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PREDICTIVE DECISION MAKING UNDER RISK AND UNCERTAINTY:
A SUPPORT VECTOR MACHINES MODEL

WasFI A. AL-RAWABDEH! AND DORAID DALALAH?

Abstract. In this paper, a decision making model using support vector machine (SVM) approach
is presented. Here, human attitude towards risk and uncertainty is identified via optimizing SVM
certainty classification model. In particular, individuals are given different pairs of gambles in order to
reveal their preference. Unlike traditional methods used to estimate the utility function through direct
inquiry of the certainty equivalents, pair-wise comparisons are used here in the training process to
predict human preferences and to compute the utility parameters. The presented study is characterized
by first, the use of SVM in the field of decision making to classify individuals’ choices, second, it
uses such model to search for the optimal utility parameters, third, the model can be used to guide
the decision makers towards better decisions. In contrast to existing utility models, the SVM utility
approach is characterized by its tolerance to misclassification in the training and testing data sets which
makes it cope with the existing violations such as the common consequence, common ratio and violation
of betweenness in the utility theory. To demonstrate the merits of the model, different data sets were
used from well known literature studies and new conducted surveys that elicit individual preferences.
The data is split into training and testing sets. The results demonstrated a notable consistency in the
computed utility parameters and remarkable predictions without the need to strict certainty equivalent
estimation. The model can be beneficial in predictive decision making under risk and uncertainty.
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1. INTRODUCTION

In many aspects of life, we must often make decisions which may be vulnerable to risk and uncertainty. When
the outcome of the selected act is not certain, individuals tend to choose rationally, an attitude which can be
explained by the expected utility theory to a certain extent.

The expected utility theory is normative theory — which tackles how people should make their decisions. It
can be a descriptive or sometimes a predictive theory which tends to correctly predict people’s choices without
worrying about the psychological mechanisms.

It is reported that the expected utility theory makes faulty predictions about people’s decisions in many real-
life choice situations [9,27]; hence, a question that needs to be answered is whether people should make decisions

Keywords. Decision making, expected utility theory, support vector machines, optimization.

I Faculty of Economics and Administrative Sciences, The Hashemite University, Al-Zarqa, Jordan. rawabdeh@hu.edu. jo

2 Industrial Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030,
22110 Irbid, Jordan. doraid@just.edu. jo

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2017


https://doi.org/10.1051/ro/2016045
http://www.rairo-ro.org
http://www.edpsciences.org

640 W.A. AL-RAWABDEH ET AL.

based on expected utility considerations. Although expected utility theory could find a wide acceptance in the
decision making area, yet there exist well theorized counter examples which the expected utility fails to explain.
Such examples include:

Transitivity and completeness

That is, preferences must be transitive, for example if the lottery X is preferred to Y and Y is preferred
to Z, then Y must be preferred to Z. However, in reality there are some situations where rationality entails and
sometimes requires the failure of transitivity and completeness. The reader may be referred to the well known
Quinn’s puzzle of the self-torturer for further details. In fact, this can be stated more formally in the so called
Violation of Betweenness, where if for instance X is preferred to Z, and Y is a linear combination of X and Z,
then based on the expected utility theory, individuals should respectively prefer the pattern X, Y, Z or Z,
Y, X, however, violations of such choice patterns have been numerously reported in several studies [2,5]. The
violation of betweenness emerges when some of the prospects used in the experiment are located at the edges
of the probability triangle (Machina, 1982).

Independence

Which is a property that refers to the parallel utility contours in Machina triangle, while in reality, such
contours are not necessarily parallel as found by Allais paradox — a prominent violation to the expected utility
theory.

The first serious challenge to the expected utility theory was presented by Maurice Allais [1]. It has become
known as the Allais Paradox. Machina [20] showed that the Allais paradox is a special case of a more general
problem, known as the common consequence effect.

Common consequence effect in decision theory is a violation of linearity in probabilities and outcomes. It is
simply described by a prospect of three outcomes, where 1 < x9 < x3 and the probabilities 1 > p > ¢ > 0.
Denoting a prospect by its outcomes followed by the probabilities, the majority will prefer a sure outcome x;
denoted by l; = (22, 1) to lo = (1, p — ¢; x2, 1 — p; 23,¢q) conforming to the EUT, while at the same time,
individuals will prefer Iy = (21, 1 — ¢; 3, q) to I3 = (21, 1 — p; x2, p) which presents a clear violation to the
EUT [3]. In fact the EUT implies that the choice must be either [} and I3, or Iy and l4. In this instance, a risk
aversion behavior appears in the first pair and risk seeking in the second.

On the other hand, the common ratio effect is an empirical observation which shows that there exist outcomes
21 < 29 < x3 and a probability 0 < p < 1 such that Iy = (z2, 1) is preferred to Iy = (21, 1 — p; x3,p) and at the
same time Iy = (z1, 1 — pg; x3, pq) is preferred to I3 = (x1, 1 — ¢; x2, ¢) when the probability ¢ is close to zero.
The choice of the riskier lotteries I, andly becomes more probable when the probabilities of the middle and the
highest outcome are scaled down in the same proportion. Common consequence and common ratio violate the
EUT in the sense that acts with higher expected utilities are not always preferred.

Events of “0” probability

A concept that argues non-conformity to the expected utility when multiple events have a probability of zero
where indifference is expected when a tie in the expected utilities exists.

Unbounded utility

Here, some decision problems may end up with infinite expected utility of some acts. For example, if we
consider St. Petersburg game, we realize that the game expected utility is positive infinite, while we find
individuals pay no more than $3 for such a gamble.

In fact, the values of these infinitary games are not well described by their expected utilities. Many re-
search proposal tackled the above violations such as Thalos and Richardson [26], Fine [13], Colyvan [6,7] and
Easwaran [10] who proposed theories that still conform with the expected utility theory and provide rational
evaluations of the above listed violations such as those found in St. Petersburg, Pasadena and Altadena games.



PREDICTIVE DECISION MAKING UNDER RISK AND UNCERTAINTY: A SUPPORT VECTOR MACHINES MODEL 641

1.1. The fourfold pattern of risk

The fourfold pattern was the first descriptive challenge in the EUT. It states that human choice patterns
are unpredictable due to human variations, that is, it is possible to find individuals who are risk seeking over
unlikely gains, risk seeking over likely losses, and at the same time, risk averse over likely gains and risk averse
over likely losses.

An example of the fourfold pattern of risk attitude is a simultaneous purchase of insurance policies and lottery
tickets. The expected utility theory cannot explain why an individual exhibits such an attitude [16].

Many studies have reported the fourfold pattern of risk. Kahneman and Tversky [16] presented surveys for
choices between lotteries of large hypothetical gains and losses. They presented 25 graduate students to choose
between simple lotteries with small hypothetical gains and losses. They found a strong support for the fourfold
pattern. Holt and Laury [15] compared between decisions of lotteries of hypothetical and real gains. They found
that people are risk-seeking with hypothetical rather than real lotteries. Laury and Holt [17] introduced also
hypothetical and real lotteries comparison over gains and losses. They found that in the hypothetical lotteries,
people are risk-averse over gains and risk-seeking over losses. In the real lotteries they are risk-averse for gains
but risk-neutral for losses.

In relation to the discussion of violations presented above, our objective in this paper is to present a model
that admits the above violations, can predict human preferences and can guide people to the right choices
without strict need to utility. In many literature experiments, the surveyed subjects are provided with gambles
and are requested to present the certainty equivalent that makes them indifferent from playing the gamble.

In general, building predictive models using training data sets is the main goal in supervised learning. Super-
vised learning includes different tasks, among which we find the task of classification plays an important role in
theory and applications. Classification can be found in various applications ranging from engineering to medicine
and bioinformatics. Supervised learning and classification will be used in this study to build a predictive model
of human decisions under risk and uncertainty.

In fact, literature is overstuffed with research that tackles the classification problem in machine learning.
Among such classification techniques is the Support Vector Machines (SVM) which was developed and then
improved by Boser et al. [4] and Cortes and Vapnik [8], respectively. A comprehensive survey on different
learning techniques can be found in Hastie et al. [14]. Proposals on the improvement of the well known learning
techniques are still ongoing [24,28,32]. For example, the multi-category versions of SVM were developed recently
by Lee et al. [18] and Zhu et al. [31] Other machine learning and classifications includes -learning which was
first proposed by Shen et al. [23], IVM by Zhu and Hastie [30], distance weighted discrimination (DWD) by
Marron et al. [21] and Qiao et al. [22].

Although SVM is mainly introduced as a technique for solving pattern recognition problems, we find that it
can remarkably perform in classifying decision choices and in predicting human attitude in uncertain or risky
situations. SVM characteristics make them a good choice for predicting human preferences between prospects
of uncertain outcomes. SVM’s have the capability to classify inseparable data presented by the violations found
in decision-making problems such as the common consequence, common ratio and the violation of betweeness.

The main contributions of the proposed model comes in three: first, to predict the human risk attitudes
through identifying the utility function of individuals. This is achieved by optimizing an SVM model that will
specify the utility parameter, second, predicting individual preference between uncertain outcomes via support
vector machines without the need for explicit utilities. Third, steer the decision maker to better decisions.

This rest of the paper is organized as follows: Section 2 presents the certainty equivalents and classifications,
followed by the SVM classes in Section 3. The kernel trick is illustrated in Section 4, followed by separable
and inseparable data examples respectively in Sections 5 and 6. Next, the effect of the model parameters is
illustrated in Section 7 followed by testing and validation experiments in Section 8. Finally, the conclusions are
presented in Section 9.
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2. THE CERTAINTY EQUIVALENTS AND CLASSIFICATION

Certainty equivalent is defined as the amount of money that a person is willing to accept instead of the
prospect itself [12]). Since decision making is usually normative, certainty equivalents are difficult to be elicited
via direct questionnaires. Given the uncertainty that exists in decision problems, it is difficult for individuals to
be certain about the equivalent of a gamble that makes them feel indifferent.

In this research, we believe that individuals are more comfortable in declaring their preference between two
lotteries as compared to providing a strict estimate of the certainty equivalent. Reported in literature, elicited
certainty equivalents have a good deal of randomness and can have wide variations that condense trust in the
collected data. Instead, we try to build a model by means of SVM to predict the risk attitudes in individuals
and then to predict their preference among different sets of safe and risky lotteries using pair-wise comparisons.

Here, the subjects are asked to present their preference between a safe (S) and a risky lottery (R), where
(S = R) means that S is preferred to R. A lottery L is denoted by its rewards and probabilities as L(x1, p1;
Za, P2 .- Tn, Pn). The utility of a reward x is estimated by the following widely cited utility function:

u(z) = 2P (2.1)

The expected value (EV) and the expected utility (EU) of L are given by the following two expressions,
respectively:

EVy = Z? TiPi, (22)
EUL =" u(z)p, (2.3)

Furthermore, it is already established in literature that the certainty equivalent of a gamble can be found by
the inverse of the expected utility, that is:

CEL, =EU}”. (2.4)

If a subject is requested to estimate the certainty equivalent of a lottery, then the subjects’ elicited certainty
equivalent is supposed to coincide with the model certainty equivalent in (2.4). Figure 1 depicts the idea where
a risk neutral person (3 = 1) will have a certainty equivalent which is exactly the same as the expected value.
Due to risk attitudes, the subject certainty equivalents will differ from the expected values with an amount
called risk premium (RP).

Accordingly, if we sketch the points of certainty equivalents of pairs of lotteries, say (S and R), on a CE-
CFE diagram, we expect the pairs having (EVs > EVg) to be below the iso-expected line, and those having

Utility
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Risk aver
UEV)|-mmmmmmmmm e e

Risk seeker

«—>! RP
i : > Value
CE EV CE
of risk averstion of risk seeking

FI1GURE 1. Risk aversion, risk seeking attitudes and the certainty equivalent illustrated.
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FIGURE 2. Two classes of points marked by squares and triangles around the iso-expected line.

TABLE 1. Two pairs of lotteries of equal certainty equivalents.

Lottery pair S (9) Probability R (3) Probability
X1 ) P1 P2 T x2 Pp1 p2

1 177.78 0 0.75 0.25 1000 O 0.3162 0.6838

2 400 0 0.5 0.5 200 0 0.7071 0.2929

(EVs < EVR) to be above such a line for a risk neutral person as shown in Figure 2. However, estimating the
certainty equivalents is a matter of different risk attitudes, hence, different evaluations and pair mapping will
result in reality. Obviously, the subjects are considered to be more consistent when they classify such pairs with
more care. That is, no points overlap between the two classes (above and below the line) is found. That said, a
subject whose evaluations can separate the data well has clearer risk attitude. However, real evaluations may
result in linearly inseparable data (see Fig. 4). In this case, a nonlinear separator is to be found.

In fact, inseparable data results from the violations found in the EVT as well as the EUT. Finding the
linear /nonlinear hyper-planes that separate the data points while taking the utility into consideration is not a
trivial task. In our analysis, we realized that SVM is a very interesting and mathematically tractable approach
that can admit such violations and can classify such data points via optimizing the utility function at the same
time.

Consider the four lotteries in Table 1. For a utility function of the class 2°, when § = 0.5 all lotteries will
have the same certainty equivalents of 100. Accordingly, for an individual who exhibits such utility function,
he/she should be indifferent between the four lotteries.

However, in reality, many will prefer the second lottery in the first pair and the first lottery in the second pair.
Figure 3 shows the perception of certainty equivalent by direct estimation of 10 subjects. Here, the subjects were
asked to give their estimate of the worth of each lottery without any further knowledge. Now, if for instance the
parameter (3 is increased, the exact certainty equivalents of both pairs will follow the shown locus. This shows
that higher g values may present larger gap between the two pair points. However, due to errors in human
certainty estimates and tendency to avoid risk, apparent separation between the pairs may not be present,
hence, an algorithm like SVM may present the separation line by finding the best 3 that presents the optimal
gap between the data points.
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FiGURE 3. Certainty equivalents as a function of § for two lottery pairs. Diamond and round
points represent the estimated certainty equivalents by direct questionnaires for 10 subjects. For
instance, the elicited certainty of the first pair of lotteries of the first subject is $75 and $100.

3. THE CE CLASSES IN SVM

Certainty equivalents usually result in inseparable data points on the CE-CFE diagram. As a result, it will be
a motivating act to find a model that copes with the existing randomness (i.e., misclassification) and accepts
the reported violations. Although there is no well-established notion of safe and risky prospects, in general,
people tend to pick what they feel a better lottery. Accordingly, in this study, individuals will experience pairs
of lotteries with different risk profiles.

When two lotteries S and R are presented to an individual, we request the individual to show his preference
of one lottery over another, for instance, if someone prefers R over S, (i.e., R = S) then the pair is expected
to be above the iso-expected line on the CE-CE diagram. Similarly, if S > R then the pair is supposed to be
located below the iso-expected line. To prepare the data for SVM operation, we denote the choice by “—17 if

hyper-plane

p i . g ".f"' °
a support
/ vector
L

(S>R)

> CEq

FiGURE 4. CE-CFE diagram with the support vectors circled.
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an individual prefers S over R, and by “1” if the individual preference is the other way around. Figure 4 shows
a sample data, where the x and y axes represent C'E'g and CEg of the two lotteries in every pair. Note that,
in the classic EVT, the 45° line is expected to separate the pairs. However, the EVT is not a superior choice
anyway, nor the utility theory, due to the aforementioned violations.

Since the model certainty equivalents depend on the utility function, different values of the parameter
result in different pair locations in the CE-CFE diagram. It will be appealing if we can find the 3 value that best
map the data on such diagram and best separate the data into two different groups according to the choices.
To find the separator line that best classifies the data and optimizes the parameter 3, we need a classification
approach that takes into consideration the following points:

— Acceptance of the stated violations: some lotteries with low expected utility may be selected over high
expected utility and vice versa. The acceptance of such pattern includes the violation of betweenness and
common consequence effects.

— If the utility of the lottery X is higher than Y and Y is higher than Z, then the model should accept to
predict the preference pattern (Z > Y = X i.e., transitivity and completeness).

— A model that accepts soft margin between the clusters (data misclassification).

— A model that takes the expected utility parameter into consideration.

— A classification model that presents higher dimensionality in clusters (separable and inseparable data).

— No computational complications as those found in the cumulative prospect theory (CPT), the stochastic
utility theory (StEUT) and the Beta stochastic utility (8-SU) models.

Although many classification algorithms exists in literature, however, it can be easily apprehended that SVM
can satisfy all above conditions which fit individuals’ choices and accepts the different violation patterns with
soft margin clustering.

SVM is a classification approach which depends on few supporting points that best split the data into classes.
In fact, SVM tries to find the band that separates the two classes and does so by maximizing the distance D
between the two edges resembling the band borders as shown in Figure 4. This band represents the maximum
void between data points of the two classes.

By observing Figure 4, we realize that the decision surface will be fully specified by a small subset of the
data points which represent the support vectors. Clearly, the other data points have no effect on determining
the decision hyper-plane. Similar approach can be applied for nonlinear case as shown in Figure 5.

Suppose that we have a set of N pairs consisting of the two lotteries S and R. The assessor will classify
the pairs by “—17 or “1” where y; Vi = 1,..., N denotes such classification. Accordingly, in our model, the
classification pattern will be used to find the best hyper-plane that separates the pairs and optimizes the utility

(S>R)

> CE,

FIGURE 5. Support vectors circled on a CE-CE diagram of nonlinear separator.
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function given in (2.1). For all pairs located below the iso-expected line, a risk neutral person will prefer S > R
as CEg > CEgR, while we will find that R is preferred to S when the pairs fall above the line. However, real
experiments of lottery preferences were found noticeably different.

Each data point CE; is identified by [CEs CEg| where the two components CEg and CEp belong to the
lotteries S and R and CFE is found by (2.4). Consequently, the training data set is represented by the form:
{CEi,yi}, CE,; ¢ §R2, Y; € {—1, 1}, Vi=1,...,N.

We would like to emphasize that the location of the pairs on the CE-CE diagram depends on 3 and the
separator hyper-planes will differ consequently. For a linearly separable data, a hyper-plane can be described
by @ - CE + b = 0, where @ is a coefficient vector of n elements (n = 2 for binary classification) and b is an
intercept.

As we want to maximize the gap between the classes of (S > R) and those of (R > S), we can minimize |||
as performed in standard SVM approach. For a linearly separable data set, our model can be summarized in a
primal form as follows:

min 3 |||
s.t. . (3.1)
yi (W.CE; +b)>1 VYi=1,...,N

Now given a new instance z, the classifier function will predict the class of this data point as “—1” if Wz + b <
and as “1” if > @ - z + b, alternatively, this can be put across as f (z) = sign(w - z + b)

The above primal optimization model in (3.1) has two decision variables, particularly, the components of @
and the scalar b. The model works well when the data is linearly separable and the training certainty equivalents
are available. However, the components of the point CE; are determined by the inverse of the expected utility
which is estimated via the parameter (.

Although the primal model can be solved by any standard optimization solver. The model can be recast in
a dual form, yielding a quadratic problem of N dual variables, i.e., @ = {a1,...,an}.

max Zf\il o — 1 ij:l a;a;yy;CE; - CE,
s.t.
a; >0 . (3.2)

N
oy =0

i=1

The data points are presented inside a dot product and the coefficient vector  is defined in terms of «; as
~ N
w = Zi:1 Oézy,CEz

The classifier function of any point, say z, becomes:

i=1

N
f(z) =sign (Z oy, CE; -z + b> . (3.3)

By implementing Lagrange relaxation and KKT conditions, the model in (3.2) can be solved by:

N
a;y; =0
=1 . (3.4)
i=1

Hence, solving the equations in (3.4) will yield the analytical optimal solution. However, for large number of data
points, optimization solvers will easily find the solution of (3.2). Now if the points are inseparable in the case
of noisy data or misclassification, a slack variable &; is assigned to each instance in the data. The parameter &;
can be thought of as the distance from the data points to the separating hyper-plane as depicted in Figure 6.
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FIGURE 6. CE-CFE diagram with SVM classifier of soft margins.

Mathematically, this can be represented in a dual form as:

N N
max Z oy — % Y. ooyy,CE; - CE;

i=1 i=1,j=1
s.t.
C>a; >0, Vi=1,....N (3.5)
N
a;y; =0

i=1

where C is a positive tradeoff parameter. Large C' values call for sharp threshold and hard margins (no misclas-
sified data exists) which is the same as in the optimization problem in (3.2). Smaller values of C' mean softer
margin is selected allowing for misclassifications.

4. INSEPARABLE DATA AND THE KERNEL TRICK

In inseparable data, the data points can be transformed into a higher dimensional space which is named as
feature space. This operation is performed using a transformation function ¢(x;) for a data set x. By so doing,
the nonlinear operation in the input space will be equivalent to linear operation in the feature space.

For data points denoted by x;, Vi = 1,..., N, a kernel function is defined as K (x;, x;) = ¢(x;)T ¢ (x;). This
is usually called the kernel trick. Power kernels are given by:

K (xi,%;) = —|Jx: —x;]|”. (4.1)

In our model, we will implement the power kernel given by (4.1) since it can result in an open and closed
separator contours. It also provides wide variety of separation hyper-planes as compared to the radial basis
kernel which tends to produce clusters bounded by closed loops. Consequently, by implementing the kernel
trick, our model will look like:

N N
max Z oG — % Z aiajyiyjK(CEi, CEJ)
i=1 1=1,7=1
C>a;20 : (4.2)

N
a;y; =0
=1
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For a test object z, the discriminant function is essentially a weighted sum of the similarity between z and the
support vectors. The classification function is given by:

= (wp(2) +b= 3 nimK (CBm,2) +b
s _m=t : (4.3)
w= 3 nime(CEy)

m=1

where c’@m,gm and &, are the data, the classification and the dual variables associated with the support
vectors which are listed in S. If a point is not a support vector, it is associated « value will be equal to 0. The
set S includes only the support vectors.

5. LINEARLY SEPARABLE EXAMPLE

Although we will not use linear separators in this study, however, for the demonstration purposes, we present
linearly separable instance as a first example. The model is programmed in MATLAB and the optimization is
conducted using fmincon function.

Suppose the following 14 pairs of lotteries in Table 2 were presented to a subject. The subject is requested
to show the preferred lotteries. The elicited classification is shown in the table. For simplicity, let %> represent
the utility function. The location of the pairs is depicted in Figure 7. By applying a simple linear SVM using
the model in (3.2), we find that the pairs #1, 9 and 13 are the support vectors where,

198.83 119.98
S = 3045 52.27
16 8

and the corresponding solution is given by: w; = —0.03458, wy = 0.05646, b = —0.8959, o = [0.0003623 0 0 0 0
000 0.002191 0 0 0 0 0.001829] and hence, & =[0.0003623 0.002191 0.001829]. Any testing pair can be classified

TABLE 2. Pairs of lotteries classified according to the subject. The columns show the lottery
entries, the excepted value, the expected utility and the model certainty equivalent of each
lottery, respectively.

Lottery S Lottery R
# X1 X2 P1 P2 EVS EUS CES X1 X2 P1 P2 EVR EUR CER Class
1 100 200 0.01 0.99 199 141 19883 50 150 0.25 0.75 125 10.95 119.98 -1
2 100 150 0.25 0.75 1375 11.69 136.55 0 150 0.99 0.01 1.5 0.122  0.015 —1
3 0 25 0.9 0.1 2.5 0.5 0.25 50 75 099 0.01 50.25 7.087 50.225 1
4 150 200 0.99 0.01 150.5 12.27 150.46 0 75 0.5 0.5 37.5 4.33 18.75 -1
5 150 200 0.25 0.75 187.5 13.67 186.83 100 150 0.99 0.01 100.5 10.02 100.45 —1
6 100 150 0.9 0.1 105 10.22  104.55 150 200 0.6 0.4 170 13.01 169.14 1
7 0 75 0.05 095 T71.25 8227 67.688 50 100 04 0.6 80 8.828  77.941 1
8 50 150 0.5 0.5 100 9.659  93.301 0 50 0.01 0.99 495 7 49.005 -1
9 25 50 0.75 0.25 31.25 5.518 30.446 50 75 0.9 0.1 52.5 7.23  52.273 1
10 25 50 0.9 0.1 27.5 5207 27.114 100 150 0.9 0.1 105 10.22  104.55 1
11 25 50 0.5 0.5 375  6.036 36.428 0 75 095 0.05 375 0433 0.1875 -1
12 100 150 0.99 0.01 100.5 10.02 100.45 0 75 099 0.01 0.75 0.087 0.0075 -1
13 0 100 0.6 0.4 40 4 16 0 50 0.6 0.4 20 2.828 8 -1

14 50 100 0.99 0.01 50.5 7.1 50.415 100 150 0.75 0.25 1125 10.56 111.55 1
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F1GURE 7. The separating line and the data points of the first example. The support vectors
are marked by diamonds. The two classes are marked by different colors.

by the resulting function

N
f(2) =" yiCE; - z+b=0.0003623 (1) ((198.83 119.98) - (2))
=1
+0.002191 (1) ((30.45 52.27) - (2)) 4 0.001829 (1) ({16 8) - (z)) — 0.8959,

where if f > 0, then the pair belongs to the class denoted by “1” (i.e., the subject prefers S to R) otherwise it
will be in the “—1” class. For instance, the lottery pair, S = (0,0.25;200,0.75) and R = (50, 0.75; 150, 0.25) will
be classified as “—17, which means the subject is predicted to prefer S over R. Recall that, different 5 values
result in different separators of different objective function values. In fact, our model will also search for the
optimal (3 parameter that best classifies the data.

6. NON-LINEAR EXAMPLE

Linear separators are the easiest to identify, followed by nonlinear separators of polynomial kernels. To
demonstrate, consider the data in Table 2 once again. By implementing a polynomial kernel of the second
degree, the following separating strip will result as shown in Figure 8. The classifier is a 3D surface in binary
classifications with the “0” contour representing the decision line. Note that the border lines have to cross the
support vectors which are located at the contour elevations of —1 and 1 with the separator line at the elevation
of “0”.

The resulting support vectors and dual variables for a 3 value of 0.5 and a polynomial of the second degree
are:

198.83 119.98

0.25 50.23
30.45 52.27

16 8

S:
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FIGURE 8. Separating hyper-plane and the separating borders. The support vectors are marked
by diamond.
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FIGURE 9. Results using the power kernel. The separating contour at elevation of “0” and other
contour elevations are demonstrated.

and b = —0.9750, « = [0.00012 0 0.00129 0 0 0O O 0O 0.00239 0 0 0 0.00356 0], hence
& = [0.00012 0.00129 0.00239 0.00356]. For example, the lottery pair, S = (0,0.25;200,0.75) and
R = (50,0.75;150,0.25) will be classified as “—1".

Although polynomial kernels can provide a variety of nonlinear separators, yet, there are some more powerful
kernels that can predict more efficiently, such as the power kernel given in (4.1). By considering the same data
in Table 2 using a kernel of the power 0.5, we get the contours shown in Figure 9 with the “0” contour as the
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FIGURE 11. The objective function value vs. 8 using a power kernel.

separator line. Note that, for instances with larger number of lottery pairs, this kernel can be a good choice.
The power kernel tends to increase the number of support vectors. Note, all the data points are support vectors
(it will not be the case for well clustered points). In this example, the borders of the contours —1 and 1 are
tightly bounding the support vectors. If at least one point was not a support vector, we will see such borders
clearly.

The resulting parameters of the above case are: b = —0.2404 where S includes all the data points here,
accordingly, & = [0.0493 0.0021 0.0909 0.0103 0.0380 0.0770 0.1139 0.1244 0.1034 0.0087 0.0568 0.0166 0.1182
0.0219] which consists of 14 elements. Figure 10 shows a 3D plot of the classifier function and the separator
plane at “0” elevation.

For the above case, the objective function of (4.3) equals to (+0.4158). However, such separation process will

result in different separator for different utility functions. Figure 11 shows the objective function for different 3
values. The optimal utility parameter 3 for this case is around 0.56.
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TABLE 3. A set of classified lottery pairs.

Lottery S Lottery R
# T1 X2 P1 p2 T T2 P1 D2 Class
100 200 0.01 0.99 50 150 0.25 0.75 -1
100 150 0.25 0.75 0 150 0.99 0.01 -1
150 200 0.99 0.01 0 75 0.5 0.5 -1
150 200 0.25 0.75 100 150 0.99 0.01 -1
30 100 0.95 0.05 0 50 0.01 0.99 -1
25 50 0.5 0.5 0 7 095 0.05 -1
100 150 0.99 0.01 0 75 099 0.01 —1
0 100 0.6 0.4 0 50 0.6 0.4 —1
0 25 0.9 0.1 50 7 099 0.01 1
100 150 0.9 0.1 150 200 0.6 0.4 1
0 75 0.05 0.95 50 100 04 0.6 1
25 50 0.75 0.25 20 75 0.9 0.1 1
25 50 0.9 0.1 100 150 0.9 0.1 1
50 100 0.99 0.01 100 150 0.75 0.25 1
180+
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FIGURE 12. A soft margin classifier of Table 3 (C = 1).

7. THE EFFECT OF THE PARAMETERS ON THE MODEL PREDICTION

Essentially, the constant C' in the SVM model of (4.3) is a measure of the separation softness. Low C' values
dictates softer margins, however, in decision making, this may be important since humans commit errors when
they estimate the certainty equivalents or perform pair-wise comparisons. In fact, it is reported that almost 25%
percent of individuals switch their preferences when they are surveyed twice for the same pairs of lotteries.

To demonstrate the effect of the parameter C consider Table 3 which shows a set of lottery pairs that have
been classified by an individual. For § = 0.5 and C' = 1, we get the results shown in Figure 12, where all data
points within the contours (1 and —1) are found to be supporting vectors.
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FIGURE 14. A classifier of Table 3 (C' = 0.1). The support vector includes all the data points,
B =0.5,b=—-0.54378 and & = [0.0513 0.0102 0.0237 0.0445 0.1000 0.0724 0.0366 0.1000 0.1000
0.0745 0.1000 0.1000 0.0354 0.0286].

To demonstrate the effect of the parameter C' using a power kernel let us start with unbounded a values (i.e.,
C' = 00). The resulting separating contours are shown in Figure 13. The “0” contour represents the separating
hyper-plane. Indeed, an infinite value of C' results in perfect classification.

Now, by changing the value of C, say to 0.1, the resulting separator hyper-plane tends to be smoother as
shown in Figure 14. In this case, misclassification is allowed in the training set and hence it is expected in the
testing sets.
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The test data can be examined by the separator function given in (4.3). Suppose now we want to use the
same data points as a testing set. When C' = oo, none is predict mistakenly, while we find one data point is
misclassified when C' = 0.1, which is just fine in human preferences as there are no hard margins in reality.

8. TESTING AND VALIDATION OF THE MODEL

In this study, we implement the idea of cross validation to test the prediction power of the model. However,
misclassification in training data is expected; hence, the percent of correct predictions is not insistently the sole
measure of goodness when the data is inseparable. Anyway, the SVM model is powerful in predicting the utility
parameters based on pair-wise comparison as compared to surveys of strict certainty equivalent estimation.

To validate the model, we use different collections of data sets, each will be used for training once, while the
others for testing. Figure 15 shows 6 data sets, each time, a set is used in training in some trials and for testing
in others. Accordingly, we will record the correct prediction, the percent correct and the grand average of each
scenario. Test data sets are classified according to the classifier in (4.3).

8.1. Experimental results

In this section, different data sets are used for testing and validation, some are presented in the literature,
others are of our own. First, we start with a survey we conducted to collect individual preferences, the subjects
were provided by pairs of lotteries to show their preference. The lotteries were designed as shown in Figure 16,
where the subject has to check a preferred lottery among each pair. The lottery pairs and the subjects’ preferences
are shown in Tables 4-9 each for one subject.

The SVM model is applied to the different data sets shown in Tables 4-9. For each data set, the power kernel
is implemented as a similarity measure while the objective function value is used to search for the optimal utility
parameter. The optimal values of § are listed in the first column of Table 10. Figures 17a—17f show the contours

Data sets

Train

Train

Train Test Test

Test Test Train

Test Train
Test

Train

F1GURE 15. Cross validation of training and testing sets.

$0
$10

$50
$100

O O

FIGURE 16. The questionnaire style. The subject is requested to check the preferred lottery.
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TABLE 4. First conducted survey of different lotteries (data set 1).

5 R Subject class

# T 2 p1 P2 T T2 p1 P2

1 100 150 0.05 0.95 25 50 0.75 0.25 -1
2 0 100 0.1 0.9 25 50 0.05 0.95 -1
3 50 150 0.95 0.05 0 150 0.9 0.1 !
4 50 75 0.01 0.99 50 75 0.5 0.5 -1
5 0 150 0.95 0.05 100 200 0.01 0.99 1
6 100 200 0.1 0.9 0 400 0.5 0.5 -1
7 0 200 0.5 0.5 50 150 0.5 0.5 1
8 0 800 0.05 0.95 50 75 0.01 0.99 -1
9 50 100 0.6 0.4 50 75 0.75  0.25 -1
10 100 200 0.4 0.6 100 150 0.1 0.9 -1
11 0 800 0.25 0.75 0 150 0.01 0.99 -1
12 25 50 0.01 0.99 0 400 0.75 0.25 1
13 0 400 0.95 0.05 100 150 0.4 0.6

14 50 100 0.4 0.6 0 100 0.05 0.95 -1
15 0 200 0.6 0.4 0 25 0.6 0.4 -1
16 0 100 0.95 0.05 0 800 0.99 0.01 1
17 50 100 0.25 0.75 0 400 0.95 0.05 -1
18 0 400 0.75 0.25 0 400 0.99 0.01 -1
19 75 0.25 0.75 0 75 0.6 0.4 -1
20 0 50 0.1 0.9 25 50 0.25 0.75 1
21 400 0.01 0.99 150 200 0.99 0.01 -1
22 50 150 0.1 0.9 150 200 0.75 0.25 1
23 0 200 04 0.6 0 25 0.25 0.75 -1
24 0 800 0.95 0.05 0 50 0.25 0.75 -1
25 150 200 0.4 0.6 0 150 0.95 0.05 -1
26 100 200 0.5 0.5 50 150 0.05 0.95 -1
27 25 50 0.6 0.4 0 75 0.1 0.9 -1
28 100 150 0.95 0.05 0 200 0.75 0.25 -1
29 100 150 0.75 0.25 150 200 0.5 0.5 1
30 100 200 0.6 0.4 100 200 0.1 0.9 1

and separation surfaces. Note that the power of the kernel does not affect the output as long as the power is
less than 1 for a positive definite kernel.

For testing, each data set from the Tables 4-9 will be used to test the data of the others as illustrated in
Figure 15. Here, we have six model instances, hence, each model will be tested 5 times. For instance, we will
use the prediction model of Table 4 (data set #1) to predict the other data sets. Table 10 shows the correct
predictions. For example 29 cases out of 30 were predicted correctly when we use model 2 to predict the data
set 3. The percent correct of each data set is shown in Table 11 with the average in the last row. Although
the main purpose of the presented SVM model is to identify the utility curve, we can also reveal remarkable
predictions.
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TABLE 5. Second conducted survey of different lotteries (data set 2).

S R

#  x T2 p1 D2 T1 T2 1 p2  Class
1 50 100 0.01 0.99 0 150 0.5 0.5 —1
2 0 75 0.01  0.99 100 200 0.9 0.1 1
3 100 200 0.99 0.01 0 400 0.05 0.95 1
4 50 100  0.95 0.05 100 150 0.25 0.75 1
5 0 150 0.25 0.75 0 200 0.99 0.01 -1
6 150 200 095 0.05 50 100 0.05 0.95 —1
7 0 800 0.6 0.4 0 75 0.9 0.1 —1
8 0 400 0.4 0.6 0 100 0.95 0.05 —1
9 50 150 0.01 0.99 0 150 0.4 0.6 —1
10 100 150 0.1 0.9 0 150 0.25 0.75 —1
11 0 400 0.6 0.4 100 150 0.6 0.4 —1
12 0 150 0.9 0.1 0 150 0.6 0.4 1
13 0 200 0.25 0.75 50 150 0.75 0.25 1
14 100 200 0.95 0.05 0 200 0.4 0.6 —1
15 50 75 0.25 0.75 50 150 0.9 0.1

16 0 200 0.95 0.05 0 200 0.5 0.5 1
17 50 150 0.25 0.75 50 100 0.6 0.4 —1
18 50 75 0.95 0.05 150 200 0.01 0.99 1
19 50 150 0.4 0.6 0 100 0.99 0.01 —1
20 150 200 0.75 0.25 0 50 0.9 0.1 —1
21 50 75 0.1 0.9 50 150 0.95 0.05 —1
22 50 75 0.6 0.4 50 100 0.1 0.9 1
23 0 50 0.99 0.01 0 200 0.01 0.99 1
24 50 75 0.05 0.95 0 800 0.4 0.6

25 50 150 0.75 0.25 0 25 0.4 0.6 —1
26 0 50 0.25 0.75 0 100 0.6 0.4 1
27 50 100 0.9 0.1 0 200 0.6 0.4 —1
28 50 75 0.75 0.25 0 100 0.75 0.25 —1
29 150 200 0.6 0.4 25 50 0.1 0.9 —1
30 0 400 0.5 0.5 0 400 0.9 0.1 —1

Clearly, we can notice the high prediction percents. The training data of each model are all predicted correctly.
The grand average of the prediction percent of the 6 sets is around 87%. In all the data sets, it was noticed that
the utility parameter ranges between 0.52 to 0.85.

In the next experiment, we use a well known set from Loomes and Sugden [19], here, 46 subjects were asked
to present their preferences in 45 pairs of different lotteries. The payoffs of all the lotteries were a combination
of £0, £10, £20 with different probabilities as shown in Table 12. Table 13 shows the actual classifications.

For each column in the responses, the SVM model is applied and tested against the remaining data sets,
this results in 46 x 46 = 2116 tests. Table 14 shows the counts of correct predictions, and most importantly,
the utility parameter (3 of each data set in the last column. Surprisingly, in all data sets, the optimal 3 value
did range between 0.58 to 0.74, a result that reveals risk aversion in all subjects. The total percent of correct
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TABLE 6. Third conducted survey of different lotteries (data set 3).

S R
T T2 p1 P2 T T2 1 P2 Class

1 100 200 0.01 0.99 50 150 0.25 0.75 -1
2 0 75 0.4 0.6 100 150 0.01 0.99 1
3 0 100 0.5 0.5 50 100 0.75 0.25 1
4 100 150 0.25 0.75 0 150 0.99 0.01 -1
5 0 25 0.9 0.1 50 75 0.99 0.01 1
6 150 200 0.99 0.01 0 75 0.5 0.5 -1
7 150 200 0.25 0.75 100 150 0.99 0.01 -1
8 100 150 0.9 0.1 150 200 0.6 0.4 1
9 0 75 0.05 0.95 50 100 04 0.6 1
10 0 50 0.4 0.6 50 75 0.05 0.95 1
11 0 800 0.99 0.01 150 200 0.1 0.9 1
12 0 100 0.75 0.25 100 200 0.75 0.25 1
13 0 800 0.9 0.1 0 50 0.05 0.95 -1
14 0 100 0.9 0.1 0 800 0.25 0.75 1
15 0 25 0.75 0.25 50 100 0.01 0.99 1
16 0 800 0.01 0.99 0 100 0.9 0.1 -1
17 0 75 0.95 0.05 0 200 0.05 0.95 1
18 0 25 0.1 0.9 0 75 0.05 0.95 1
19 50 150 0.5 0.5 0 50 0.01 0.99 -1
20 25 50 0.75 0.25 50 75 0.9 0.1 1
21 25 50 0.9 0.1 100 150 0.9 0.1 1
22 0 400 0.99 0.01 0 200 0.25 0.75 1
23 50 0.01 0.99 0 400 0.01 0.99 1
24 0 150 0.6 0.4 50 150 0.01 0.99 1
25 25 50 0.5 0.5 0 75 095 0.05 -1
26 0 150 0.75 0.25 50 150 0.6 0.4 1
27 100 150 0.99 0.01 0 75 099 0.01 -1
28 0 100 0.6 0.4 0 50 0.6 0.4 -1
29 50 100 0.99 0.01 100 150 0.75 0.25 1
30 0 75 0.6 0.4 50 150 0.99 0.01

predictions is 73% which strongly agrees with the literature results where almost 25% of subjects tend to switch
their choices for the same lotteries when repeated in the experiment.

For further demonstration, we arbitrarily picked a case to show the prediction contours of the model. Fig-
ures 18 and 19 show the model of the selected case #10. The 3D plot of the classifier shows the points classified
by “1” in the top half.

In our last experiment, we use the data set of Tversky and Kahneman [27] for lotteries of positive outcomes
as shown in Table 15. The resulting separator is shown in Figure 20. Note that all the data points are found to
be support vectors with the optimal § value of 0.675 as shown in Figure 21.
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TABLE 7. Fourth conducted survey of lotteries (data set 4).

S R
T1 T2 P1 P2 1 T2 D1 P2 Class
1 50 100 0.1 0.9 50 100 0.5 0.5 -1
2 0 25 0.05 0.95 0 25 0.9 0.1 -1
3 0 150 0.99 0.01 50 150 0.1 0.9 1
4 100 150 0.5 0.5 100 150 0.95 0.05 -1
5 0 200 0.9 0.1 50 0.4 0.6 -1
6 0 75 0.1 0.9 50 0.99 0.01 -1
7 25 50 099 0.01 400 0.6 0.4 1
8 0 150 0.1 0.9 800 0.9 0.1 -1
9 150 0.4 0.6 100 200 0.25 0.75 1
10 50 0.6 0.4 0 25 095 0.05 -1
11 200 0.75 0.25 100 150 0.5 0.5 1
12 50 75 0.5 0.5 0 25 0.1 0.9 -1
13 200 0.01 0.99 0 75 0.01 0.99 -1
14 400 0.9 0.1 50 100 0.99 0.01 1
15 25 50 0.4 0.6 0 50 0.75 0.25 -1
16 0 100 0.05 0.95 0 25 0.05 0.95 -1
17 0 25 095 0.05 100 0.01 0.99 1
18 100 200 0.75 0.25 200 0.9 0.1 -1
19 50 150 0.9 0.1 25 50 0.9 0.1 -1
20 150 200 0.01 0.99 100 200 04 0.6 -1
21 400 0.1 0.9 100 200 0.95 0.05 -1
22 150 0.01 0.99 0 150 0.75 0.25 -1
23 75 075 0.25 0 25 0.01 0.99 1
24 25 0.01 0.99 150 200 0.95 0.05 1
25 50 150 0.99 0.01 25 50 0.99 0.01 -1
26 50 100 0.5 0.5 25 50 0.01 0.99 -1
27 0 25 099 0.01 100 200 0.99 0.01 1
28 150 200 0.05 0.95 50 150 0.4 0.6 -1
29 0 50 0.95 0.05 0 800 0.5 0.5 1

For the validation purposes, we have used the found model in this experiment and tested the data of
the conducted survey in Table 4-9. The number of test data points and predicted counts are shown in

Table 16.

Once again, the 3 value is found to be less than 1, which reveals risk aversion attitude. The percent of correct

prediction is 93% for the used data sets.

Finally, we would like to emphasize the contribution of this study characterized by introducing the SVM to
the field of decision analysis to perform supervised learning of human decision making. The approach can be
used to guide individuals to make better decisions. It predicts and optimizes the utility without the need to

elicit firm certainty equivalents.
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TABLE 8. Fifth conducted survey (data set 5).

S R
T1 T2 p1 P2 T T2 1 P2 Class
1 0 100 0.4 0.6 0 50 0.1 0.9 -1
2 0 25 0.25 0.75 0 100 0.25 0.75 1
3 0 150 0.05 0.95 100 200 0.05 0.95 1
4 50 150 0.05 0.95 150 200 0.05 0.95 1
5 0 75 0.99 0.01 50 75 0.95 0.05 1
6 0 75 0.9 0.1 0 400 0.25 0.75 1
7 0 800 0.5 0.5 25 50 0.95 0.05 -1
8 0 100 0.01 0.99 0 25 0.5 0.5 -1
9 0 50 0.05 0.95 0 800 0.75 0.25 -1
10 100 200 0.05 0.95 0 50 0.95 0.05 -1
11 50 150 0.6 0.4 100 200 0.5 0.5 1
12 0 800 0.1 0.9 0 150 0.1 0.9 -1
13 0 50 0.9 0.1 100 150 0.05 0.95 1
14 50 100 0.05 0.95 0 25 0.99 0.01 -1
15 50 75 0.9 0.1 150 200 0.25 0.75 1
16 100 200 0.25 0.75 0 75 0.4 0.6 -1
17 0 75 0.5 0.5 0 75 0.25 0.75 1
18 0 100 0.99 0.01 50 100 0.95 0.05 1
19 0 400 0.05 0.95 100 200 0.6 0.4 -1
20 50 75 0.99 0.01 0 100 0.4 0.6 -1
21 50 100 0.75 0.25 0 75 0.75 0.25 -1
22 150 200 0.1 0.9 50 100 0.25 0.75 -1
23 0 50 0.75 0.25 50 75 025 0.75 1
24 25 50 0.1 0.9 50 75 0.4 0.6 1
25 100 150 0.6 0.4 150 200 0.9 0.1 1
26 25 50 0.25 0.75 150 200 0.4 0.6 1

TABLE 9. Sixth conducted survey (data set 6).

S R
# x1 T2 D1 D2 1 T2 D1 D2 Class
1 0 200 0.05 0.95 0 800 0.6 0.4 —1
2 0 200 0.1 0.9 0 800 0.6 0.4 1
3 0 25 0.5 0.5 0 25 0.75 0.25 —1
4 0 400 0.25 0.75 0 200 0.95 0.05 —1
5 25 50 0.95 0.05 0 800 0.01 0.99 1
6 100 150 0.4 0.6 50 100 0.9 0.1 —1
7 25 50 0.05 0.95 50 75 0.6 0.4 1
8 100 150 0.01 0.99 0 50 0.5 0.5 —1
9 0 50 0.5 0.5 25 50 0.6 0.4 1
10 50 75 0.4 0.6 0 100 0.5 0.5 —1
11 150 200 0.9 0.1 0 150 0.05 0.95 —1
12 0 25 0.6 0.4 50 75 0.1 0.9 1
13 0 200 0.99 0.01 0 200 0.1 0.9 1
14 0 25 0.4 0.6 25 50 0.4 0.6 1
15 0 100 0.25 0.75 0 100 0.1 0.9 1
16 0 200 0.1 0.9 0 800 0.95 0.05 —1
17 0 150 0.5 0.5 0 800 0.1 0.9 1
18 150 200 0.5 0.5 0 400 0.4 0.6 —1
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TABLE 10. The optimal parameter 8 and the correctly predicted counts.

Data set Jé] 1 2 3 4 5 6

1 075 30 25 22 26 18 11
084 25 30 29 26 23 14
059 23 26 30 28 23 15
0.8 23 27T 29 29 21 15
055 23 26 29 27 26 14
052 21 26 29 28 20 18

S UL W N

TABLE 11. Percent correct and the averages.

Data sets
Data sets 1 2 3 4 5 6 average

1 1 0.83 0.73 0.9 0.69 0.61 0.79
2 0.83 1 097 0.9 0.88 0.78 0.89
3 0.77 0.87 1 0.97 0.88 0.83 0.89
4 0.77 09 097 1 0.81 0.83 0.88
5 0.77 0.87 097 0.93 1 0.78 0.88
6 0.7 087 097 0097 0.77 1 0.88

Grand average = 0.87

TABLE 12. The 45 pair of lotteries of the rewards (£0, £10, £20).

Safe lottery S Risky lottery R # Safe lottery S Risky lottery R # Safe lottery S Risky lottery R
(10,0.25;20,0.75) (0,0.15;20,0.85) 16 (0,0.8;10,0.2) (0,0.9;20,0.1) 31 (0,0.4;10,0.6) (0,0.5510,0.3;20,0.2)
2 (0,0.15;10,0.25;20,0.6) (0,0.3;20,0.7) 17 (10,0.25;20,0.75) (0,0.1;20,0.9) 32 (0,0.7;10,0.3) (0,0.8;20,0.2)
3 (10,0.5;20,0.5) (0,0.3;20,0.7) 18 (0,0.1;10,0.75;20,0.15) (0,0.4;20,0.6) 33 (10,0.5;20,0.5) (0,0.1;20,0.9)
4 (10,0.5;20,0.5) (0,0.15;10,0.25;20,0.6) 19 (10,1) (0,0.4;20,0.6) 34 (0,0.1;10,0.5;20,0.4) (0,0.2;20,0.8)
5 (10,1) (0,0.15;10,0.75;20,0.1) 20 (10,1) (0,0.1;10,0.75;20,0.15) 35 (10,1) (0,0.2;20,0.8)
6 (10,1) (0,0.6;20,0.4) 21 (0,0.6;10,0.25;20,0.15) (0,0.7;20,0.3) 36 (10,1) (0,0.1;10,0.5;20,0.4)
7 (0,0.15;10,0.75;20,0.1) (0,0.6520,0.4) 22 (0,0.5510,0.5) (0,0.7;20,0.3) 37 (0,0.25;10,0.75) (0,0.35;10,0.25;20,0.4)
8 (0,0.75;10,0.25) (0,0.9520,0.1) 23 (0,0.5;10,0.5) (0,0.6;10,0.25;20,0.15) 38 (0,0.25;10,0.75) (0,0.4;20,0.6)
9 (10,0.2;20,0.8) (0,0.1;20,0.9) 24 (0,0.75;10,0.25) (0,0.85;20,0.15) 39 (0,0.35;10,0.25;20,0.4) (0,0.4;20,0.6)
(0,0.1;10,0.8;20,0.1) (0,0.5;20,0.5) 25 (10,0.3;20,0.7) (0,0.1;20,0.9) 40 (0,0.5;10,0.5) (0,0.6;20,0.4)
11 (10,1) (0,0.5;20,0.5) 26  (0,0.2;10,0.6;20,0.2) (0,0.4;20,0.6) 41 (10,0.25;20,0.75) (10,0.3;20,0.7)
12 (10,1) (0,0.1;10,0.8;20,0.1) 27 (0,0.1;10,0.9) (0,0.4;20,0.6) 42 (0,0.55;10,0.2;20,0.25)  (0,0.65;10,0.15;20,0.2)
13 (0,0.5;10,0.4;20,0.1) (0,0.7;20,0.3) 28 (0,0.1;10,0.9) (0,0.2;10,0.6;20,0.2) 43 (0,0.8;20,0.2) (0,0.85;20,0.15)
14 (0,0.4;10,0.6) (0,0.7;20,0.3) 29 (0,0.5;10,0.3;20,0.2) (0,0.6;20,0.4) 44 (0,0.1;10,0.75;20,0.15)  (0,0.15;10,0.75;20,0.1)
15 (0,0.4;10,0.6) (0,0.5;10,0.4;20,0.1) 30 (0,0.4;10,0.6) (0,0.6;20,0.4) 45 (0,0.7;10,0.3) (0,0.75;10,0.25)
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TABLE 13. Subjects’ responses to the 45 problems. “1” means the lottery “R” has been selected.

Lottery

Responses of the

Lottery

the 46 subjects pair

-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 -1 1 1-1-1-1-1-1-1-1-1-1-1-1-1 1 1-1

pair

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

2
3
4
5
6
7
8
9
10
11
12

3
4

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-1-1

-1 1-1-11 1-1-1-1-1-1 1-1-1-1-1-1-1-1-1 1-1—-1-1-1-1-1-1-11 1-1 1-1-1 1 1-1-1-1-1-1—-1-1-1-1

6

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

7

8

9
10
11
12
13
14
15
16
17

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-17-1-1-1 1-17-1-1-1-1-1-1 1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-11 1-1-1-1-1-1-1-1-1-1-1-1-1-1—-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1 1 1-1-1-1-1-1-1-1-1-1

-1 17-1-111-1-1-1-1-1-1-1-1-111-1 1-1 1-1-1 1-1-1-1-1-11 1-1 1-1-1 1 1-1 1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

13
14

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

1-1 1-1 1-1-1-1-1-1-1 1-1-1-1 1-1-1 1-1-1-1-1 1-1-1-1-1-1-1 1 1-1-1 1 1-1-1-1-1-1-1—-1-1 1 1
-1-1 1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1 1 1-1-1-1-1-1-1 1-1-1-1 1-1 1-1-1 1-1-1-1-1-1-1 1-1-1-1

15
16

-1 1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1 1-1-1-1 1-1-1 1 1 1 1-1-1-1 1-1-1-1-1-1—-1 1-1-1

17
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8
19
0
1
2
3
24
5
6

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-17-1 1-1 1-1-1-1-1-1-1-1-1 1 1-1-1-1-1-1-1-1-1-1-1 1-1-1-1
-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1—-1-1-1-1-1-1 1 1—-1-1-1-1-1-1-1-1-1-1—-1-1-1-1
-1 1-1-111-11-1-1-11-1-1-111-1~-1111-11-1 1-1-1-111111-1111 1-1-1-1—-1-1-1-1
-1-1-1-1 1-1-1-1-1 1-1-1-1-1-1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1-1 1-1-1 1-1-1-1-1-1-1-1 1-1-1-1
-1-1 1-17-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1-1-1-11 1-1 1—-1-1-1-1-1-1-1-1 1-1 1-1

1-1 111 1-1-1-1-1 1-1-1-1-1-1-1-1 1-1-1-1-1 1-1 1 1-1 1-1 1 1 1-1 1 1-1 1-1-1-1-1 1-1-1-1

1-1-1-1-7-1 1-1-1-1-1-1-1-1-1-1-1-1 1-1—-1 1 1-1-1-1 1—-1 1-1 1 1-1-1-1 1-1 1-1-1-1-1 1-1-1 1
-1-1-1-11 1-1-1-1-1-1-1-1-1 1-1-1-1-1-1-1 1—-1-1-1-1-1-1-1 1-1 1 1-1-1-1-1 1—-1-1-1-1 1-1-1-1
-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1—-1-1-1-1-1-1-1-1-11 1—-1-1-1-1-1-1-1-1-1 1-1 1-1

18
19
20
23
24
25
26

21
22

27
28
29
30
31
32
33
34
35
36
37
38
39
40

-1-1-1-1 1-1-1 1-1 1-1-1-1-1-1-1-1-1-1 1—-1 1—-1 1-1-1-1-1-1-1 11 1-1-1-1-1-1-1-1—-1-1 1-1-1-1

27
28
29
30
31

111111-1 1-1 1-1-1-1-1-1-1-1-11 1-1 1-1 1-1-1 1-1 11 1-1 1 1-1 1 1-1 1-1 1-1-1-1 1 1

1-1 1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-11~-11 1-1-1-1-1-1 1-1 1 1-1-1-1 1-1-1-1-1-1-1 1-1 1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-17-1-1-1-1-1-1-1 1-1-1-1 1 1-1-1-1-1-1-1-1-1-1-1 1-1 1-1

-1-11111-11-1 1-1-1-1-1-1-1-1-1 1-1—1 1 1-1-1-11-11111 1111 1-1-1-1-1-1 1-1 1 1

1-11111-1 1-1 1-1-1-1-1-1-1-1-1 1-1—-1 1-1 1-1 1 1-1 1-1 1111 1-1-1 1-1-1-1-1 1-1 1 1

32
33
34
35
36
37
38
39
40
41
42

11-111111-1 1-1-1-1-1-1-1-1-111~-11 1-1-1 1-1 11111 1-1-1-1 1-1-1-1-1-1 1-1 1-1

1 1-1-1 1 1-1-1-1 1-1-1-1-1~-111~-1111111-11-111-1111-111 1-1-1-1-1-1 1-1-1 1
-1 1-111-111-1 1-1-1-1-1-1-1 1-111-111 1-1 1-1-1 1 1 11 1 1-1 1 1-1 1-1-1-1 1-1-1-1

11-11111-1-11-111-1-1~-11-1-111111-11-1~-1111111-1 111 1-1-1-1 1-1 1 1

11-111111-111-1-1-1~-1 1-1-111-1111-111-1111111-1 1 1-1 1-1-1-1 1-1 1 1
-1-1-1 1 1-1-1-1-11-1-1-1-1-1-1-1-11 1-1 1-1-1-1-1 1-1-17 17 17 1 1 1-1 1 1-1-1-1-1-1 1-1-1 1

1 1-1111-1 1-1 1-1-1 1-1-1 1-1-1 11 11 1-1-1 1111 111111-1 1-1 1-1-1-1 1-1 1 1

1-17111111-11-1-1-1-1~-11-1~-111-111-1-111-111111111111-1-1-1 1-1-1 1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

41

42
43

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

43

44

-1-1-1-1-1-1 1-17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

44

45

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

45
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FIGURE 18. The classifier of contours of Table 12.
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FIGURE 20. The classifier of the data in Table 15.
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TABLE 15. A data set from Tversky and Kahneman [27].

Lottery S Lottery R
Pair # o1 2 p1 P2 r1 X2 1 p2  Class
1 50 100 0.1 0.9 0 50 0.9 0.1 -1
2 50 150 0.5 0.5 0 50 0.5 0.5 -1
3 100 200 0.5 0.5 0 50 0.1 0.9 -1
4 0 200 0.01 0.99 0 100 0.95 0.05 -1
5 50 150 0.95 0.05 0 100  0.75 0.25 -1
6 0 100 0.25 0.75 0 100 0.5 0.5 -1
7 0 50 0.1 0.9 0 100 0.25 0.75 1
8 0 200 0.99 0.01 0 100 0.05 0.95 1
9 50 150 0.05 0.95 0 200 099 0.01 -1
10 0 200 0.5 0.5 0 200 0.9 0.1 -1
11 50 100 0.5 0.5 0 200 0.5 0.5 1
12 0 100 0.95 0.05 0 200 0.1 0.9 1
13 0 400 0.99 0.01 0 200 0.01 0.99 1
14 100 200 0.75 0.25 0 400 0.99 0.01 -1
15 100 200 0.95 0.05 0 400 0.01  0.99 1
16 50 150 0.25 0.75 50 100 0.9 0.1 —1
17 0 50 0.5 0.5 50 100 0.5 0.5 1
18 50 100 0.9 0.1 50 100 0.1 0.9 1
19 0 200 0.1 0.9 50 150 0.95 0.05 -1
20 50 150 0.75 0.25 50 150 0.75 0.25 —1
21 100 200 0.05 0.95 50 150 0.5 0.5 —1
22 0 100 0.75 0.25 50 150 0.25 0.75 1
23 0 50 0.9 0.1 50 150 0.05 0.95 1
24 100 200 0.25 0.75 100 200 0.95 0.05 —1
25 0 100 0.5 0.5 100 200 0.75 0.25 1
26 0 100 0.05 0.95 100 200 0.5 0.5 1
27 0 200 0.9 0.1 100 200 0.25 0.75 1
28 0 400 0.01 0.99 100 200 0.05 0.95 —1
1.095 .

S 109 1

=

2

H

& 1.085} 1

10867 0.675 0.68 0.685
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FI1GURE 21. The objective function value vs. 3.
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TABLE 16. Test results of Table 4-9.

Data sets (1 to 6) in Tables 4-9
1 2 3 4 5 6
30 30 30 29 26 18 63
SVM model of the Tables 4-9 25 26 29 28 25 18 0.675
Percent correct 0.83 087 097 097 096 1
Grand average 0.93

9. CONCLUSIONS

This paper addressed the problem of modeling human decision making under risk and uncertainty using
a novel SVM approach. Supervise learning is implemented to imitate human attitude toward uncertainty
in a model that helps individuals make better decisions. Unlike traditional utility estimation techniques of
direct inquiry of certainty equivalents, here, the utility parameter and certainty equivalents can be computed
via pair-wise comparison between lotteries. The compared lottery pairs were divided into two classes according
the pattern of preference. By introducing such classes, SVM could be used to separate the data while searching
for the optimal utility function parameters. Different kernels were used in the SVM model, however, a positive
definite power kernel was found to be superior in its prediction and utility estimation.

Different data sets were used to train and test the model. In all data sets including the new survey and selected
literature studies, the [ value was ranging between 0.52-0.84, which reveals the tendency to risk aversion in
the subjects. The results did demonstrate a promising model that can admit the violations to the EVT and
EUT, can estimate the certainty equivalent and the utility parameter and at the same time possess remarkable
prediction.
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