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PRIMAL-DUAL ENTROPY-BASED INTERIOR-POINT ALGORITHMS
FOR LINEAR OPTIMIZATION
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Abstract. We propose a family of search directions based on primal-dual entropy in the context of
interior-point methods for linear optimization. We show that by using entropy-based search directions in
the predictor step of a predictor-corrector algorithm together with a homogeneous self-dual embedding,
we can achieve the current best iteration complexity bound for linear optimization. Then, we focus on
some wide neighborhood algorithms and show that in our family of entropy-based search directions,
we can find the best search direction and step size combination by performing a plane search at each
iteration. For this purpose, we propose a heuristic plane search algorithm as well as an exact one. Finally,
we perform computational experiments to study the performance of entropy-based search directions in
wide neighborhoods of the central path, with and without utilizing the plane search algorithms.
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1. Introduction

Primal-dual interior-point methods have been proven to be one of the most useful algorithms in the area of
modern interior-point methods for solving linear programming (LP) problems. In this paper, we are interested
in a class of path-following algorithms that generate a sequence of primal-dual iterates within certain neighbour-
hoods of the central path. Several algorithms in this class have been studied, which can be distinguished by the
choice of search direction. We introduce a family of search directions inspired by nonlinear reparametrizations
of the central path equations, as well as the concept of entropy. Entropy and the underlying functions have been
playing important roles in many different areas in mathematics, mathematical sciences, and engineering; such
as partial differential equations [31], information theory [5, 32], signal and image processing [4, 9, 23], smooth-
ing techniques [29], dynamical systems [8], and various topics in optimization [7, 12–14, 18]. In the context
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of primal-dual algorithms, we use the entropy function in determining the search directions as well as measuring
centrality of primal-dual iterates.

Consider the following form of LP and its dual problem:

(P) minimize c�x
subject to Ax = b, x ≥ 0,

(D) maximize b�y
subject to A�y + s = c, s ≥ 0,

where c ∈ R
n, A ∈ R

m×n, and b ∈ R
m are given data. Without loss of generality, we always assume A has

full row rank, i.e., rank(A) = m. We assume throughout this paper that positive integers m and n satisfy
n ≥ m+ 1 ≥ 2. Let us define F and F+ as

F := {(x, s) : Ax = b, A�y + s = c, x ≥ 0, s ≥ 0, y ∈ R
m},

F+ := {(x, s) : Ax = b, A�y + s = c, x > 0, s > 0, y ∈ R
m}.

Next, we define the standard primal-dual central path with parameter μ > 0, i.e. C := {(xμ, sμ) : μ > 0}, as
the solutions of the following system:

A�y + s = c, s > 0
Ax = b, x > 0

Xs = μe,

(1.1)

where e is the all ones vector whose dimension will be clear from the context (in this case n). The above system
has a unique solution for each μ > 0. For every pair (x, s) ∈ F , we define the average duality gap as μ := xT s

n .
In standard primal-dual algorithms, search direction is found by applying a Newton-like method to the

equations in system (1.1) with an appropriate value of μ+ and the current point as the starting point. Explicitly,
the search direction at a point (x, s) ∈ F+ is the solution of the following linear system of equations:

⎡
⎣ 0 A� I
A 0 0
S 0 X

⎤
⎦
⎡
⎣dx

dy

ds

⎤
⎦ =

⎡
⎣ 0

0
−XSe+ μ+e

⎤
⎦ . (1.2)

The first two blocks of equations in (1.1) are linear and as a result, they are perfectly handled by Newton’s
method. The nonlinear equation Xs = μ+e plays a very critical role in Newton’s method. Now, if we apply
a continuously differentiable strictly monotone function f : R+ → R to both sides of Xs = μ+e (element-
wise), clearly the set of solutions of (1.1) does not change, but the solutions of Newton system might change
dramatically. This reparametrization of the KKT system can potentially give us an infinite number of search
directions, but not all of them would have desirable properties. For a diagonal matrix V , let f(V ) and f ′(V )
denote diagonal matrices with the jth diagonal entry equal to f(vj) and f ′(vj), respectively. ReplacingXs = μ+e
with f(Xs) = f(μ+e) and applying Newton’s method gives us the same system as (1.2) with the last equation
replaced by (see [35]):

Sdx +Xds = (f ′(XS))−1(f(μ+e)− f(Xs)). (1.3)

This kind of reparametrization has connections to Kernel functions in interior-point methods (see our discussion
in Appendix A).

Every choice of a continuously differentiable strictly monotone function f in (1.3) gives us a search direction.
These search directions include some of the previously studied ones. For example, the choice of f(x) = 1/x



PRIMAL-DUAL ENTROPY-BASED INTERIOR-POINT ALGORITHMS FOR LINEAR OPTIMIZATION 301

gives the search direction proposed in [24] (also see [25] for another connection to the entropy function), and the
choice of f(x) =

√
x leads to the work in [6]. A natural choice for f is ln(·), which has been studied in [28,35,38].

Substituting f(x) = ln(x) in (1.3) results in

Sdx +Xds = −(XS) ln
(
Xs

μ+

)
· (1.4)

This is the place where entropy function comes into play. In this paper, we study the behaviour of the search
direction derived by using (1.4), with an appropriate choice of μ+. This search direction corresponds to the gra-
dient of the primal-dual entropy-based potential function ψ(x, s) := 1

μ

∑n
j=1 xjsj ln(xjsj) (see [35]). As in [35],

we define a proximity measure δ(x, s) as:

δ(x, s) :=
n∑

j=1

xjsj

nμ
ln
(
xjsj

μ

)
· (1.5)

We sometimes drop (x, s) in δ(x, s) when the argument of δ is clear from the context. If we choose μ+ such that
ln
(

μ
μ+

)
= 1− δ(x, s), then (1.4) is reduced to

Sdx +Xds = −Xs+
[
δXs− (XS) ln

(
Xs

μ

)]
· (1.6)

This is exactly the search direction studied in [35] for the following neighborhood (of the central path)

NE(β) :=
{

(x, s) ∈ F+ :
1
2
− β ≤ ln

(
xjsj

μ

)
≤ 1

2
+ β, for all j

}
,

where β ≥ 1
2 . It is proved in [35] that we can obtain the iteration complexity bound of O

(
n ln

(
1
ε

))
for NE(3/2).

We will generalize (1.6) to define our family of entropy-based search directions.
In the vast literature on primal-dual interior-point methods, two of the closest treatments to ours are [35,38].

Our search directions unify and generalize the search directions introduced in [35,38]. Besides that, for infeasible
start algorithms, we use homogeneous self-dual embedding proposed in [37]. In this approach, we combine the
primal and dual problems into an equivalent homogeneous self-dual LP with an available starting point of our
choice. It is proved in [37] that we can achieve the current best iteration complexity bound of O

(√
n ln

(
1
ε

))
by

using this approach. See Appendix B for a definition of homogeneous self-dual embedding and the properties of
it that we need.

In Section 2, we introduce our family of search directions that generalizes and unifies those proposed in [35,38],
and prove some basic properties. In Section 3, we use the entropy-based search direction in the predictor step
of a predictor-corrector algorithm for the narrow neighborhood of the central path

N2(β) :=
{

(x, s) ∈ F+ :
∥∥∥∥Xsμ − e

∥∥∥∥
2

≤ β
}
,

and prove that we can obtain the current best iteration complexity bound of O
(√
n ln

(
1
ε

))
. After that, we focus

on the wide neighborhood

N−
∞(β) :=

{
(x, s) ∈ F+ :

xjsj

μ
≥ 1− β, for all j

}
,

and work with our new family of search directions, parameterized by η (which indicates the weight of a com-
ponent of the search direction that is based on primal-dual entropy). For various primal-dual interior-point
algorithms utilizing the wide neighborhood, see [21,26,30,34] and the references therein. In Section 4, we derive
some theoretical results for the wide neighborhood. However, our main goal in the context of wide neighborhood
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algorithms is to investigate the best practical performance for this class of search directions, in terms of total
number of iterations. At each iteration, to find the best search direction in the family (i.e. the best value of η)
that gives us the longest step (and hence the largest decrease in the duality gap), we perform a plane search.
For this purpose, we propose a heuristic plane search algorithm as well as an exact one in Section 5. Then, in
Section 6, we perform computational experiments to study the performance of entropy-based search directions
with and without utilizing the plane search. Our computational experiments are on a class of classical small
dimensional problems from NETLIB library [27]. Section 7 is the conclusion of this paper.

2. Entropy-based search directions and basic properties

In this section, we derive some useful properties for analyzing our algorithms. It is more convenient to work
in the scaled v-space. Let us define

v := X1/2S1/2e,

u :=
1
μ
Xs =

1
μ
V v. (2.1)

We define the scaled right-hand-side vector with parameter η ∈ R+ as

w(η) := −v + η

[
δv − V ln

(
V v

μ

)]
· (2.2)

This definition generalizes and unifies the search directions proposed in [35] (η = 1) and [38] (η = 1
σ with

σ ∈ (0.5, 1) and σ < min
{
1, ln

(
1

1−β

)}
). For simplicity, we write w := w(1), which is the scaled right-hand-side

vector of (1.6). By using (2.1), we can also write δ = 1
n

∑n
j=1 uj ln(uj). If we define [w(η)]p as the projection

of w(η) on the null space of the scaled matrix Ā := AD, where D := X1/2S−1/2, and define [w(η)]q :=
w(η)− [w(η)]p, then in the original space, the primal and dual search directions are dx = Dd̄x and ds = D−1d̄s,
respectively, where d̄x := [w(η)]p and d̄s := [w(η)]q. In other words, the scaled search directions, i.e., d̄x and d̄s,
can be obtained from the unique solution of the following system:

⎡
⎣ 0 Ā� I
Ā 0 0
I 0 I

⎤
⎦
⎡
⎣ d̄x

dy

d̄s

⎤
⎦ =

⎡
⎣ 0

0
w(η)

⎤
⎦ . (2.3)

Note that dy in the above system (2.3) is the same dy as in (1.2) since A�dy + ds = 0 if and only if 0 =
DA�dy +Dds = Ā�dy + d̄s. Most of the upcoming results in this section are for the neighborhood N∞ defined
as:

N∞(β) :=
{

(x, s) ∈ F+ :
∥∥∥∥Xsμ − e

∥∥∥∥
∞
≤ β
}
.

We also use some of these results for N2 (since N2(β) ⊂ N∞(β) for all β > 0, this is valid). Let us start with
the following lemma (see [35]):

Lemma 2.1. For every x > 0, s > 0, we have:

1. δ ≥ 0;
2. equality holds above if and only if Xs = μe.

The following lemma is well-known and is commonly used in the interior-point literature and elsewhere. See,
for instance, Lemma 4.1 in [16] and Lemma 1 in [36].
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Lemma 2.2. For every α ∈ R such that |α| ≤ 1, we have:

α− α2

2(1− |α|) ≤ ln(1 + α) ≤ α·

Remark 2.3. The right-hand-side inequality above holds for every α ∈ (−1,+∞).

Next, we relate the primal-dual proximity measure δ(x, s) to a more commonly used 2-norm proximity measure
for the central path.

Lemma 2.4. Let β ∈ [0, 1) such that (x, s) ∈ N∞(β). Then,

1− 3β
2(1− β)n

∥∥∥∥Xsμ − e
∥∥∥∥

2

2

≤ δ(x, s) ≤ 1
n

∥∥∥∥Xsμ − e
∥∥∥∥

2

2

.

Proof. The right-hand-side inequality was proved in [35]. We prove the left-hand-side inequality here. Let
β ∈ [0, 1), such that (x, s) ∈ N∞(β). Then, we have (estimations are done in the u-space):

δ(u) =
1
n

n∑
j=1

uj ln (uj) ≥ 1
n

n∑
j=1

uj

[
uj − 1− (uj − 1)2

2(1− |uj − 1|)
]

=
1
n
‖u− e‖22 −

1
2n

n∑
j=1

uj

(1− |uj − 1|) (uj − 1)2

≥ 1
n
‖u− e‖22 −

(1 + β)
2n(1− β)

‖u− e‖22

=
1− 3β

2(1− β)n

∥∥∥∥Xsμ − e
∥∥∥∥

2

2

·

In the above, the first inequality uses Lemma 2.2, the first equality uses
∑n

j=1 uj = n, and the second inequality
follows from the fact that (x, s) ∈ N∞(β). �

Corollary 2.5. For every (x, s) ∈ N∞
(

1
4

)
, δ ≥ 1

6n

∥∥∥Xs
μ − e

∥∥∥2
2
. Moreover, for every (x, s) ∈ N∞

(
1
10

)
, δ ≥

7
18n

∥∥∥Xs
μ − e

∥∥∥2
2
.

Next, we want to study the behaviour of the search direction w = −v+δv−V ln(V v
μ ). We already have upper

and lower bounds on δ, so we can easily estimate −v+ δv. Next, we estimate V ln(V v
μ ) within the neighborhood

N∞(β).

Lemma 2.6. Let β ∈ [0, 1
2 ). Then, for every (x, s) ∈ N∞(β), we have:

(
δ(u)− 2− β2

4β2 − 6β + 2

)
v + μV −1e ≤ w ≤ (δ(u)− 2)v + μV −1e.

Proof. Let (x, s) ∈ N∞(β) for some β ∈ [0, 1
2 ). Then, (1− β)e ≤ V v

μ ≤ (1 + β)e.
On the one hand, using Lemma 2.2, we have

−V ln
(
V v

μ

)
= V ln(μV −2e) = V ln(e+ μV −2e− e) ≤ V (μV −2e− e) = μV −1e− v.
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On the other hand, using Lemma 2.2 again and the fact that (x, s) ∈ N∞(β), β ∈ [0, 1
2 ), for every j ∈

{1, 2, . . . , n}, we have

vj ln

(
μ

v2
j

)
=
√
μuj ln

(
1
uj

)
≥
√

μ

uj
−√μuj

⎡
⎢⎣1 +

(
1
uj
− 1
)2

2
(
1−
∣∣∣ 1
uj
− 1
∣∣∣)
⎤
⎥⎦ ·

To justify some of the remarks following this proof, we focus on the cases

• uj ∈ [1− β, 1],
• uj ∈ [1, 1 + β].

Case 1. (uj ∈ [1− β, 1]): Using the derivation above, we further compute

vj ln

(
μ

v2
j

)
≥
√

μ

uj
−√μuj

⎡
⎢⎣1 +

(
1
uj
− 1
)2

2
(
1−
∣∣∣ 1
uj
− 1
∣∣∣)
⎤
⎥⎦

=
μ

vj
− vj

⎡
⎣1 +

(1− uj)
2

2u2
j

(
2− 1

uj

)
⎤
⎦

=
μ

vj
− vj

[
1 +

(1− uj)
2

2uj (2uj − 1)

]

≥ μ

vj
− vj

[
1 +

β2

2(1− β)(1 − 2β)

]
·

Case 2. (uj ∈ [1, 1 + β]): Again, using the derivation before this case analysis, we further compute

vj ln

(
μ

v2
j

)
≥
√

μ

uj
−√μuj

⎡
⎢⎣1 +

(
1
uj
− 1
)2

2
(
1−
∣∣∣ 1
uj
− 1
∣∣∣)
⎤
⎥⎦

=
μ

vj
− vj

[
1 +

(1− uj)2

2uj

]

=
μ

vj
− vj

(
u2

j + 1
2uj

)

≥ μ

vj
− vj

[
1 +

β2

2(1 + β)

]

≥ μ

vj
− vj

[
1 +

β2

2(1− β)(1 − 2β)

]
,

where the last inequality uses the fact that 2β2−3β+1 ≤ 1+β for β ∈ [0, 1
2 ). Therefore, within the neighborhood

N∞(β), for β ∈ [0, 1
2 ), we conclude that the claimed relation holds. �

Remark 2.7. Focusing on the case analysis in the last proof, we see that for those j with xjsj ≥ μ (Case 2),
the corresponding component wj of w is very close to the corresponding component computed for a generic
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primal-dual search direction. For example, for β ∈ [0, 1/4],(
δ(u)− 2− 1

40

)
vj +

μ

vj
≤ wj ≤ (δ(u)− 2) vj +

μ

vj
·

Corollary 2.8. For every (x, s) ∈ N∞
(

1
4

)
,

(
δ(u)− 2− 1

12

)
v + μV −1e ≤ w ≤ (δ(u)− 2)v + μV −1e.

Remark 2.9. Recall that in a generic primal-dual search direction, w is replaced by
[−v + γμV −1e

]
, γ ∈ [0, 1]

being the centering parameter. The above corollary shows that inside the neighborhood N∞(1
4 ),[

−1− 1
12(2− δ(u))

]
v +

1
2− δ(u)

μV −1e ≤ w

2− δ(u)
≤ −v +

1
2− δ(u)

μV −1e.

Since by Lemma 2.4, inside the neighborhood N∞(1/4) we have δ(u) ≤ 1/16, working with w is close to setting
the centrality parameter γ :≈ 1

2 .

Let us define the following quantities which play an important role in analysis of our algorithms:

Δ21(u) :=
n∑

j=1

u2
j ln(uj), Δ12(u) :=

n∑
j=1

uj ln2(uj), Δ22(u) :=
n∑

j=1

u2
j ln2(uj).

We drop the argument u, (e.g. we write Δij instead of Δij(u)) when u is clear from the context. The next few
results provide bounds on the above quantities.

Lemma 2.10. Let β ∈ [0, 1
4 ] and assume that (x, s) ∈ N∞(β). Then,

ξijnδ(u) ≤ Δij ≤ ζijnδ(u), ∀ij ∈ {21, 22}, (2.4)

where
ξ21 := 3(1− β) + 2(1− β) ln(1− β),
ζ21 := 3(1 + β) + 2(1 + β) ln(1 + β),
ξ22 := 2(1− β) + 6(1− β) ln(1− β) + 6(1− β) ln2(1− β),
ζ22 := 2(1 + β) + 6(1 + β) ln(1 + β) + 6(1 + β) ln2(1 + β).

Proof. See Appendix C. �

Corollary 2.11. For every (x, s) ∈ N∞
(

1
4

)
, we have

1.8nδ(u) ≤ Δ21 ≤ 9
2
nδ(u), and Δ22 < 5nδ(u).

Lemma 2.12. Let β ∈ [0, 1
2 ] and assume that (x, s) ∈ N−

∞(β). Then,

0 ≤ Δ12 ≤ ζ12nδ(u),

where ζ12 := 2(ln(n) + 1). Furthermore, the upper bound is tight within a constant factor for large n.
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Proof. The left-hand-side inequality obviously holds due to the nonnegativity of the vectors x, s, u and ln2(Uu).
For ζ12 = 2(ln(n) + 1), let us define F12 := ζ12nδ(u)−Δ12, then

∇F12(u) = 2(ln(n) + 1)e+ 2(ln(n) + 1) ln(u)−Diag(ln(u)) ln(u)− 2 ln(u),
∇2F12(u) = 2 ln(n)U−1 − 2Diag(ln(u))U−1.

We consider the constrained optimization problem

minimizeu∈Rn F12(u) subject to e�u− n = 0, u− 1
2
e ≥ 0.

The Lagrangian has the form L12(u, λ) = F12(u)− λ1(e�u− n)− λ�2 (u− 1
2e). Then, ∇2F12 is positive definite

if u < ne. Since we know that u ≤ n+1
2 e within N−

∞(1
2 ), we conclude that F12 is strictly convex here. Moreover,

for u∗ = e, the Lagrange multipliers λ∗1 = ζ12 and λ∗2 = 0 satisfy the KKT conditions. Therefore, u∗ is the global
minimizer of the optimization problem. We notice that F12(u∗) = 0 which implies the desired conclusion.

Let u ∈ R
n
++ be a vector with (n− 1) entries equal to 1/2 and one entry equal to (n+ 1)/2. Then, for large

n, we have:

Δ12

nδ(u)
=

n−1
2 ln2(1/2) + n+1

2 ln2
(

n+1
2

)
n−1

2 ln(1/2) + n+1
2 ln

(
n+1

2

) ≈ ln
(
n+ 1

2

)
= ln(n+ 1)− ln(2).

Thus, the upper bound is tight within a constant factor, for large n. �

Lemma 2.13. Let x > 0, s > 0. Then Δ12 ≥ nδ2. Moreover, equality holds if and only if Xs = μe.

Proof. Let x > 0, s > 0. Since uj > 0, √uj > 0 and √uj| ln(uj)| ≥ 0. Using Cauchy−Schwarz inequality, we
have

n∑
j=1

uj

n∑
j=1

uj ln2(uj) ≥
⎛
⎝ n∑

j=1

uj | ln(uj)|
⎞
⎠

2

≥
⎛
⎝ n∑

j=1

uj ln(uj)

⎞
⎠

2

.

Then, the claimed inequality follows. Moreover, by utilizing
∑n

j=1 uj = n, we have equality if and only if u = e

(we used Cauchy−Schwarz inequality), or equivalently Xs
μ = e. �

Now, we have all the tools to state and analyze our algorithms.

3. Iteration complexity analysis for predictor-corrector algorithm

As stated in previous section, our search directions are the solutions of system (2.3), where w(η) := −v +
η
[
δv − V ln

(
V v
μ

)]
. Here, η ∈ R+ parameterizes the family of search directions. [35, 38] studied these search

directions for special η from iteration complexity point of view. It is proved in [35] that, using w(1) as the
search direction (i.e., η = 1), we can obtain the iteration complexity bound of O

(
n ln

(
1
ε

))
for NE(3/2), for

feasible start algorithms. These search directions have also been studied in [38], in the wide neighborhood,
for the special case that η = 1

σ with σ ∈ (0.5, 1) and σ < min
{
1, ln

(
1

1−β

)}
. It was shown in [38] that the

underlying infeasible-start algorithm, utilizing a wide neighborhood, has iteration complexity of O
(
n2 ln

(
1
ε

))
.

In this section, we show that the current best iteration complexity bound O
(√
n ln

(
1
ε

))
can be achieved if

we use the entropy-based search direction in the predictor step of the standard predictor-corrector algorithm
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proposed by Mizuno et al. Ye [21], together with homogeneous self-dual embedding. Here is the algorithm:

Algorithm 3.1.
Input: (A, x(0), s(0), b, c, ε), where (x(0), s(0)) ∈ N2(1

4 ), and ε > 0 is the desired tolerance.
(x, s)← (x(0), s(0)),
while x�s > ε,

predictor step: solve (2.3) with η = 1 for d̄x and d̄s.
x(α) := x+ αDd̄x,
s(α) := s+ αD−1d̄s, where D = X1/2S−1/2.
α∗ := max{α : (x(α), s(α)) ∈ N2(1

2 )}.
Let x← x(α∗), and s← s(α∗)
corrector step: solve (2.3) for d̄x and d̄s, where w(η) is replaced by −v + μV −1e,
Let x← x+Dd̄x, s← s+D−1d̄s.

end {while}.
The O

(√
n ln

(
1
ε

))
iteration complexity bound is the conclusion of a series of lemmas.

Lemma 3.1. For every point (x, s) ∈ N2(1
4 ), the following condition on α guarantees that (x(α), s(α)) ∈ N2(1

2 ):

d4α
4 + d3α

3 + d2α
2 + d1α+ d0 ≤ 0,

where

d0 := −3μ2 ≤ 0,

d1 := 32

⎛
⎝δ n∑

j=1

x2
js

2
j − nδμ2 −Δ21μ

2 + nδμ2

⎞
⎠+ 6μ2 = 32

⎛
⎝δ n∑

j=1

x2
js

2
j −Δ21μ

2

⎞
⎠+ 6μ2,

d2 := 16

⎛
⎝δ2 n∑

j=1

(xjsj)2 +Δ22μ
2 − 2δΔ21μ

2 + 2C

⎞
⎠− d1 + 3μ2,

d3 := 32(δ − 1)C − 32B,

d4 := 16
n∑

j=1

(wp)2j(wq)2j ,

B :=
n∑

j=1

xjsj ln (uj) (wp)j(wq)j ,

C :=
n∑

j=1

xjsj(wp)j(wq)j .

Proof. See Appendix C. �
Lemma 3.2. For every point (x, s) ∈ N2(1

4 ), we have the following bounds on d1, d2, d3 and d4 defined in
Lemma 3.1.

d1 ≤ 10μ2, d2 ≤ 34nμ2, d3 ≤ 64n
3
2μ2, d4 ≤ 5n2μ2.

Proof. See Appendix C. �

We state the following well-known lemma without proof.

Lemma 3.3 [21]. For every point (x, s) ∈ N2(1
2 ), the corrector step of Algorithm 3.1 returns a point in the

neighborhood N2(1
4 ).

Now, we can prove the iteration complexity bound for Algorithm 3.1.
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Theorem 3.4. Algorithm 3.1 gives an ε-solution in O
(√

n ln
(

1
ε

))
iterations.

Proof. By Lemmas 3.1 and 3.2, in the predictor step, it is sufficient for α to satisfy

5n2α4 + 64n
3
2α3 + 34nα2 + 10α ≤ 3. (3.1)

It is easy to check that α = 1
50

√
n

satisfies this inequality. Lemma 3.3 shows that we have a point (x, s) ∈ N2(1
4 )

at the beginning of each predictor step and the algorithm is consistent. Since x(α)�s(α) = (1− α)x�s by part
(b) of Lemma 3.1 of [35], we deduce that the algorithm will reach an ε-solution in O

(√
n ln

(
1
ε

))
iterations. �

4. Algorithm for the wide neighborhoods

In the rest of the paper, we study the behaviour of the entropy-based search directions in a wide neighborhood.
As mentioned before, for each η, our search direction is derived from the solution of system (2.3), where
w(η) := −v + η

[
δv − V ln

(
V v
μ

)]
. These search directions have been studied in [38] in the wide neighborhood

for the special case that η = 1
σ with σ ∈ (0.5, 1) and σ < min{1, ln( 1

1−β )}. In this paper, we study these
search directions for a wider range of η. We prove some results on iteration complexity bounds in this section.
However, in the rest of the paper, we mainly focus on the practical performance of our search directions in the
wide neighborhood.

The algorithm in a wide neighborhood (with a value of η ≥ 0 fixed by the user) is:

Algorithm 4.1.
Input (A, x(0), s(0), b, c, ε, η), ε > 0 is the desired tolerance.

(x, s)← (x(0), s(0)),
while x�s > ε

solve (2.3) for d̄x and d̄s,
x(α) := x+ αDd̄x,
s(α) := s+ αD−1d̄s, where D = X1/2S−1/2.
α∗ := max{α : (x(α), s(α)) ∈ N−

∞(β)}.
Let x← x(α∗); s← s(α∗)

end {while}.

Lemma 4.1. In Algorithm 4.1, for every choice of η ∈ R+, we have x(α)�s(α) = (1− α)nμ.

Proof. We proceed as in the proof of Lemma 3.1 of [35], part (b):

x(α)�s(α) = x�s+ αv�(d̄x + d̄s) = x�s+ αv�w(η) = (1− α)x�s.

For the last equation, we used the facts that v�v = x�s, and v and δv − V ln
(

V v
μ

)
are orthogonal. �

This lemma shows that the reduction in the duality gap is independent of η and is exactly the same as in
the primal-dual affine scaling algorithm. So, Lemma 4.1 includes part (b) of Lemma 3.1 of [35] and part (c)
of Theorem 3.2 of [22] as special cases. We show later that by performing a plane search, we can find an η
that gives the largest value of α in the algorithm (and hence the largest possible reduction in duality gap, per
iteration).
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Lemma 4.2. Let x > 0, s > 0. Then, for η ≥ 0, we have ‖w(η)‖22 = nμ+ η2μΔ12 − nμη2δ2.

Proof. Let x > 0, s > 0, and η ≥ 0. Then,

‖w(η)‖22 =
n∑

j=1

v2
j

(
δη − 1− η ln

(
xjsj

μ

))2

=
n∑

j=1

xjsj

(
δ2η2 + 1 + η2 ln2

(
xjsj

μ

)
+ 2η ln

(
xjsj

μ

)
− 2δη − 2δη2 ln

(
xjsj

μ

))

= nμδ2η2 + nμ+ η2μΔ12 + 2nημδ − 2δηnμ− 2nμδη2δ

= nμ+ η2μΔ12 − nμη2δ2. �

Theorem 4.3. If we apply Algorithm 4.1 with N−
∞(1

2 ), then the algorithm converges to an ε-solution in at most
O
(
n ln(n) ln

(
1
ε

))
iterations for every nonnegative η = O(1).

Proof. See Appendix C. �

In the above algorithm, the value of η is constant for all values of j. In the following, we show that if η is
allowed to take one of two constant values for each j (one of the values being zero), we get a better iteration
complexity bound. For each j ∈ {1, . . . , n}, let us define

[w(η)]j :=

{−vj, if uj >
3
4 ,

−vj + η
[
δvj − vj ln

(
v2

j

μ

)]
, if 1

2 ≤ uj ≤ 3
4 ,

(4.1)

where η := 1
(δ+ln(2)) . Now we have the following theorem:

Theorem 4.4. If we apply the Algorithm 4.1 with w(η) defined in (4.1) to N−
∞(1

2 ), the algorithm converges to
an ε-solution in at most O(n ln

(
1
ε

)
) iterations.

Proof. See Appendix C. �

5. Plane search algorithms

In the previous section, we showed how to fix two parameters α and η to achieve iteration complexity bounds.
However, in practice we may consider performing a plane search to choose the best α and η in each iteration.
Here, our goal is to choose a direction in our family of directions that gives the most reduction in the duality
gap. As before, we have w(η) = −v+ η

[
δv − V ln(V v

μ )
]
. For simplicity, in this section we drop parameter η and

write w = w(η), so wp = PADw, and wq = w−wp, where PAD is the projection operator onto the null space of
AD. Our goal is to solve the following optimization problem.

maximize α
subject to 0 < α < 1,

η ≥ 0,
(wp)j(wq)j

μ
α2 + α

(
ujδη − uj ln(uj)η − uj +

1
2

)
+
(
uj − 1

2

)
≥ 0, ∀j ∈ {1, . . . , n}. (5.1)

In the above optimization problem, the objective function is linear and the main constraints are quadratic. Let
us define

tp := PAD

(
δv − V ln

(
V v

μ

))
, tq :=

(
δv − V ln

(
V v

μ

))
− tp, vp := PAD(−v), vq := −v − vp.
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By these definitions, the quadratic inequalities in formulation (5.1) become

ajη
2α2 + bjηα+ cjηα

2 + dj(1− α) + ejα
2 ≥ 0, where

aj :=
(tp)j(tq)j

μ
, bj := ujδ − uj ln(uj), cj :=

(vp)j(tp)j + (vq)j(tp)j

μ
,

ej :=
(vp)j(vq)j

μ
, dj := uj − 1

2
·

In this section, we propose two algorithms, an exact one and a heuristic one, to solve the two-variable optimiza-
tion problem (5.1).

5.1. Exact plane search algorithm

We define a new variable z := αη. Then, the quadratic form can be written as:

gj(z, α) := ajz
2 + bjz + cjzα+ dj(1− α) + ejα

2, ∀j ∈ {1, . . . , n}.

We are optimizing in the plane of α and z, actually working in the one-sided strip in R
2, defined by 0 ≤ α ≤ 1

and z ≥ 0. The following proposition establishes that it suffices to check O(n2) points to find an optimal solution:

Proposition 5.1. Let (α∗, η∗) be an optimal solution of (5.1). Then, one of the following is true:

(1) α∗ = 1;
(2) there exists z∗ ≥ 0 such that (z∗, α∗) is a solution of system (gj(z, α), gi(z, α)) = (0, 0) for some pair

i, j ∈ {1, . . . , n};
(3) α∗ is a solution of Δj(α) := (bj + αcj)2 − 4aj(dj(1 − α) + ejα

2) = 0, j ∈ {1, . . . , n}, where Δj(α) is the
discriminant of gj(z, α) with respect to z.

Proof. Assume that (α∗ �= 1, η∗) is a solution to (5.1), and z∗ := α∗η∗. Therefore, we have gj(z∗, α∗) ≥ 0,
∀j ∈ {1, . . . , n}. By continuity, we must have gj(z∗, α∗) = 0 for at least one j, and because z∗ is real, we have
Δj(α∗) ≥ 0. If Δj(α∗) = 0, then condition (3) is satisfied; otherwise, by continuity, we can increase α so that Δj

remains positive. In this case, if there does not exist another i ∈ {1, . . . , n} such that gi(z∗, α∗) = 0, continuity
gives us another point (ᾱ, η̄) that is feasible to (5.1) and ᾱ > α∗, which is a contradiction. Hence, condition (2)
must hold. �

The above proposition tells us that to find a solution for (5.1), it suffices to check O(n2) values for α. For
calculating each of these values, we find the roots of a quartic equation.

5.2. Heuristic plane search algorithm

The idea of the heuristic algorithm is that we start with α = 1 and see if there exists η such that (η, α) is
feasible for (5.1). If not, we keep reducing α and repeat this process. We can reduce α by a small amount (for
example 0.01) if α is close to 1 (for example α ≥ 0.95), and by a larger amount (for example 0.05) otherwise.
This approach tries to favor the larger α values over the smaller ones.

The difficult part is checking if there exists η for the current α in the algorithm. To do that, we need to
verify if there exists a positive η which satisfies the n inequalities in the third group of constraints of (5.1).
Each constraint is a quadratic form in η and can induce a feasible interval for η. If the intersection of all the
intervals corresponding to these n inequality constraints is not empty, we then find the η corresponding to a
step length α. We use the following procedure to determine the feasible interval of η for a given step length α.

Assume that we fix α. For each quadratic constraint of (5.1), we can solve for η and find the feasible interval.
One form is the union of two open intervals, i.e., (−∞, r1(j)] and [r2(j),∞); denote the indexes in this class
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as K1. Another is the convex interval [r3(j), r4(j)]; denote the indexes in this class by K2. It is easy to find the
intersection of the convex intervals:

[t1, t2] := [max
j∈K2

r3(j), min
j∈K2

r4(j)].

Now we have to intersect [t1, t2] with the intervals in class K1. First, we handle the intervals [t1, t2] that intersect
only one of (−∞, r1(j)] and [r2(j),∞); in that case we can update [t1, t2]← [t1, r1(j)] or [t1, t2] ← [r2(j), t2]
for each of these intervals. At the end of this step, we can assume that for the rest of the intervals in K2 (we
denote them by K̄2), [t1, t2] intersects both (−∞, r1(j)] and [r2(j),∞). Then, we can define two intervals:

[t1, t3 := min
j∈K̄2

(r1(j))], [t4 := max
j∈K̄2

(r2(j)), t2].

If one of these intervals is non-empty, then there exists η such that (η, α) is feasible for (5.1), and we return α.
For a more detailed introduction to this heuristic see [19].

To evaluate the performance of our heuristic algorithm, note that the set of feasible points (α, η) of (5.1)
in R

2 is not necessarily a connected region. We can think of it as the union of many connected components.
In our heuristic algorithm, we check a few discrete values of α = ᾱ. However, for each value we check, we can
precisely decide if there exists a feasible η for that value of α. If one of the lines α = ᾱ intersects a component
of feasible region that contains a point with maximum α, then our heuristic algorithm returns an α that is close
the optimal value. However, if none of the lines α = ᾱ that we check for large values of ᾱ intersects the right
component, the heuristic algorithm may return a very bad estimate of the optimal value. In the next section,
we observe that (see Figs. 5–8) our heuristic algorithm in the worst-case may return values for α very close to
zero while the optimal value is close to 1.

6. Computational experiments with the entropic search direction family

We performed some computational experiments using the software MATLAB R2014a, on a 48-core AMD
Opteron 6176 machine with 256GB of memory. The test LP problems are well-known among those in the
problem set of NETLIB [27].

We implemented Algorithm 4.1 for a fixed value of η and then ran it for each fixed η ∈ {1, 2, 3, 4}. We
also implemented Algorithm 4.1 with η being calculated using the exact and heuristic plane search algorithms.
β = 1/2 was set for the algorithm, therefore our results are for the wide neighborhood N−

∞(1/2). We used
homogeneous self-dual embedding for the LP problems as shown in Appendix B. The initial feasible solution is
y(0) := 0, x(0) := e, s(0) := e, θ := 1, t := 1 and κ := 1. In the statements of Algorithms 3.1 and 4.1, we used the
stopping criterion xT s ≤ ε, which is an abstract criterion assuming exact arithmetic computation. In practice,
we may encounter numerical inaccuracies and we need to take that into account for our stopping criterion. We
used the stopping criterion proposed and studied in [15], which is very closely related to the stopping criterion
in SeDuMi [33]. Let us define (x̄, ȳ, s̄) := (x

τ ,
y
τ ,

s
τ ), and their residuals:

rp := b−Ax̄,
rd := A�ȳ + z̄ − c,
rg := c�x̄− b�ȳ.

The following stopping criterion for general convex optimization problems using homogeneous self-dual embed-
ding was proposed in [15]:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
max{0, rg}

max {|c�x̄|, |b�ȳ|, 1} ≤ rmax.

In our algorithm, we used the above stopping criterion for rmax := 10−9.
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Figure 1. Values of η̃ (for the heuristic algorithm) and η∗ (for the exact algorithm) in each
iteration for problem beaconfd.

Table 1 shows the number of iterations for each problem. The first four columns show the number of iterations
of Algorithm 4.1 with a fixed value of η ∈ {1, 2, 3, 4}. Let use define η̃ and η∗ as the η found at each iteration
of the plane search algorithm using the heuristic and exact plane search algorithms, respectively. The fifth and
sixth columns of the table are the number of iterations when we perform a plane search, using the heuristic
plane search and exact plane search algorithms, respectively. The problems in the table are sorted based on
the value of η ∈ {1, . . . , 4} that gives the smallest number of iterations. For each η, the problems are sorted
alphabetically.

As we mentioned above, our family of search directions is a common generalization of the search direction
in [35] that uses η = 1 and the search directions in [28, 38] that use η = 1

σ with σ ∈ (0.5, 1) and σ <
min{1, ln( 1

1−β )}, so 1 ≤ η ≤ 2. As we observe from Table 1, our generalization to consider using larger values
of η is justified. Among the problems solved and among the fixed values for η ∈ {1, 2, 3, 4}, η = 1 had the
smallest iteration count for 15 problems, η = 2 won for 24 problems, η = 3 won for 13 problems, and η = 4
had the smallest iteration count for 18 problems (ties counted as wins for both winning η’s). Table 1 also shows
that using plane search algorithms can be crucial in reducing the number of iterations in addition to making
the behaviour of the underlying algorithms more robust; as (1) for most of the problems, there is a large gap
between the number of iterations of the plane search and the best constant η algorithms, and (2) we do not
know which η is the best one before solving the problem.

The exact plane search algorithm gives a lower bound for our heuristic plane search algorithm. As we observe
from Table 1, for most of the problems, exact and heuristic plane search algorithms have similar performances in
terms of the number of iterations. In Figures 1–4, we plot the value of η at each iteration for four of the problems
of NETLIB, for both exact and heuristic plane search algorithms. For beaconfd and capri the performances are
close and for degen2 and ship08s there is a large gap. An interesting point is that the plane search algorithms
sometimes lead to values of η as large as 10 or 20 as can be seen in Figures 3 and 4.

Figures 5–8 provide a more reasonable comparison between the exact and heuristic plane search algorithms
for problems degen2 and ship08s. In Figure 5 (for degen2 ) and Figure 7 (for ship08s), we plot the values of η and
α for the heuristic algorithm, as well as the corresponding values that would have been computed by the exact
algorithm at each iteration (for the same current iterates (x(k), s(k))). In Figure 6 (for degen2 ) and Figure 8
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Table 1. The number of iterations of Algorithm 4.1.

NETLIB-Name Dimensions Nonzeros η = 1 η = 2 η = 3 η = 4 η̃ η∗

afiro 28*32 88 31 37 45 55 19 18

beaconfd 174*262 3170 31 37 46 56 22 21

blend 75*83 522 35 37 42 48 23 19

grow7 141*301 2633 47 47 55 65 36 31

grow15 301*645 5665 42 47 54 66 37 32

sc105 106*103 281 28 36 43 54 23 19

sc205 206*203 552 28 37 41 53 25 21

sc50a 51*48 131 28 35 43 51 21 18

sc50b 51*48 119 26 33 43 50 19 16

scagr7 130*140 533 34 39 47 55 28 25

scsd1 78*760 3148 31 35 43 52 26 18

scsd8 398*2750 11334 32 34 42 48 25 19

share2b 97*79 730 35 40 45 54 25 23

adlittle 57*97 465 40 40 49 56 27 24

kb2 44*41 291 43 43 49 58 32 30

agg 489*163 2541 58 50 58 68 46 39

agg2 517*302 4515 61 51 56 66 40 35

agg3 517*302 4531 70 55 61 68 42 37

boeing2 167*143 1339 72 53 54 62 39 37

brandy 221*249 21506 72 56 56 57 43 36

capri 272*353 1786 60 49 53 57 39 37

degen2 445*534 4449 41 38 42 48 37 24

degen3 1504*1818 26230 40 38 40 45 30 26

fit1d 25*1026 14430 68 53 64 64 38 37

forplan 162*421 4916 108 77 79 119 60 50

ganges 1310*1681 70216 52 48 54 63 41 38

gfrd-pnc 617*1092 3467 50 47 53 63 35 30

grow22 441*946 8318 51 50 55 67 38 34

lotfi 154*308 1086 54 46 50 58 35 32

scagr25 472*500 2029 43 42 51 58 33 31

scsd6 148*1350 5666 35 36 44 51 25 22

sctap2 1091*1880 8124 56 48 49 52 34 23

ship04s 403*1458 5910 53 45 52 54 34 30

ship04l 403*2118 8450 53 49 56 58 35 29

stocfor1 118*111 474 51 48 55 61 30 26

wood1p 245*2594 70216 120 62 104 65 53 52

fit1p 628*1677 10894 63 54 54 59 37 35

bandm 305*472 2659 67 54 51 58 40 35

boeing1 351*384 3865 91 68 65 68 51 46

e226 224*282 2767 66 53 52 55 40 36

israel 175*142 2358 96 69 67 73 46 40

d6cube 404*6184 37704 76 58 55 56 39 32

modszk1 686*1622 3170 110 87 77 82 75 53

scfxm1 331*457 2612 123 81 73 74 53 42
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Table 1. Continued.

NETLIB-Name Dimensions Nonzeros η = 1 η = 2 η = 3 η = 4 η̃ η∗

scrs8 491*1169 4029 143 105 95 100 50 44

sctap3 1481*2480 10734 64 53 53 57 37 25

ship08s 779*2387 9501 82 62 62 63 54 31

vtp-base 199*203 914 117 84 76 77 50 36

scfxm3 991*1371 7846 143 98 84 84 70 47

25fv45 822*1571 11127 160 111 91 79 77 57

bnl1 644*1175 6129 183 122 103 95 87 64

bnl2 2325*3489 16124 197 137 110 100 78 71

czprob 930*3523 14173 236 156 129 119 70 61

etamacro 401*688 2489 218 134 109 98 66 59

pilot4 411*1000 5145 150 107 91 88 87 77

pilot-we 723*2789 9218 234 164 139 125 119 118

perold 626 *1376 6026 190 123 101 95 94 93

scfxm2 661*914 5229 146 97 83 81 69 47

sctap1 301*480 2052 119 81 75 67 37 35

seba 516*1028 4874 170 120 103 94 78 50

share1b 118*225 1182 128 84 74 73 58 51

ship12l 1152*5437 21597 272 164 133 120 75 50

ship12s 1152*2763 10941 218 134 106 97 74 42

stocfor2 2158*2031 9492 129 95 83 82 63 56

standata 360*1075 3038 108 71 67 66 33 27

standmps 468*1075 3686 125 85 73 70 63 35
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Figure 2. Values of η̃ (for the heuristic algorithm) and η∗ (for the exact algorithm) in each
iteration for problem capri.
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Figure 3. Values of η̃ (for the heuristic algorithm) and η∗ (for the exact algorithm) in each
iteration for problem degen2.
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Figure 4. Values of η̃ (for the heuristic algorithm) and η∗ (for the exact algorithm) in each
iteration for problem ship08s.

(for ship08s), we plot the values of η and α for the exact algorithm, as well as the corresponding values that
would have been given by the heuristic algorithm at each iteration. Note that in Figures 5–8, the comparison is
iteration-wise. The plot in solid line is the main algorithm and the plot in dotted line is the value that would
have been returned by the other algorithm using the iterates generated by the main algorithm. We observe from
the figures that when the optimal value of α is close to 1 or 0, the heuristic algorithm cannot keep up with the
exact algorithm.
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Figure 5. Values of (a) η (b) α for the heuristic algorithm, and the corresponding values
calculated by the exact algorithm at each iteration of it, for problem degen2.
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Figure 6. Values of (a) η (b) α for the exact algorithm, and the corresponding values calculated
by the heuristic algorithm at each iteration of it, for problem degen2.

A conclusion of the above discussion is that utilization of plane search algorithms improves the number of
iterations significantly. If the plane search algorithm is fast enough, then we can also improve the running
time. Our heuristic plane search algorithm is much faster than the exact one. For the exact plane search
algorithm, we solve O(n2) quartic equations, and in each iteration of the primal-dual algorithm, we perform
O(n3) operations. Therefore, if we can speed up our exact plane search algorithm, this would have a potential
impact on practical performance of algorithms in this paper as well as some other related algorithms. Note that
our main focus in these preliminary computational experiments is on the number of iterations. To speed up
the plane search algorithms, one may even use tools from computational geometry, analogous to those used for
solving two-dimensional (or O(1)-dimensional) LP problems with n constraints in O(n) time (see [10, 20], and
the book [11]).
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Figure 7. Values of (a) η (b) α for the heuristic algorithm, and the corresponding values
calculated by the exact algorithm at each iteration of it, for problem ship08s.
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Figure 8. Values of (a) η (b) α for the exact algorithm, and the corresponding values calculated
by the heuristic algorithm at each iteration of it, for problem ship08s.

7. Conclusion

In this paper, we introduced a family of search directions parameterized by η. We proved that if we use our
search direction with η = 1 in the predictor step of standard predictor-corrector algorithm, we can achieve the
current best iteration complexity bound. Then, we focused on the wide neighborhoods, and after the derivation
of some theoretical results, we studied the practical performance of our family of search directions. To find
the best search direction in our family, which gives the largest decrease in the duality gap, we proposed a
heuristic plane search algorithm as well as an exact one. Our experimental results showed that using plane
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search algorithms improves the performance of the primal-dual algorithm significantly in terms of the number
of iterations. Although our heuristic algorithm works efficiently, there is more room here to work on other
heuristic plane search algorithms or improving the practical performance of the exact one, so that we also
obtain a significant improvement in the overall running time of the primal-dual algorithm.

The idea of using a plane search in each iteration of a primal-dual algorithm has been used by many other
researchers. For example, relatively recently, Ai and Zhang [1] defined a new wide neighborhood (which contains
the conventional wide neighborhood for suitable choices of parameter values) and introduced a new search
direction by decomposing the right-hand-side vector of (1.2) into positive and negative parts and performing
a plane search to find the step size for each vector. By this approach, they obtained the current best iteration
complexity bound for their wide neighborhood. Their approach together with ours inspires the following question:
are there other efficient decompositions which in combination with a plane search, give good theoretical as well
as computational performances in the wide neighborhoods of the central path? This is an interesting question
left for future work.

Appendix A. Connection with Kernel functions

In this section, we introduce the Kernel function approach for interior-point methods [2,3,17] and discuss its
connection with our approach. Let Ψ(v) : R

n
++ → R be a strictly convex function such that Ψ(v) is minimal at

v = e and Ψ(e) = 0. In the Kernel function approach we replace the last equation of (1.2) with

Sdx +Xds = −√μV∇Ψ
(

v√
μ

)
, (A.1)

where v := X1/2S1/2e [2]. Note that by the definition of Ψ , ∇Ψ
(

v√
μ

)
= 0 if and only if (x, s) is on the central

path. To simplify the matters, we assume that

Ψ(v) =
n∑

j=1

ψ(vj),

where ψ(t) : R++ → R is an strictly convex function with unique minimizer at t = 1 and ψ(1) = 0. We call the
univariate function ψ(t) the Kernel function of Ψ(v). It has been shown that the short update primal-dual path
following algorithms using special Kernel functions obtain the current best iteration complexity bound [2].

Comparing (1.3) and (A.1), we observe that the two approaches are similar in the sense that the left-hand-side
of the last equation in (1.2) is replaced by a nonlinear function of Xs. The question here is whether there exists
a continuously differentiable strictly monotone function f for each Kernel function ψ or vice versa so that (1.2)
and (A.1) give the same search direction. In other words, can we solve

−√μtψ′
(

t√
μ

)
= K

f(μ)− f(t2)
f ′(t2)

, (A.2)

for f or ψ, for a constant scalar K? For t =
√
μ, both sides of (A.2) are equal to zero, so the equation is

consistent in that sense. ψ(t) is a strictly convex function with minimum at t = 1, so ψ′
(

t√
μ

)
< 0 for t <

√
μ

and ψ′( t√
μ) > 0 for t >

√
μ. This makes both sides of (A.2) consistent for a strictly monotone function f .

Hence, (A.2) may be solved for f or ψ, however the result depends on μ in general. Table A.1 shows five pairs
of functions. Some of the Kernel functions in the table are from the set of functions studied in [2], and we
solved (A.2) for the corresponding f(x). In the last two ones, we picked f(x) = ln(x) and f(x) =

√
x and

derived the corresponding ψ(t).
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Table A.1. Some ψ(t) and their corresponding f(x) in view of (A.2).

ψ(t) f(x)

t2−1
2

− ln(t) x

1
2

(
t− 1

t

)2
x2

1
2
(t2 − 1) + t−2q+2−1

−2q+2
, q > 1 xq

1
2

(
t2 + 1

t2

)− 1 1
x

t2−1
2

+ t1−q−1
q−1

, q > 1 x
−q+1

2

(t− 1)2
√
x

t2 ln(t) − 1
2
t2 + 1

2
ln(x)

As an example, we see the derivation of f(x) for the third ψ(t): we have ψ′(t) = t− t−q, then

−√μtψ′
(

t√
μ

)
= −√μt

(
t√
μ
− μ−q/2

t−q

)
= −t2 +

μ
−q+1

2

t−q−1

=
μ

−q+1
2 − t−q+1

t−q−1
= 2

f(μ)− f(t2)
f ′(t2)

, f(x) = x
−q+1

2 .

For the fourth pair, the function ψ(t) = t2 ln(t) − 1
2 t

2 + 1
2 obtains its minimum at t = 1 with ψ(1) = 0, and is

decreasing before t = 1 and increasing after that. The function is also convex around t = 1, but it is not convex
on the whole range of t > 0.

As mentioned above, for each Kernel function ψ(t), solving (A.2) for f(x) may result in a function depending
on μ. We can cover that by generalizing our method as follows. At each iteration, instead of applying f(·) to
both sides of Xs = μe, we apply a function of μ, i.e. f(μ; ·). The rationale behind it is that we expect different
behaviours from the algorithm when μ > 1 and μ � 1; e.g., we expect quadratic or at least super-linear
convergence when μ � 1. Hence, it is reasonable to apply a function f(·) that depends on μ. We saw above
that (A.2) gives a non-convex function ψ(t) for f(x) = ln(x) and the Kernel function approach does not cover
our approach. However, our generalized method contains the Kernel function approach and is strictly more
general in that sense.

Consider (A.2) for K =
√
μ/2 and assume, without loss of generality, that f(

√
μ) = 0. Then, from (A.2), for

t �= √μ we have:

2tf ′(t2)
f(t2)− f(μ)

=
(
ψ′
(

t√
μ

))−1

⇒ d
dt

[ln(|f(t2)− f(μ)|)] =
(
ψ′
(

t√
μ

))−1

⇒ |f(t2)| = exp

[∫ (
ψ′
(

t√
μ

))−1

dt

]
, (A.3)

where we have f(t2) < 0 for t <
√
μ and f(t2) > 0 for t >

√
μ. As an example, consider the kernel function

ψ(t) := t − 1 + t1−q−1
q−1 (see [2]) for the special case of q = 2. Then we have ψ′(t) = 1 − t−2. Substituting



320 M. KARIMI ET AL.

this in (A.3), we have:

|f(t2)| = exp
[∫

t2

t2 − μdt
]

= exp
[∫

1 +
μ

t2 − μdt
]

= exp
[∫

1 +
√
μ

2

(
1

t−√μ −
1

t+
√
μ

)
dt
]

= et

( |t−√μ|
t+
√
μ

)√
µ

2

. (A.4)

As can be seen, the concluded function f(·) is a function of μ.

Appendix B. Homogeneous self-dual embedding

In this section, we introduce the homogeneous self-dual embedding [37]. We can construct a homogeneous
and self-dual artificial LP problem (HLP) related to (P) and (D) as follows: given any x(0) > 0, s(0) > 0, and
y(0) free,

minimize ((x(0))�s(0) + 1)θ

subject to Ax − bt+ bθ = 0 (B.1a)

−A�y + ct− cθ ≥ 0 (B.1b)

b�y − c�x+ zθ ≥ 0 (B.1c)

−b�y + c�x− zt = −((x(0))�s(0) + 1) (B.1d)

y free, x ≥ 0, t ≥ 0, θ free, (B.1e)

where b := b−Ax(0), c := c−A�y(0) − s(0), and z := c�x(0) + 1− b�y(0).
The relationships (B.1a)−(B.1c), with t = 1 and θ = 0, represent primal and dual feasibility (with x ≥ 0) and

reversed weak duality, so that all together they define the set of primal and dual optimal solutions. To achieve
feasibility for x = x(0) and (y, s) = (y(0), s(0)), the artificial variable θ is added with appropriate coefficients
and constraint (B.1d) is added to achieve self duality. Denote by s the slack vector for the inequality constraint
(B.1b) and by κ the slack scalar for the inequality constraint (B.1c). We can see that (HLP) is homogeneous
and self-dual.

The following are the properties of the (HLP) model [37].

• The Dual of (HLP), denoted by(HLD), has the same form as (HLP), i.e., (HLD) is simply (HLP) with
(y, x, t, θ) being replaced by (y′, x′, t′, θ′). Here y′, x′, t′, θ′ make up the dual multiplier vector for constraint
(B.1a), (B.1b), (B.1c), and (B.1d), respectively.
• (HLP) has a strictly feasible point for every choice of x(0) > 0, s(0) > 0.
• (HLP) has an optimal solution and its optimal solution set is bounded.
• The optimal value of (HLP) is zero, and for every feasible point (y, x, t, θ, s, κ) we have:

((x(0))�s(0) + 1)θ = x�s+ tκ.
• There is an optimal solution (y∗, x∗, t∗, θ∗ = 0, s∗, κ∗), such that:(

x∗ + s∗
t∗+κ∗

)
> 0,

which we call a strictly self-complementary solution.
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If we choose y(0) := 0, x(0) := e, and s(0) := e, then (HLP) becomes:

minimize (n+ 1)θ

subject to Ax − bt+ bθ = 0

−A�y + ct− cθ ≥ 0

b�y − c�x+ zθ ≥ 0

−b�y + c�x− zt = −(n+ 1)

x ≥ 0, t ≥ 0,

where b := b−Ae, c := c− e, and z := c�e+ 1.
If we look at the solution of (HLP), we can solve the initial (LP) by using the theorem below.

Theorem B.1. [37] Let (y∗, x∗, t∗, θ∗ = 0, s∗, κ∗) be a strictly-self-complementary solution for (HLP).Then:

• (P) has an optimal solution if and only if t∗ > 0. In this case, (x∗/t∗) is an optimal solution for (P) and
(y∗/t∗, s∗/t∗) is an optimal solution for (D);

• if t∗ = 0, then κ∗ > 0, which implies that c�x∗ − b�y∗ < 0, i.e., at least one of c�x∗ and −b�y∗ is strictly
less than 0. If c�x∗ < 0 then (D) is infeasible; if −b�y∗ < 0 then (P) is infeasible; and if both c�x∗ < 0 and
−b�y∗ < 0 then both (P) and (D) are infeasible.

So, homogeneous and self-dual model can guarantee that we have a strictly feasible solution to start most
interior-point algorithms, and a strictly-self-complementary solution of the homogeneous self-dual embedding
immediately solves both of the problems (P) and (D). In this context, “solving an LP” means determining
exactly which of the three possibilities (given by the Fundamental Theorem of LP) holds and providing a
succinct certificate of the claim.

Appendix C. Proofs of some theorems, lemmas, and propositions.

Proof of Lemma 2.10.

Proof. Let β ∈ [0, 1
4 ], (x, s) ∈ N∞(β), and ξij and ζij , ij ∈ {21, 22}, as in the statement of the lemma. We

define

fij(u) := Δij − ξijnδ(u), Fij(u) := ζijnδ(u)−Δij ,

Ω :=
{
u ∈ R

n : e�u = n, (1− β)e ≤ u ≤ (1 + β)e
}
. (C.1)

Consider the following four optimization problems for ij ∈ {21, 22}:
minimizeu∈Ω Fij(u) and minimizeu∈Ω fij(u).

To prove the lemma, it is sufficient to prove that the optimal objective values of these four problems are at
least 0. We prove it for minu∈Ω f21(u) and the proofs for the rest of them are similar. We have

∇f21(u) = −ξ21e+ u+ (2U − ξ21I) ln(u), ∇2f21(u) = 3I − ξ21U−1 + 2Diag(ln(u)). (C.2)

For u > 0, 2 ln(uj) + 3− ξ21
uj

is an increasing function of uj for every j ∈ {1, . . . , n}, and by our definition of ξ21
we have

2 ln(1− β) + 3− ξ21
1− β = 0.
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Hence, by (C.2), ∇2f21(u) is positive semidefinite over Ω, which implies f21(u) is a convex function over Ω. Let
us write the Lagrangian function of the optimization problem minu∈Ω f21(u):

L21(u, λ1, λ2, λ3) = f21(u)− λ1(n− e�u)− λ�2 (u− (1 − β)e)− λ�3 ((1 − β)e− u),

where λ1 ∈ R
n, λ2 ∈ R

n
+, λ3 ∈ R

n
+. Let us define

u∗ := e, λ∗1 := −1, λ∗2 := ξ21e, λ∗3 := 0.

Then, we have ∇L21(u∗, λ∗1, λ
∗
2, λ

∗
3) = 0 and ∇2L21(u∗, λ∗1, λ

∗
2, λ

∗
3) = ∇2f21(u∗) is positive definite. Therefore,

by second order sufficient conditions for optimality, u∗ = e is an optimal solution of minu∈Ω f21(u) with optimal
objective value of 0. �

Proof of Lemma 3.1

Proof. For (x, s) ∈ N2(1
4 ), the following condition guarantees that (x(α), s(α)) ∈ N2(1

2 ).

n∑
j=1

[
xj(α)sj(α)
(1 − α)μ

− 1
]2
≤

n∑
j=1

(
xjsj

μ
− 1
)2

+
3
16
· (C.3)

Solving (2.3), we have (dx)j =
√
xj/sj(wp)j and (ds)j =

√
sj/xj(wq)j , for j ∈ {1, . . . , n}. Using these, we have

xj(α)sj(α) =
(
xj + α

√
xj

sj
(wp)j

)(
sj + α

√
sj

xj
(wq)j

)
= xjsj + α

√
xjsj(wj) + α2(wp)j(wq)j .

Substituting this in the left-hand-side of (C.3) and expanding it, we get
n∑

j=1

(
xj(α)sj(α)
(1− α)μ

− 1
)2

=
n∑

j=1

(
uj − 1 +

αxjsj

(1− α)μ
(δ − ln(uj))) +

α2

(1− α)μ
(wp)j(wq)j

)2

=
n∑

j=1

[
(uj − 1)2 +

α2(uj)2

(1 − α)2
[δ2 + ln2(uj)− 2δ ln(uj)]

+
α4

(1− α)2μ2
(wp)2j(wq)2j + 2(uj − 1)

(
αuj

(1− α)
(δ − ln(uj)) +

α2

(1− α)μ
(wp)j(wq)j

)

+2
α3xjsj

(1− α)2μ2
(δ − ln(uj))(wp)j(wq)j

]
, (C.4)

where we used uj = (xjsj)/μ. By canceling out
∑n

j=1(uj − 1)2 from both sides of (C.3) and multiplying both
sides by (1− α)2μ2, we obtain the following equivalent inequality:

α2(δ2
n∑

j=1

(xjsj)2 +Δ22μ
2 − 2δΔ21μ

2) + α4
n∑

j=1

(wp)2j(wq)2j

+ 2α(1− α)
n∑

j=1

[x2
js

2
jδ − μδxjsj − x2

js
2
j ln(uj) + μxjsj ln(uj)]

+ 2α2(1− α)
n∑

j=1

xjsj(wp)j(wq)j + 2α3
n∑

j=1

δxjsj(wp)j(wq)j

− 2α3
n∑

j=1

xjsj(wp)j(wq)j ln(uj) ≤ 3(1− α)2μ2

16
· (C.5)
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Note that for the coefficient of α2(1 − α) we used
∑n

j=1(wp)j(wq)j = 0. We show how to derive the first term
in (C.5) and the rest of them can be done similarly. After multiplying both sides of (C.4) by (1−α)2μ2, for the
second term in the summation, we have:

n∑
j=1

α2(uj)2μ2[δ2 + ln2(uj)− 2δ ln(uj)]

= α2

⎛
⎝δ2 n∑

j=1

(ujμ)2 + μ2
n∑

j=1

(uj)2 ln2(uj)− 2δμ2
n∑

j=1

(uj)2 ln(uj)

⎞
⎠

= α2

⎛
⎝δ2 n∑

j=1

(xjsj)2 + μ2Δ22 − 2δμ2Δ21

⎞
⎠ ,

which is the first term in (C.5). After expansion of the inequality above, we obtain the following inequality for
the predictor step of length α, with the coefficients given in the statement.

d4α
4 + d3α

3 + d2α
2 + d1α+ d0 ≤ 0, �

Proof of Lemma 3.2

Proof. Let us define β := 1/4. For every (x, s) ∈ N2

(
1
4

)
we have

3
4
< uj =

xjsj

μ
<

5
4
∀j ⇒

n∑
j=1

(xjsj)2 ≤ 25
16
nμ2. (C.6)

We also have 0 ≤ δ ≤ 1; more precisely, 1
96n = β2

6n ≤ δ ≤ β2

n = 1
16n on the boundary of N2

(
1
4

)
(see Lem. 2.4).

By Lemma 1 of [21], we know that

(a) ‖Wpwq‖ ≤
√

2
4
‖w‖2 ≡

√√√√ n∑
j=1

(wp)2j (wq)2j ≤
√

2
4

n∑
j=1

w2
j ,

(b) |(wp)j(wq)j | ≤ ‖w‖
2

4
,

(c) ‖(Wpwq)+‖∞ ≤ ‖w‖
2∞

4
, where (Wpwq)+j = max{0, (Wpwq)j} for every j. (C.7)

We have wj = −vj + δvj − vj ln
(

v2
j

μ

)
, for which we get

|w2
j | = v2

j

∣∣∣∣∣−1 + δ − ln

(
v2

j

μ

)∣∣∣∣∣
2

≤ 25
16
v2

j =
25
16
xjsj . (C.8)

This inequality is due to the facts that
∣∣∣ln(v2

j

μ

)∣∣∣ ≤ 1
4 and 0 ≤ δ ≤ 1

16n within N2(1
4 ). We need to bound d4, d3,

d2, and d1. By using Corollary 2.11 and the above results, we have

d1 = 32
(
δ
∑n

j=1 x
2
js

2
j −Δ21μ

2
)

+ 6μ2

≤ 32
(
δ
∑n

j=1 x
2
js

2
j

)
+ 6μ2, as Δ21μ

2 ≥ 0,

≤ 32δ · 25
16
nμ2 + 6μ2, using (C.6),

≤ 10μ2, δ ≤ 1
16n

,
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and

d4 = 16
n∑

j=1

(wp)2j(wq)2j ≤ 2

⎛
⎝ n∑

j=1

w2
j

⎞
⎠

2

≤ 625
128

⎛
⎝ n∑

j=1

xjsj

⎞
⎠

2

=
625
128

n2μ2 ≤ 5n2μ2.

For the first inequality, we used (C.7)-(a) and for the second inequality we used (C.8). Within N2(1
4 ), we have∣∣∣ln(xjsj

μ )
∣∣∣ ≤ 1. Hence, by Cauchy−Schwarz inequality we have:

|B| =
∣∣∣∑n

j=1 xjsj ln
(

xjsj

μ

)
(wp)j(wq)j

∣∣∣
≤∑n

j=1 xjsj

∣∣∣ln(xjsj

μ

)
(wp)j(wq)j

∣∣∣
≤∑n

j=1 xjsj |(wp)j(wq)j |, using
∣∣∣ln(xjsj

μ )
∣∣∣ ≤ 1,

≤
√∑n

j=1(wp)2j(wq)2j
√∑n

j=1 x
2
js

2
j , using Cauchy−Schwarz,

≤
√

2
4

∑n
j=1 w

2
j

√
25
16nμ

2, using (C.7)-(a) and (C.6),

≤
√

2
4 · 25

16nμ
√

25
16nμ

2 ≤ n 3
2μ2, using (C.8).

Similarly,

|C| ≤
n∑

j=1

xjsj |(wp)j(wq)j | ≤ n 3
2μ2.

Moreover,

C ≤∑{j:(wp)j(wq)j≥0} xjsj(wp)j(wq)j

≤ ‖w‖
2
∞

4
∑n

j=1 xjsj , using (C.7)-(c),

≤ 1
4
· 25
16
·
(

5
4
μ

)
nμ ≤ nμ2

2
, using (C.8) and (C.6).

Since |δ − 1| ≤ 1, we get:

d3 = 32(δ − 1)C − 32B < 32|C|+ 32|B| ≤ 64n
3
2μ2.

Using Lemma 2.10 and Corollary 2.11, for every (x, s) ∈ N2(1
4 ), we have Δ22 ≤ 5

16 and Δ21 ≤ 9
32 . Thus, using

the bound we found for C, we have

d2 = 16

⎛
⎝δ2 n∑

j=1

(xjsj)2 +Δ22μ
2 − 2δΔ21μ

2 + 2C − 2δ
n∑

j=1

x2
js

2
j + 2Δ21μ

2

⎞
⎠+ 3μ2

≤ 16
(

25
16
δ2nμ2 +

5
16
μ2 + 0 + nμ2 + 0 +

9
16
μ2

)
+ 3μ2, using (C.6) and the bound for C,

≤ 34nμ2, using δ ≤ 1
16n

and n ≥ 1. �
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Proof of Theorem 4.3.

Proof. For each j ∈ {1, . . . , n}, let uj := xjsj

μ . Let us consider the search direction w in the wide neighbourhood
N−

∞(1
2 ). For the next iteration, to stay in the same neighbourhood, the step length α should satisfy the following

condition for every j ∈ {1, 2, . . . , n}.

uj +
α

1− αuj(δη − η ln(uj)) +
α2

1− α
(wp)j(wq)j

μ
≥ 1/2. (C.9)

Since all of our discussion is within N−∞(1
2 ), we know that: xjsj

μ ≥ 1
2 , j ∈ {1, 2, . . . , n}. We also deduce that

xjsj

μ ≤ n+1
2 from the fact

∑n
j=1 xjsj = nμ. So,

0 ≤ Δ12 ≤ max
j

{
ln2

(
xjsj

μ

)} n∑
j=1

xjsj

μ
≤ n ln2

(
n+ 1

2

)
, 0 ≤ δ ≤ ln

(
n+ 1

2

)
·

By using (C.7)-(b) we have |(wp)j(wq)j | ≤ ‖w(η)‖2/4. Using this and Lemma 4.2, a sufficient condition
for (C.9) to hold is the following inequality:

uj +
α

1− αuj(δη − η ln(uj))− α2

1− α
nμ+ η2μΔ12 − nμδ2η2

4μ
≥ 1/2.

By multiplying both sides by 4(1− α) and rearranging, we get

− α2(n+ η2Δ12 − nδ2η2) + 4α
(
ujδη − ujη ln(uj)− uj +

1
2

)
+ 4
(
uj − 1

2

)
≥ 0. (C.10)

Clearly, α = 0 satisfies this inequality; we are going to find the maximum α that does that. Without loss of
generality, we can assume η = 1. We will discuss three cases with respect to the magnitude of uj.

If we substitute the bound we found above for Δ12 and remove the negative term in the coefficient of −α2,
a sufficient condition for (C.9) to hold becomes

− α2

(
n+ η2n ln2

(
n+ 1

2

))
+ 4α

(
ujδη − ujη ln(uj)− uj +

1
2

)
+ 4
(
uj − 1

2

)
≥ 0. (C.11)

If uj ≥ 1, the third term in (C.11) is at least 2. On the other hand, as
∑n

j=1 uj = n and uj ≥ 1/2 for all j,
we have uj ≤ (n+ 1)/2 for all j. Using these, we have

n+ η2n ln2

(
n+ 1

2

)
≤ 16η2n2 ln2(n),

ujη ln(uj) + uj ≤ 4ηn ln(n), (C.12)

for η = 1 and n ≥ 2. Therefore, α = 1
4ηn ln(n) satisfies (C.11) for n ≥ 2.

If 1 > uj ≥ 9
16 , for η = 1 we easily have

ujδη − ujη ln(uj)− uj +
1
2
≥ −ujη ln(uj)− uj +

1
2
≥ −1

2
·

Hence, a sufficient condition for (C.11) to hold is:

−α2

(
n+ η2n ln2

(
n+ 1

2

))
− 2α+

1
4
≥ 0.
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Let α = 1
10ηn ln(n) , then similar to the previous case, for η = 1 the above inequality holds for n ≥ 2.

The case of 1
2 ≤ uj ≤ 9

16 is the critical case as the third term in (C.10) can be zero. For η = 1, we have

−ujη ln(uj)− uj +
1
2
≥ − 9

16
ln
(

9
16

)
− 9

16
+

1
2
≥ 1

5
·

Hence, a sufficient condition for (C.10) to hold is (we again remove the negative term in the coefficient of −α2):

−α2(n+Δ12η
2) + 4αujδη +

4
5
α ≥ 0,

Here, we use the result of Lemma 2.12 to upper bound Δ12 and the fact that uj ≥ 1/2 to make the sufficient
condition stronger as (we substitute η = 1)

−α2(n+ 2(ln(n) + 1)nδ) + 2αδ +
4
5
α ≥ 0.

Now it is easy to check that α = 1
10n ln(n) satisfies the inequality for n ≥ 2. If we substitute this α we get

−n+ 2(ln(n) + 1)nδ
100n2 ln2(n)

+
2δ

10n ln(n)
+

4
50n ln(n)

= 2
(
− (ln(n) + 1)

100n ln2(n)
+

1
10n ln(n)

)
δ +
(
− 1

100n ln2(n)
+

4
50n ln(n)

)
≥ 0,

which holds for n ≥ 2.
Hence, for the case η = 1, we see that the constant step length of α = 1

10n ln(n) achieves the iteration complexity
bound of O

(
n ln(n) ln

(
1
ε

))
. Therefore, the same iteration complexity bound holds for Algorithm 4.1. �

Proof of Theorem 4.4.

Proof. As uj ≥ 1
2 for all j, then for each uj ≤ 1 we have 0 ≤ δ− ln(uj) ≤ δ+ ln(2). Let us define J ⊂ {1, . . . , n}

as the set of indices for which uj ≤ 3
4 . By using this and (4.1), and substituting η = 1/(δ + ln(2)) we have

‖w(η)‖2 =
∑
j /∈J

xjsj +
∑
j∈J

xjsj

(
−1 +

δ − ln(uj)
δ + ln(2)

)2

≤
n∑

j=1

xjsj = nμ. (C.13)

We must show that we still have enough reduction in the duality gap. First note that
∑n

j=1 uj = n, and we
have

∑
j∈J uj ≤ 3

4n. This means
∑

j∈J xjsj ≤ 3
4

∑n
j=1 xjsj . Thus, we have:

x(α)�s(α) = (1− α)x�s+ α
∑
j∈J

xjsj

(
δ − ln(uj)
δ + ln(2)

)

≤ (1− α)x�s+
3
4
αx�s =

[
1− 1

4
α

]
x�s. (C.14)

We want α > 0 as large as possible such that xj(α)sj(α)
μ(α) ≥ 1

2 for all j. Using (C.14) we have

xj(α)sj(α)
μ(α)

≥ xj(α)sj(α)(
1− 1

4α
)
μ
≥ 1

2
·
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Using |(wp)j(wq)j | ≤ ‖w(η)‖2/4 and (C.13), it is sufficient for α > 0 to satisfy:

−2
(

1− 1
4
α

)
+ 4(1− α)uj − α2n ≥ 0, j /∈ J,

−2
(

1− 1
4
α

)
+ 4(1− α)uj + 4αujη(δ − ln(uj))− α2n ≥ 0, j ∈ J. (C.15)

Let us multiply both of the inequalities by 2 and rewrite them as

−2nα2 + (1− 8uj)α + (−4 + 8uj) ≥ 0, j /∈ J,
−2nα2 + [1− 8uj + 8ujη(δ − ln(uj))]α+ (−4 + 8uj) ≥ 0, j ∈ J. (C.16)

Note that uj ≥ 1
2 for all j and also

∑n
j=1 uj = n, so uj ≤ n+1

2 for all j. On the other hand, uj >
3
4 for j /∈ J

and so −4 + 8uj > 2. Therefore, for j /∈ J , (C.16) is satisfied if

−2nα2 − (3 + 4n)α+ 2 ≥ 0.

Clearly for α = 1
5n , this inequality is satisfied for every n ≥ 1.

For j ∈ J , we use the following inequality:

η(δ − ln(uj)) =
δ − ln(uj)
δ + ln(2)

≥ − ln(uj)
ln(2)

, ∀ uj ≥ 1
2
· (C.17)

Substituting this in (C.16), we get a stronger sufficient condition as:

− 2nα2 +
[
1− 8uj − 8

uj ln(uj)
ln(2)

]
α+ (−4 + 8uj) ≥ 0. (C.18)

For j ∈ J , we have uj ∈
[

1
2 ,

3
4

]
. We further split this case into two cases: uj ∈

[
1
2 , 0.55

]
and uj ∈

(
0.55, 3

4

]
.

For uj ∈ (0.55, 0.75], it is not difficult to see the minimum of the coefficient of α in (C.18) is achieved at 0.75.
Therefore, (C.18) is satisfied if

−2nα2 +
[
1− 8× 0.75− 8× 0.75 ln(0.75)

ln(2)

]
α+ (−4 + 8× 0.55) ≥ −2nα2 − 3α+ 0.4 ≥ 0,

which holds for α = 1
10n .

For uj ∈
[
1
2 , 0.55

]
, similarly it is not difficult to see the minimum of the coefficient of α in (C.18) is achieved

at 0.55. Therefore, (C.18) is satisfied if

−2nα2 +
[
1− 8× 0.55− 8× 0.55 ln(0.55)

ln(2)

]
α+ (−4 + 8× 0.5) ≥ −2nα2 + 0.39α ≥ 0,

which holds for α = 1
10n . We conclude that α = 1

10n satisfies (C.15) for all possible cases, and in a similar way
to the proof of Theorem 4.3, we can conclude the desired iteration complexity bound. �
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