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A FULL NT-STEP INFEASIBLE INTERIOR-POINT ALGORITHM
FOR SEMIDEFINITE OPTIMIZATION

Mohammad Pirhaji1, Hosseino Mansouri1 and Maryam Zangiabadi1

Abstract. In this paper, a full Nesterov−Todd-step infeasible interior-point algorithm is presented
for semidefinite optimization (SDO) problems. In contrast of some classical interior-point algorithms
for SDO problems, this algorithm does not need to perform computationally expensive calculations
for centering steps which are needed for classical interior-point methods. The convergence analysis of
the algorithm is shown and it is also proved that the complexity bound of the algorithm coincides
with the currently best iteration bound obtained by infeasible interior-point algorithms for this class
of optimization problems.
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1. Introduction

Semidefinite optimization (SDO) problems are one of the most important subclasses of optimization problems
in which a linear function of a matrix variable X is minimized (maximized) over the intersection of an affine set
and the cone of positive semidefinite matrices. Mathematically, the primal problem (P ) of SDO in the standard
form is defined as follows:

min C •X
Ai •X = bi, i = 1, 2, . . . ,m,

X � 0,

and its Lagrangian dual (D) problem is defined as

max bT y
m∑

i=1

yiAi + S = C,

S � 0,

where M •N := Tr(MN) is the inner product related to Sn (the vector space of n×n real symmetric matrices),
Ai ∈ Sn are linearly independent matrices, C ∈ Sn and b ∈ R

m. The SDO problem as a natural extension

Keywords. Semidefinite optimization, infeasible interior-point method, convergence analysis, polynomial complexity.

1 Department of Applied Mathematics, Faculty of Mathematical Science, Shahrekord University, P.O. Box 115, Shahrekord,
Iran. Mansouri@sci.sku.ac.ir

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2016043
http://www.rairo-ro.org
http://www.edpsciences.org


534 M. PIRHAJI ET AL.

of linear optimization (LO) problem, has received considerable attention and has been one of the most active
research areas in mathematical programming.

In the past decade, various approaches have been proposed for solving and finding an optimal solution of
SDO problem. Among them, the interior-point methods (IPMs) are efficient algorithms in both theoretical and
practical aspects. Many IPMs for LO problems have been successfully extended to SDO problems [11, 17, 22].
The primal-dual IPMs for SDO problem have been widely studied by Klerk [3] and Wolkowicz [21]. Alizadeh
et al. [1], Helemberg et al. [5] and Kojima et al. [9] proposed some primal-dual IPMs for SDO problem.

There are two types of IPMs based on choosing the starting point. Feasible IPMs, when the initial point
and subsequent iterates are in the interior of feasible region and infeasible IPMs (IIPMs) when the initial
point and subsequent iterates are not necessarily feasible. Primal-dual infeasible IPMs for LO problems was
analyzed by Roos [18]. After that, many authors extended the Roos’s idea for LO problems to various classes of
mathematical problems. Mansouri et al. [13] proposed a primal-dual IIPM for SDO problems and obtained the
same complexity result as Roos [18] for LO problems. Liu et al. [10], based on a new kernel function, presented a
full Nesterov−Todd (NT) step IIPM for SDO problems. Zhang et al. [23] proposed a simplified infeasible interior-
point algorithm for SDO problems. Their algorithm is an extension of the algorithm introduced by Roos [18]
for LO problems and it measures the closeness to the central path by the merit function δ(V ) :=

∥∥I − V 2
∥∥

F
.

In 2014, Wang et al. [20] suggested an infeasible interior-point algorithm for SDO problems. They established
a sharper quadratic convergence result for feasible IPM which leads to a slightly wider neighborhood of the
feasibility step in infeasible algorithm.

In most of the aforementioned papers, each main iteration of the proposed infeasible algorithms is composed
of one feasibility step and several (at most 3) centering steps to get an ε-optimal solution of SDO problem.
Recently, Roos [19] and Mansouri et al. [14], proposed two infeasible interior-point algorithms for LO problems.
They proved that both algorithms do not need centering steps and take only one step in order to get a new
iterate close to the central path.

Motivated by Roos [19] and Mansouri et al. [14], the main goal of this paper is to propose an infeasible
interior-point algorithm for SDO problems in which the algorithm does not need to perform any centering steps
to obtain a new iterate close to the central path in each iteration. We prove the convergence analysis of the
algorithm and derive the currently best known iteration bound for the algorithm, namely, O

(
n log ε−1

)
.

The paper is organized as follows. Section 2 presents some well-known concepts and definitions which will be
required in our analysis. In Section 3, after some preliminary discussion on infeasible IPMs for SDO problems,
we present a new class of search directions for SDO problems in Section 3.1. A modified version of the proposed
algorithm in [13] will be presented in Section 3.2. Section 4 is devoted to prove the convergence analysis of the
proposed algorithm in Section 3.2. In Section 4.2, we obtain the complexity bound of the proposed algorithm.
Finally, the paper will end with some conclusions in Section 5.

Some notations used throughout this article are as follow. The set of all m× n matrices with real entries is
denoted by R

m×n. Moreover, Sn denotes the set of all n×n real symmetric matrices. Sn
++

(
Sn

+

)
denotes the set

of all matrices in Sn which are positive definite (positive semidefinite). For A ∈ Sn, we write A � 0 (A � 0) if
A is positive definite (positive semidefinite). For any matrix A, λi(A) denotes the ith eigenvalue of the matrix
A ∈ R

n×n while λmin(A) and λmax(A) denote the smallest and largest eigenvalue of the matrix A, respectively.
Moreover, det(A) :=

∏n
i=1 λi(A) and Tr(A) :=

∑n
i=1 λi(A) respectively denote the determinant and trace of

the matrix A whereas ‖A‖2
F := Tr(AAT ) and ‖A‖2 := maxi |λi(A)| denote the Frobenius and infinity norms of

the matrix A, respectively. The square root of the symmetric positive definite matrix A is denoted by A
1
2 . The

notation A ∼ B ⇐⇒ A = QBQ−1 for some invertible matrix Q, means the similarity between the matrices A
and B.

2. Preliminaries

In this section, we recall some basic concepts and useful results concerning kernel function, matrix function
and matrix barrier function, which are found in [4, 6].
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Definition 2.1 (Chap. 2 in [4]). A twice differentiable function φ(t) : (0,∞) −→ [0,∞) is called a kernel
function if

φ(1) = φ′(1) = 0, φ′′(t) > 0, ∀t > 0.

A kernel function is called eligible, if it satisfies some extra properties as stated by Bai et al. [2].

Definition 2.2. Suppose the matrix G ∈ R
n×n is diagonalizable with eigen-decomposition

G = Q−1
G diag (λ1(G), λ2(G), . . . , λn(G))QG,

where QG is a nonsingular matrix. Also, let φ(t) : R → R be a real-valued function. The matrix function φ(G)
is defined by

φ(G) := Q−1
G diag (φ(λ1(G)), φ(λ2(G)), . . . , φ(λn(G)))QG. (2.1)

For any diagonalizable matrix G, we define a matrix barrier function Φ(G) : Sn
++ → R by

Φ(G) := Tr (φ(G)) =
n∑

i=1

φ(λi(G)). (2.2)

Since the derivatives φ′(t) and φ′′(t) are well-defined, the definitions φ′(G) and φ′′(G) are also well-defined and
they are defined as follows:

φ′(G) := Q−1
G diag (φ′(λ1(G)), φ′(λ2(G)), . . . , φ′(λn(G)))QG, (2.3)

φ′′(G) := Q−1
G diag (φ′′(λ1(G)), φ′′(λ2(G)), . . . , φ′′(λn(G)))QG. (2.4)

Definition 2.3. A matrix M(t) is said to be a matrix of functions if each entry of M(t) is a function of t, that
is M(t) := [Mi,j(t)].

It is not difficult to check that the usual concepts of continuity, differentiability and integrability can be
naturally extended to matrix of functions, by interpreting them component-wise. For more details, we refer the
reader to Chapter 6 in [6].

3. Central path of perturbed problems

In this section, we first describe the idea of infeasible IPMs for solving the SDO problems and then we present
a modified version of the proposed algorithm in [13] for SDO problems.

For convenience of reference, we consider the feasibility set and the strictly feasibility set of the problems (P )
and (D) as follows:

F := {(X, y, S) : Ai •X = bi,
m∑

i=1

yiAi + S = C, i = 1, 2, . . . ,m, X, S � 0},

F0 := {(X, y, S) ∈ F : X,S � 0}.
Let (X∗, y∗, S∗) be an optimal solution of the SDO problems (P) and (D). That is, (X∗, y∗, S∗) ∈ F∗ where
F∗ := {(X, y, S) ∈ F : Tr(XS) = 0}. We also assume that X∗+S∗ � ζI and μ0 = ζ2 and define

(
X0, y0, S0

)
:=

ζ (I, 0, I) as the initial point of the algorithm.
Letting ν ∈ (0, 1], the perturbed primal problem (Pν) is defined as

min
(
C − νR0

d

) •X
Ai •X = bi − ν(r0p)i, i = 1, 2, . . . ,m,

X � 0,
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while the perturbed Lagrangian dual problem (Dν) is defined as

max
(
b− νr0p

)T
y

m∑
i=1

yiAi + S = C − νR0
d,

S � 0,

where (r0p)i := bi−Ai•X0 for i = 1, 2, . . . ,m and R0
d := C−∑m

i=1 y
0
iAi−S0 denote the initial values of residuals

related to the initial point
(
X0, y0, S0

)
. In infeasible IPMs, the triplet (X, y, S) is called an ε-optimal solution

of SDO problem if the norms of the residuals and the value of duality gap related to the iterate (X, y, S) are
less than the accuracy parameter ε. That is, max{Tr(XS), ‖rp‖ , ‖Rd‖F } ≤ ε.

In this paper, we assume that the primal and dual problems (P ) and (D) satisfy interior-point condition
(IPC), i.e., F0 �= ∅. As in [3], without loss of generality, we can assume the IPC for SDO problems. In fact, we
can achieve the IPC using the so-called embedding technique introduced by Klerk [3] for SDO problems.

Assuming the original problems (P ) and (D) are both feasible, Lemma 4.1 in [13] guarantees the perturbed
problems (Pν) and (Dν) satisfy the IPC for ν ∈ [0, 1] and therefore the central path of SDO exists. This means
that the perturbed Karush–Kuhn–Tucker optimality conditions

bi −Ai •X = ν(r0p)i, X � 0

C −
m∑

i=1

yiAi − S = νR0
d, S � 0 (3.1)

XS = μI,

has a unique solution for each μ > 0. Note that, under the IPC, the primal and dual problems (P ) and (D)
have an optimal solution with equal values and moreover, for each μ > 0, system (3.1) has a unique solution [3].
These unique solutions of system (3.1), denoted by X(μ, ν) and (y(μ, ν), S(μ, ν)), are called the μ-centers of the
perturbed problems (Pν) and (Dν). The set of all μ-centers construct a curve, so-called the central path, which
used as a guide line to optimal solution of SDO problem. Clearly, since X0S0 = μ0I, X0 and

(
y0, S0

)
are the

μ0-center of the perturbed problems (P1) and (D1).

3.1. Search directions

Let X and (y, S) be the strictly feasible solutions for the perturbed problems (Pν) and (Dν). As we mentioned
before, the infeasible algorithm proceeds to generate a new feasible solution (X+, y+, S+) of the perturbed
problems (Pν+) and (Dν+). To this end, using Newton method, we should calculate the search directions ΔX ,
Δy and ΔS such that

Ai • (X +ΔX) = bi − ν+(r0p)i, i = 1, 2, . . . ,m,∑m
i=1 (yi +Δyi)Ai + (S +ΔS) = C − ν+R0

d.
(3.2)

Since (X, y, S) is strictly feasible for the perturbed problems (Pν) and (Dν), it follows that the search direction
(ΔX,Δy,ΔS) should satisfy

Ai •ΔX = θν(r0p)i, i = 1, 2, . . . ,m,∑m
i=1ΔyiAi +ΔS = θνR0

d.
(3.3)
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In order to obtain a unique solution for (3.3), we add the equation ΔXS + XΔS = μI −XS or equivalently
ΔX +XΔSS−1 = μS−1 −X to this system, which follows the following system:

Ai •ΔX = θν(r0p)i, i = 1, 2, . . . ,m,
m∑

i=1

ΔyiAi +ΔS = θνR0
d, (3.4)

ΔX +XΔSS−1 = μS−1 −X.

Clearly, due to the third equation of the above system, the search direction ΔX is not necessarily symmetric
because the matrix XΔSS−1 may not be symmetric. Based on different symmetrization schemes, several search
directions have been proposed, as presented in [3,8,22]. However, in our analysis, we use Zhang’s direction [22]
which is obtained by the following Newton system:

Ai •ΔX = θν(r0p)i, i = 1, 2, . . . ,m,
m∑

i=1

ΔyiAi +ΔS = θνR0
d, (3.5)

ΔX + PΔSPT = μS−1 −X,

where P is a symmetric nonsingular matrix. The system (3.5) has a unique solution for each matrix P [21] and
the obtained search direction ΔX is automatically symmetric.

Different choices have been proposed for the nonsingular matrix P . For instance, Alizadeh et al. [21] used
P = I while Kojima et al. [8] and Monterio [15] respectively suggested P = X− 1

2 and P = S
1
2 . However, in our

analysis, we choose the matrix P proposed by Nesterov and Todd [16], which is as follows:

P := X
1
2

(
X

1
2SX

1
2

)− 1
2
X

1
2 = S− 1

2

(
S

1
2XS

1
2

) 1
2
S− 1

2 . (3.6)

Let D := P
1
2 . The matrix D can be used to rescale X and S to the same matrix V [3], defined by

V :=
1√
μ
D−1XD−1 =

1√
μ
DSD. (3.7)

In each iteration of infeasible interior-point algorithm, we measure the closeness of the current iterate (X, y, S)
to the μ-center by using the quantity

δ (X,S;μ) := δ(V ) := ‖I − V ‖F . (3.8)

Defining the notations

DX :=
1√
μ
D−1ΔXD−1, DS :=

1√
μ
DΔSD, DXS :=

1
2
(DXDS +DSDX), (3.9)

and using them in system (3.5), this system can be redefined as follows:

Āi •DX =
1√
μ
θν(r0p)i, i = 1, 2, . . . ,m,

m∑
i=1

Δyi√
μ
Āi +DS =

1√
μ
θνDR0

dD, (3.10)

DX +DS = V −1 − V,

where Āi = DAiD.
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Considering the so-called classical kernel function

ψ(t) :=
t2 − 1

2
− log t, (3.11)

the right-hand side of the third equation in system (3.10) obviously equals to −ψ′(V ). Thus, the system (3.10)
can be rewritten as

Āi •DX =
1√
μ
θν(r0p)i, i = 1, 2, . . . ,m,

m∑
i=1

Δyi√
μ
Āi +DS =

1√
μ
θνDR0

dD, (3.12)

DX +DS = −ψ′(V ).

One of the main differences between our algorithm with the classical interior-point algorithms for SDO problems
such as [12,13,20] is the way that the search directions are generated. To compute the search directions, similar
to Liu et al. [10], we use the kernel function φ(t) := 1

2 (t − 1)2 instead of the classical logarithmic kernel
function (3.11) and we obtain the following result.

Lemma 3.1. Let φ(t) := 1
2 (t− 1)2 and V be the diagonalizable matrix defined in (3.7). Then, we have

φ′(V ) = V − I.

Proof. Since φ(t) = 1
2 (t− 1)2 and φ′(t) = t− 1, due to (2.4), we have

φ′(V ) := Q−1
V diag (φ′(λ1(V )), φ′(λ2(V )), . . . , φ′(λn(V )))QV ,

which implies

φ′(V ) := Q−1
V diag (λ1(V ) − 1, λ2(V ) − 1, . . . , λn(V ) − 1)QV = V − I.

This concludes the result and ends the proof. �

Applying Lemma 3.1 and replacing −ψ′(V ) in (3.12) with −φ′(V ), we obtain the following system:

Āi •DX =
1√
μ
θν(r0p)i, i = 1, 2, . . . ,m,

m∑
i=1

Δyi√
μ
Āi +DS =

1√
μ
θνDR0

dD, (3.13)

DX +DS = I − V.

According to (3.8), clearly δ(V ) = 0 if and only if V = I and it is equivalent to this fact that (X,S) coincides
with the μ-center (X(μ), S(μ)), i.e., XS = μI. After a full-NT step, the new iterates are given as follows:

X+ := X +ΔX =
√
μD(V +DX)D,

y+ := y +Δy,
S+ := S +ΔS =

√
μD−1(V +DS)D−1.

(3.14)

Due to the above discussion, after a full-NT step, the new iterate (X+, y+, S+) satisfies the affine equations of
the new perturbed problems (Pν+) and (Dν+). Although, the new iterate (X+, y+, S+) is feasible for the new
perturbed problems, it is necessary to show thatX+ and S+ are positive definite and satisfy δ (X+, S+;μ+) ≤ τ .
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3.2. Algorithm

Let
(
X0, y0, S0

)
and (X, y, S) respectively denote the initial and the current iterations of the infeasible

algorithm. The infeasible algorithm works as follows.
Let the current iteration (X,S) be positive and satisfy two first equations in (3.1) and δ (X,S;μ) ≤ τ

for some μ ∈ (0, μ0]. Clearly, these certainly hold at the start of the first iteration due to the definition
of initial point

(
X0, y0, S0

)
. Reducing the parameter μ to μ+ := (1 − θ)μ, with θ ∈ (0, 1), we find a new

iterate (X+, y+, S+) that satisfies the feasibility equations in (3.1) with ν replaced by ν+ := (1 − θ)ν and
δ (X+, S+;μ+) ≤ τ . This procedure is repeated until an ε-optimal solution of the SDO problem is found. A
more formal description of the algorithm is summarized in bellow.

Algorithm: Infeasible interior-point algorithm for SDO problem

Step 0 (Initialization): Choose an accuracy parameter ε > 0, a barrier update parameter θ, 0 < θ < 1, a
threshold parameter τ > 0, an initial point

(
X0, y0, s0

)
:= (ζI, 0, ζI) and a parameter μ0 > 0 such

that X0 • S0 = nμ0.

Step 1 (Test convergence): If max{Tr(XS), ‖rp‖ , ‖Rd‖F } ≤ ε, declare convergence and stop. Otherwise,
proceed to the next step.

Step 2 (Computation): Calculate the search direction (ΔX,Δy,ΔS) via (3.9) and (3.10) and compute the
new iterate (X+, y+, S+) that satisfies δ (X+, S+; μ+) ≤ τ . Now, update the parameters μ and ν by
the factor 1 − θ and go to Step 3.

Step 3 (Update iterate): Set (X, y, S) = (X+, y+, S+) and go to Step 1.

4. Analysis of Algorithm

In this section, we present the analysis of algorithm and show that without requiring centering steps, our
proposed algorithm is well-defined and finds an ε-optimal solution of SDO problem in polynomial time complex-
ity. To this end, let us to recall some key and technical lemmas which directly required in proof of convergence
analysis of algorithm. For proof and more details, we refer the reader to [3].

Lemma 4.1. Let (X(α), S(α)) = (X,S)+α (ΔX,ΔS) and X � 0 and S � 0. If for α ∈ [0, ᾱ], det(X(α)S(α)) >
0, then X(ᾱ) � 0 and S(ᾱ) � 0.

Lemma 4.2. Let A be an n× n skew-symmetric matrix and B be a positive definite one. Then

det (A+B) > 0,

and moreover if the eigenvalues of A+B are real, then

0 < λmin(B) ≤ λmin (A+B) ≤ λmax (A+B) ≤ λmax(B),

which means that the matrix A+B is positive definite.

The following lemma gives some bounds for the eigenvalues of the variance matrix V .

Lemma 4.3. Let δ := δ(V ) be given by (3.8). Then

q(δ) ≤ λi(V ) ≤ ρ(δ), (4.1)

where q(δ) := 1 − δ and ρ(δ) := 1 + δ.
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4.1. Convergence analysis

In this subsection, we proceed to prove that algorithm is well-defined. To this end, we need to show that
X+ and S+ are positive definite matrices and satisfy δ (X+, S+;μ+) ≤ τ . That is, (X+, y+, S+) belongs to a
sufficiently small-neighborhood of μ+-center. The following lemma presents a sufficient condition that guarantees
the new iterates X+ and S+ are positive definite.

Lemma 4.4. Let X � 0 and S � 0. Then the new iterate (X+, y+, S+) are strictly feasible if V +DXS � 0.

Proof. Let α ∈ [0, 1] and define X(α) := X + αΔX and S(α) := S + αΔS. To prove the claim, considering
Lemma 4.1, it suffices to show that the determinant X(α)S(α) is positive, for α ∈ [0, 1]. To this end, we have

X(α)S(α) = (X + αΔX) (S + αΔS) = μD (V + αDX) (V + αDS)D−1

=μD
[
V 2 + α(V DS +DXV ) + α2DXDS

]
D−1

=μD
[
V 2 + α(V DX + VDS +DXV − V DX) + α2DXDS

]
D−1

=μD
[
V 2 + α(V DX + VDS) + α(DXV − V DX) + α2DXDS

]
D−1. (4.2)

Multiplying the both sides of the third equation in (3.13) from the left by V , we have

V DX + VDS = V − V 2. (4.3)

Substituting (4.3) into (4.2), we conclude that

X(α)S(α) = μD
[
V 2 + α(V − V 2) + α(DXV − V DX) + α2DXDS

]
D−1

= μD
[
(1 − α)V 2 + αV + α(DXV − V DX) + α2DXDS

]
D−1. (4.4)

Subtracting and adding the term μD
(

α2

2 DSDX

)
D−1 to the right hand side of the equation (4.4), we obtain

X(α)S(α) = μD
[
(1 − α)V 2 + αV + α(DXV − V DX) + α2DXDS

−α
2

2
DSDX +

α2

2
DSDX

]
D−1

= μD
[
(1 − α)V 2 + α(1 − α)V + α2 (V +DXS)

+α (αM + (1 − α) (DXV − V DX))
]
D−1, (4.5)

where M is a skew symmetric matrix defined as

M := (DXV − V DX) +
1
2

(DXDS −DSDX) . (4.6)

Now, defining the skew symmetric and symmetric matrices M(α) and N(α) respectively as

M(α) := α (αM + (1 − α) (DXV − V DX)) ,
N(α) := (1 − α)V 2 + α(1 − α)V + α2 (V +DXS) , (4.7)

we can rewrite (4.5) as

X(α)S(α) = μD (N(α) +M(α))D−1,
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or equivalently

X(α)S(α)
μ

∼ N(α) +M(α). (4.8)

Hence, to prove that the determinantX(α)S(α) is positive, it suffices to show that the determinant N(α)+M(α)
is positive for α ∈ [0, 1]. To this end, using Lemma 4.2 and noticing to this fact that the matrix M(α) is skew
symmetric for α ∈ [0, 1], we only need to show that the symmetric matrix N(α) is positive definite. However, the
later is true for α ∈ [0, 1] because the matrices V +DXS , V and V 2 are positive definite in definition of N(α).
Thus, the determinant X(α)S(α) is positive. On the other hand, by assumption, we have X(0) = X � 0 and
S(0) = S � 0. Therefore, Lemma 4.1 implies that the matrices X(1) = X+ and S(1) = S+ are positive definite.
This completes the proof. �

The following corollary states a key result of the above lemma.

Corollary 4.5. Let δ := δ(V ). The new iterate (X+, y+, S+) is strictly feasible if

‖DX‖2
F + ‖DS‖2

F < 2(1 − δ). (4.9)

Proof. Due to Lemma 4.4, the new iterate (X+, y+, S+) is strictly feasible if V +DXS � 0 or equivalently

λi (V +DXS) > 0, for i = 1, 2, . . . , n.

Using the definition of DXS , the properties of Frobenius norm and Lemma 4.3, we have

λi (V +DXS) ≥ λmin (V +DXS) ≥ λmin(V ) − ‖DXS‖F ,

≥ λmin(V ) − ‖DX‖F ‖DS‖F

≥ λmin(V ) − 1
2

(
‖DX‖2

F + ‖DS‖2
F

)

≥ q(δ) − 1
2

(
‖DX‖2

F + ‖DS‖2
F

)

= 1 − δ − 1
2

(
‖DX‖2

F + ‖DS‖2
F

)
.

Thus, λi (V +DXS) > 0 if 1 − δ − 1
2

(
‖DX‖2

F + ‖DS‖2
F

)
> 0. This implies the desired result and ends the

proof. �

Let X+ and S+ be the generated iterations by the algorithm presented in Section 3.2. Substituting α = 1
in (4.5), we have

X(1)S(1) = X+S+ = μD
[
V +DXS +M

]
D−1,

or equivalently

X+S+ ∼ μ
[
V +DXS +M

]
, (4.10)

where M is as defined in (4.6).
Defining

V + :=
1√
μ+

D−1X+D−1 =
1√
μ+

DS+D =
1√
μ+

(
D−1X+S+D

) 1
2 , (4.11)

we proceed to obtain a lower bound for the minimum eigenvalue of V +.
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Lemma 4.6. Let δ := δ(V ) and V + be defined as (4.11). Then

λmin

((
V +

)2
)
≥ 1

1 − θ

(
1 − δ − 1

2

(
‖DX‖2

F + ‖DS‖2
F

))
· (4.12)

Proof. The proof is similar to the proof of Lemma 5.7 in [13], and is therefore omitted. �

To proceed our analysis, assuming ‖DX‖2
F + ‖DS‖2

F < 2(1 − δ), we need to obtain an upper bound for the
term δ(V +) := δ (X+, S+;μ+). The following lemma tasks this goal. For proof and more details, we refer the
reader to [7].

Lemma 4.7. Let δ := δ(V ) and ‖DX‖2
F + ‖DS‖2

F < 2(1 − δ). Then

δ
(
V +

) ≤
δ + 1

2

(
‖DX‖2

F + ‖DS‖2
F

)
+ θ

√
n

1 − θ +
√

(1 − θ)
(
1 − δ − 1

2

(
‖DX‖2

F + ‖DS‖2
F

)) · (4.13)

Since in our analysis we have δ ≤ τ and we need to have δ (V +) ≤ τ , using Lemma 4.7, it suffices to have

τ + 1
2

(
‖DX‖2

F + ‖DS‖2
F

)
+ θ

√
n

1 − θ +
√

(1 − θ)
(
1 − τ − 1

2

(
‖DX‖2

F + ‖DS‖2
F

)) ≤ τ. (4.14)

Considering t := ‖DX‖2
F + ‖DS‖2

F as a single term, the inequality (4.14) can be reformulated as the quadratic
polynomial inequality t2 + αt + γ ≤ 0 where α and γ are the terms based on τ, θ and n. By some elementary
calculations (using the MATLAB software), we obtain the positive root of this quadratic polynomial

‖DX‖2
F + ‖DS‖2

F ≤ τ
√

(1 − θ)
(
τ(1 − θ)(τ − 4) + 4(1 +

√
nθ)

)
+ τ(2 − τ) (1 − θ) − 2τ − 2

√
nθ. (4.15)

To proceed our analysis, we need to obtain an upper bound for the term ‖DX‖2
F + ‖DS‖2

F . To this end, let
L = {Z ∈ Sn : Āi•Z = 0, i = 1, 2, . . . ,m}. Thus, the affine space {Z ∈ Sn : Āi•Z = 1

μθν
(
r0p

)
i
i = 1, 2, . . . ,m}

equals to DX + L and therefore DS ∈ 1√
μθνR

0
dD + L⊥. Since L⋂L⊥ = {0}, the spaces L +DX and L⊥ +DS

have an intersection component that we denote it by Q. The following lemma plays a key role in our analysis.

Lemma 4.8. Let w := 1
2

√
‖DX‖2

F + ‖DS‖2
F and Q be the unique point in the intersection of the affine space

DX + L and DS + L⊥. Then

2w ≤
√
‖Q‖2

F + (‖Q‖F + δ)2, (4.16)

where δ := δ(V ) as defined in (3.8).

Proof. The proof is similar to the proof of Lemma 5.11 in [13], and is therefore omitted. �

Due to the above lemma, we have

‖DX‖2
F + ‖DS‖2

F ≤ ‖Q‖2
F + (‖Q‖F + δ)2 = 2 ‖Q‖2

F + 2δ ‖Q‖F + δ2. (4.17)

To obtain an upper bound for the term ‖DX‖2
F +‖DS‖2

F , we proceed to get an upper bound for the term ‖Q‖F .
To this end, we recall the following lemma from [13].
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Lemma 4.9 (Lem. 5.13 in [13]). With
(
X0, y0, S0

)
:= (ζI, 0, ζI), we have

‖Q‖F ≤ θ

ζλmin(V )
Tr(X + S). (4.18)

Substituting (4.18) into (4.17), we get

‖DX‖2
F + ‖DS‖2

F ≤ 2θ2

ζ2λmin(V )2
(
Tr (X + S)2

)
+

2θδ
ζλmin(V )

Tr (X + S) + δ2. (4.19)

However, to obtain an exact upper bound for the term ‖DX‖2
F + ‖DS‖2

F , we need to present an upper bound
for the term Tr(X + S). The following Lemma tasks this goal.

Lemma 4.10 (Lem. 5.16 in [13]). Let X and (y, S) respectively be feasible for the perturbed problems (Pν) and
(Dν) and let

(
X0, y0, S0

)
:= (ζI, 0, ζI). Then, one has

Tr (X + S) ≤ (
1 + ρ(δ)2

)
nζ, (4.20)

where ρ(δ) as defined in Lemma 4.3.

Using (4.1) and substituting (4.20) into (4.19), we have

‖DX‖2
F + ‖DS‖2

F ≤ 2n2θ2

q(δ)2
(
1 + ρ(δ)2

)2
+

2nθδ
q(δ)

(
1 + ρ(δ)2

)
+ δ2

=
2n2θ2

(1 − δ)2
(
1 + (1 + δ)2

)2

+
2nθδ
1 − δ

(
1 + (1 + δ)2

)
+ δ2. (4.21)

In order to have (4.15), using (4.21) and assuming δ ≤ τ , we consider the following weaker condition:

2n2θ2

(1 − τ)2
(
1 + (1 + τ)2

)2

+
2nθτ
1 − τ

(
1 + (1 + τ)2

)
+ τ2

≤τ
√

(1 − θ)
(
τ(1 − θ)(τ − 4) + 4(1 +

√
nθ)

)
+ τ(2 − τ) (1 − θ) − 2τ − 2

√
nθ.

Obviously, the left-hand side of the above inequality is increasing in τ . Using this, one may easily check that
the above inequality holds if

τ =
1
5
, θ =

1
15n

, n ≥ 2. (4.22)

This means that the new iterates (X,S) are positive and δ (X,S;μ) ≤ 1
5 during algorithm . Thus, algorithm is

well-defined.

4.2. Iteration bound

In previous section, we proved that algorithm is well-defined. That is, if at the start of an iteration the iterate
(X,S) is positive and satisfies δ (X,S;μ) ≤ 1

5 , then after the full-NT step, with θ as defined in (4.22), the new
generated iterate (X+, S+) is also positive and satisfies δ (X+, S+;μ+) ≤ 1

5 . Moreover, in each main iteration
of algorithm , the value of duality gap and the norms of the residuals reduce by the factor 1 − θ. Hence, the
total number of main iterations is bounded above by

1
θ

log
max

{
X0 • S0,

∥∥R0
d

∥∥
F
,
∥∥r0p∥∥}

ε
·
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Due to (4.22), the total number of inner iterations is bounded above by

15n log
max

{
X0 • S0,

∥∥R0
d

∥∥
F
,
∥∥r0p∥∥}

ε
·

Thus, we may state without further proof the main result of the paper as follows.

Theorem 4.11. If (P ) and (D) have the optimal solution (X∗, y∗, S∗) such that X∗ + S∗ ≤ ζI, then after at
most

15n log
max

{
X0 • S0,

∥∥R0
d

∥∥
F
,
∥∥r0p∥∥}

ε
,

iterations algorithm finds an ε-optimal solution of SDO problem.

5. Concluding remarks

In this paper, we proposed an improved version of the classical infeasible interior-point algorithm proposed by
Mansouri et al. [13] for SDO problems. Modification is based on elimination of the centering steps in each main
iteration of the classical infeasible algorithm. We proved that the proposed algorithm is convergent and well-
defined and its complexity coincides with the currently best known iteration bound for infeasible interior-point
algorithms for this class of optimization problems.
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