ᾱ(t)) ‖β̄(t)‖2, t ∈ I, (3.1)

‖H (t, s̄(t), ˙̄s(t), ᾱ(t)) ‖ ≤ M (t, s̄(t), ˙̄s(t), ᾱ(t)) , t ∈ I, (3.2)

β̄(t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)2 ≥ n (t, s̄(t), ˙̄s(t), ᾱ(t)) ‖β̄(t)‖3, t ∈ I, (3.3)

‖I (t, s̄(t), ˙̄s(t), ᾱ(t)) ‖ ≤ N (t, s̄(t), ˙̄s(t), ᾱ(t)) , t ∈ I. (3.4)

Then ∫ s1

s0

f (t, s(t), ṡ(t)) dt ≥
∫ s1

s0

[
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))− 1

2
β̄(t)TH (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)

−5

6
β̄(t)T I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)2

]
dt,

provided

‖β̄(t)‖ ≥ max

{
6

5
· N (t, s̄(t), ˙̄s(t), ᾱ(t))

n (t, s̄(t), ˙̄s(t), ᾱ(t))
, 2
M (t, s̄(t), ˙̄s(t), ᾱ(t))

m (t, s̄(t), ˙̄s(t), ᾱ(t))

}
‖s(t)− s̄(t)‖. (3.5)

Proof. Now∫ s1

s0

f (t, s(t), ṡ(t)) dt−
∫ s1

s0

[
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

−1

2
β̄(t)TH (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)− 5

6
β̄(t)T I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)2

]
dt
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≥
∫ s1

s0

[(s(t)− s̄(t)) fs (t, s̄(t), ˙̄s(t)) + (ṡ(t)− ˙̄s(t)) fṡ (t, s̄(t), ˙̄s(t))] dt

+

∫ s1

s0

[
(s(t)− s̄(t))

(
gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

)
+ (ṡ(t)− ˙̄s(t))

(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

) ]
dt

+
1

2

∫ s1

s0

β̄T (t)H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)dt+
5

6

∫ s1

s0

β̄T (t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)dt(
by convexity of

∫ s1

s0

f(t, ., .)dt,

∫ s1

s0

ᾱ(t)T g(t, ., .)dt, (2.2) and (2.18)

)
=

∫ s1

s0

(s(t)− s̄(t))
[
fs (t, s̄(t), ˙̄s(t)) + gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
dt

+

∫ s1

s0

(ṡ(t)− ˙̄s(t))
[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
dt

+
1

2

∫ s1

s0

β̄T (t)H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)dt+
5

6

∫ s1

s0

β̄T (t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)dt

=

∫ s1

s0

(s(t)− s̄(t))
[ d

dt

{
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

}
−H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)

]
dt−

∫ s1

s0

(s(t)− s̄(t)) I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)dt

+

∫ s1

s0

(ṡ(t)− ˙̄s(t))
[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
dt

+
1

2

∫ s1

s0

β̄T (t)H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)dt+
5

6

∫ s1

s0

β̄T (t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)dt

(by (2.16))

= −
∫ s1

s0

(ṡ(t)− ˙̄s(t))
[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
dt

−
∫ s1

s0

(s(t)− s̄(t))
[
H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t) + I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt

+

∫ s1

s0

(ṡ(t)− ˙̄s(t))
[
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

]
dt

+
1

2

∫ s1

s0

β̄T (t)H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)dt+
5

6

∫ s1

s0

β̄T (t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)dt

(by integrating by parts, (2.3) and (2.17))

≥ 1

2

∫ s1

s0

m (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||2dt+
5

6

∫ s1

s0

n (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||3dt

−
∫ s1

s0

||s(t)− s̄(t)||M (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||dt

−
∫ s1

s0

||s(t)− s̄(t)||M (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||2dt

(by(3.1), (3.2), (3.3) and (3.4))
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=
1

2

∫ s1

s0

[
m (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||

(
||β̄(t)|| − 2

M (t, s̄(t), ˙̄s(t), ᾱ(t))

m (t, s̄(t), ˙̄s(t), ᾱ(t))
||s(t)− s̄(t)||

)]
dt

+
5

6

∫ s1

s0

[
n (t, s̄(t), ˙̄s(t), ᾱ(t)) ||β̄(t)||2

(
||β̄(t)|| − 6

5
· N (t, s̄(t), ˙̄s(t), ᾱ(t))

n (t, s̄(t), ˙̄s(t), ᾱ(t))
||s(t)− s̄(t)||

)]
dt

≥ 0.(
by (3.5)

)
Hence the result.

Theorem 3.2 (Strong duality). Let u(t) ∈ S(I,Rn) be a local (global) optimal solution of (V P ), then there
exists a piecewise smooth function α : I −→ Rm such that (u(t), α(t), β(t) = 0) is a feasible solution of (VTD)
and the two objective values are equal. Again, if the Weak Duality Theorem 3.1 holds for every feasible solution(
s̄(t), ᾱ(t), β̄(t)

)
of (VTD), then (u(t), α(t), β(t) = 0) is an optimal solution of (V TD).

Proof. Since u(t) is a local optimal solution of (V P ), by Lemma 2.2, there exists a piecewise smooth α : I −→ Rm

such that (u(t), α(t)) satisfies

fs(t, u(t), u̇(t)) + gs(t, u(t), u̇(t))Tα(t) =
d

dt
[fṡ(t, u(t), u̇(t)) + gṡ(t, u(t), u̇(t))Tα(t)], t ∈ I (3.6)

α(t)
T
g(t, u(t), u̇(t)) = 0, t ∈ I (3.7)

α(t) ≥ 0, t ∈ I. (3.8)

Hence, (u(t), α(t), β(t) = 0) satisfies the constraints of (MTD). Now for every feasible solution
(
s̄(t), ᾱ(t), β̄(t)

)
of (VTD), we have∫ s1

s0

[
f (t, u(t), u̇(t)) + α(t)T g (t, u(t), u̇(t))− 1

2
β(t)TH (t, u(t), u̇(t), α(t))β(t)

−5

6
β(t)T I (t, u(t), u̇(t), α(t))β2(t)

]
dt =

∫ s1

s0

f (t, u(t), u̇(t)) dt(
by α(t)

T
g(t, u(t), u̇(t)) = 0 and β(t) = 0

)
≥
∫ s1

s0

[
f (t, s̄(t), ˙̄s(t)) + ᾱ(t)T g (t, s̄(t), ˙̄s(t))

−1

2
β̄(t)TH (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)− 5

6
β̄(t)I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt

So, (u(t), α(t), β(t) = 0) is also an optimal solution of (VTD). Hence the result follows.

Theorem 3.3 (Converse duality). Let f and g be four times continuously differentiable functions. Suppose
(u(t), α(t), β(t)) is a local (global) solution of (VTD). Again, if the following assumptions are satisfied:

(i) −ρ
(
Hβ(t) + Iβ2(t)

)
+
(
Hη(t) + Iη2(t)

)
= 0⇒ η(t) = ρβ(t), t ∈ I,

(ii)
[
1
2

(
γ(t)THγ(t)

)
+ 1

6

(
γ(t)T Iγ2(t)

)]
s
− d

dt

[
1
2

(
γ(t)THγ(t)

)
+ 1

6

(
γ(t)T Iγ2(t)

)]
ṡ

− Iγ2(t) = 0⇒ γ(t) = 0, ∀ γ(t) ∈ S(I,Rn), t ∈ I,
then u(t) is a feasible solution of (VP), and the two objective functions are same. Further, if the conditions

of Theorem 3.1 are included, then u(t) is an optimal solution of (VP).
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Proof. For simple representations denote H (t, u(t), u̇(t), α(t)), I (t, u(t), u̇(t), α(t)), f (t, u(t), u̇(t)) and
g (t, u(t), u̇(t)) by H, I, f and g, respectively. As (u(t), α(t), β(t)) is a local (global) solution of (VTD), by
Lemma 2.2, ∃ Lagrange multiplier ρ ∈ R, and piecewise smooth functions η −→ Rn and θ −→ Rm such that
the following Fritz-John conditions hold at (u(t), α(t), β(t)):

ρ
{
fs + gTs α(t)− 1

2

[
β(t)THβ(t)

]
s
− 5

6

[
β(t)T Iβ2(t)

]
s

− d

dt

[
fṡ + gTṡ α(t)− 1

2

(
β(t)THβ(t)

)
ṡ
− 5

6

(
β(t)T Iβ2(t)

)
ṡ

]}
+
{
fss +

(
gTs α(t)

)
s
− d

dt

[
fṡs +

(
gTṡ α(t)

)
s

]
+ (Hβ(t))s +

(
Iβ2(t)

)
s

− d

dt

[
fsṡ +

(
gTs α(t)

)
ṡ
− d

dt

(
fṡṡ +

(
gTṡ α(t)

)
ṡ

)
+ (Hβ(t))ṡ +

(
Iβ2(t)

)
ṡ

]}
η(t) = 0, t ∈ I, (3.9)

−ρ
(
Hβ(t) + Iβ2(t)

)
+
(
Hη(t) + Iη2(t)

)
= 0, t ∈ I, (3.10)

ρ

[
gj −

1

2
β(t)T gjssβ(t)− 5

6
β(t)T gjsssβ

2(t)

]
+

{
gjs −

d

dt
gjṡ +

[
gjss − 2

d

dt
gjsṡ +

d2

dt2
gjṡṡ

]
β(t)

}
η(t)

+

{[
gjsss − 3

d

dt
gjssṡ + 3

d2

dt2
gjsṡṡ −

d3

dt3
gjṡṡṡ

]
β2(t)

}
η(t)

+θj(t) = 0, t ∈ I, j = 1, 2, . . . ,m (3.11)

θ(t)Tα(t) = 0, t ∈ I, (3.12)

fs + gTs α(t)− d

dt

[
fṡ + gTṡ α(t)

]
+Hβ(t) + Iβ2(t) = 0, t ∈ I, (3.13)

(ρ, θ(t)) ≥ 0, (ρ, η(t), θ(t)) 6= 0, t ∈ I. (3.14)

By assumption (i) and (3.10), we have

η(t) = ρβ(t), t ∈ I. (3.15)

Now, if ρ = 0, then η(t) = 0 and (3.11) yields θ(t) = 0, which contradicts to (3.14). Hence

ρ > 0. (3.16)
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Using (3.15) and (3.16) in (3.9), we have

fs + gTs α(t)− 1

2

[
β(t)THβ(t)

]
s
− 5

6

[
β(t)T Iβ2(t)

]
s

− d

dt

[
fṡ + gTṡ α(t)− 1

2

(
β(t)THβ(t)

)
ṡ
− 5

6

(
β(t)T Iβ2(t)

)
ṡ

]
+
{
fss +

(
gTs α(t)

)
s
− d

dt

[
fṡs +

(
gTṡ α(t)

)
s

]
+ (Hβ(t))s +

(
Iβ2(t)

)
s

− d

dt

[
fsṡ +

(
gTs α(t)

)
ṡ
− d

dt

(
fṡṡ +

(
gTṡ α(t)

)
ṡ

)
+ (Hβ(t))ṡ +

(
Iβ2(t)

)
ṡ

]}
β(t) = 0, t ∈ I. (3.17)

By the definition of H and(2.16), (3.17) gives[
1

2

(
β(t)THβ(t)

)
+

1

6

(
β(t)T Iβ2(t)

)]
s

− d

dt

[
1

2

(
β(t)THβ(t)

)
+

1

6

(
β(t)T Iβ2(t)

)]
ṡ

− Iβ2(t) (3.18)

From assumption (ii), we get

β(t) = 0, t ∈ I. (3.19)

By (3.15), we have

η(t) = 0, t ∈ I. (3.20)

using (3.19) and (3.20) in (3.11), we obtain

ρgj + θj(t) = 0, t ∈ I, j = 1, 2, ...,m. (3.21)

As ρ > 0 and θ(t) ≥ 0, we obtain

g (t, u(t), u̇(t)) ≤ 0, t ∈ I. (3.22)

So, u(t) is a feasible solution of (VP).
Again ρ > 0, (3.12) and (3.21) yields,

α(t)T g (t, u(t), u̇(t)) = 0, t ∈ I. (3.23)

From (3.19) and (3.23), it is easily concluded that the objective value of (VP) and (VTD) is equal. Further, if
the conditions of Theorem 3.1 are satisfied, then u(t) is an optimal solution of (VP).

Theorem 3.4 (Converse duality). Let (s̄(t), ᾱ(t), β̄(t)) be an optimal feasible solution of (VTD). Suppose∫ s1

s0

f(t, ., .)dt and

∫ s1

s0

ᾱ(t)T g(t, ., .)dt are convex functions in s and ṡ. Assume that

∫ s1

s0

ᾱ(t)T g (t, s̄(t), ˙̄s(t))− (s(t)− s̄(t))
[
H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t) + I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt ≥ 0. (3.24)

Then s̄(t) is an optimal solution of (VP).
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Proof. Suppose s̄(t) is not an optimal solution of (VP). Then there exists a feasible solution s(t) of the primal
(VP) such that

∫ s1

s0

f (t, s(t), ṡ(t)) dt <

∫ s1

s0

f (t, s̄(t), ˙̄s(t)) dt. (3.25)

Now

∫ s1

s0

f (t, s(t), ṡ(t)) dt−
∫ s1

s0

f (t, s̄(t), ˙̄s(t)) dt

≥
∫ s1

s0

[(s(t)− s̄(t)) fs (t, s̄(t), ˙̄s(t)) + (ṡ(t)− ˙̄s(t)) fṡ (t, s̄(t), ˙̄s(t))] dt(
by convexity of

∫ s1

s0

f(t, ., .)dt

)
=

∫ s1

s0

(s(t)− s̄(t))
[
− gs (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

+
d

dt

{
fṡ (t, s̄(t), ˙̄s(t)) + gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

}
−H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)− I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt

(by (2.16))

= −
∫ s1

s0

[
(s(t)− s̄(t))

(
gs (t, s̄(t), ˙̄s(t))

T
)

+ (ṡ(t)− ˙̄s(t))
(
gṡ (t, s̄(t), ˙̄s(t))

T
ᾱ(t)

) ]
dt

−
∫ s1

s0

(s(t)− s̄(t))
[
H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)

+I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)
]
dt

(by integrating by parts)

≥
∫ s1

s0

ᾱ(t)T g (t, s̄(t), ˙̄s(t)) dt−
∫ s1

s0

ᾱ(t)T g (t, s(t), ṡ(t)) dt

−
∫ s1

s0

(s(t)−s̄(t))
[
H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)+I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)

]
dt(

by convexity of

∫ s1

s0

ᾱ(t)T g(t, ., .)dt

)
≥
∫ s1

s0

ᾱ(t)T g (t, s̄(t), ˙̄s(t))− (s(t)− s̄(t))
[
H (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄(t)

+I (t, s̄(t), ˙̄s(t), ᾱ(t)) β̄2(t)
]
dt

(by (2.2) and (2.18))

≥ 0.

(by (3.24))

Hence the result.
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4. Importance of third order duality

Two numerical examples are discussed to justify the importance of the present work. The first example shows
that the first order variational dual (VFD) and second order variational dual (VSD) have no solution, whereas
the third order variational dual (VTD) has solutions. And from the second numerical example (Example 4.2),
it can be easily seen that the third order dual provides better lower bound as compare to first and second order
dual.

Example 4.1. Let f, g : I × [0, 1)× [0, 1) −→ R be defined by

f (t, s(t), ṡ(t)) = s3(t) + s2(t),

g (t, s(t), ṡ(t)) =
1

3
s3(t) + s2(t)− s(t),

where t ∈ I and s : I −→ [0, 1). Clearly f and g are thrice continuously differentiable convex functions.
Now consider the following variational primal problem

(VP) min

∫ s1

s0

[
s3(t) + s2(t)

]
dt,

subject to

1

3
s3(t) + s2(t)− s(t) ≤ 0, t ∈ I, (4.1)

s(s0) = γ1, s(s1) = γ2. (4.2)

Let us check the feasibility of (VFD), (VSD) and (VTD).

For (VFD): From (2.4), we have

ᾱ(t) = − 3s̄2(t) + 2s̄(t)

s̄2(t) + 2s̄(t)− 1
< 0,∀ s̄(t) ≥ 1

2
.

Which contradicts to (2.6). Hence, s̄(t) is not the feasible solutions of (VFD).

For (VSD): β̄(t) = −1 and (2.7) yields

ᾱ(t) =
−3s̄2(t) + 4s̄(t) + 2

s̄2(t)− 3
< 0,∀ s̄(t).

Which contradicts to (2.9). Hence, s̄(t) is not the feasible solutions of (VSD).

For (VTD): β̄(t) = −1 and (2.13) gives

ᾱ(t) =
−3s̄2(t) + 4s̄(t)− 4

s̄3(t)− 1
> 0,∀ s̄(t).

Hence, s̄(t) are feasible solutions of (VSD). From the above analysis, it is observed that for s̄(t) ≥ 1
2 , the first as

well as the second order variational dual has no solution, whereas the third order variational dual has solutions
for all s̄(t).

Example 4.2. Let f, g : [0, 1]× [0, 1]× [0, 1] −→ R be defined by

f (t, s(t), ṡ(t)) = s3(t) + s(t),
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g (t, s(t), ṡ(t)) = −s3(t) + 3s2(t)− 2s(t),

where t ∈ [0, 1] and s : [0, 1] −→ [0, 1]. Clearly f and g are thrice continuously differentiable convex functions.
Now consider the following variational primal problem

(VP) min

∫ 1

0

[
s3(t) + s(t)

]
dt,

subject to

−s3(t) + 3s2(t)− 2s(t) ≤ 0, t ∈ [0, 1], (4.3)

s(0) = γ1, s(1) = γ2. (4.4)

Since s(t) ≥ 0 by the definition of s, the optimal solution of (VP) is attained at 0 and the minimal value is 0.
The value of (VP) at s(t) = 1 and I = [0, 1] is 2, which is thus an upper bound to the true optimal value. Now
compare a lower bound to the minimal value given by this approximation s̄(t) = 1 and I = [0, 1] in (VP) with
a lower bound in (VSD) and (VTD).

For (VFD): It is clearly seen that s̄(t) = 1 is not a feasible solution of (VFD).

For (VSD): It is very clear that
(
s̄(t) = 1, β̄(t) = −1, ᾱ(t) = 2

)
is a feasible solution of (VSD) and the value

of the objective function is −1.

For (VTD): It can be easily observed that
(
s̄(t) = 1, β̄(t) = −1, ᾱ(t) = 4

3

)
is a feasible solution of (VTD) and

the value of the objective function is − 8
3 . Fortunately the optimal value of the variational primal problem (VP)

is known and it is 0. Hence, it can be easily concluded that (VTD) gives better bound than (VSD).

5. Conclusion

The third order duality of variational problems is formulated with a novel approach. Weak, strong and
converse duality theorems are proved between the variational primal (VP) and its third order dual (VTD). A
suitable numerical example (Example 4.2) is given to show that the third order duality gives better solutions
compared to the results given by the first and second order dual. Further, it is observed that there are some
problems in which, first as well as second order dual have no solution where as the third order dual has a solution
(see Example 4.1). Our earlier work [24] is a particular case of the present results, when s, in the objective as
well as constraint functions, is independent of t. Hence it generalizes the results in the references [5], [22] and
[24].
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