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RENEGING IN A BATCH ARRIVAL TWO PHASES QUEUE WITH RANDOM
FEEDBACK AND COXIAN-2 VACATION

Abdolrahim Badamchi Zadeh
1

Abstract. In this system we consider a batch arrival Poisson input with two phases of heterogeneous
service with random feedback in each servivce. The first phase of service is essential for all customers,
but with a probability tagged customer chose second phase, feedback to tail of original queue or leave
the system. Also, after completion of the second phase, with a probability the customer leaves the
system, or feedback to tail of original queue. At each service completion epoch, the server may apt
to take a vacation with a probability or continue to be available in the system for the next service.
The service times are assumed to be general. The vacation period of the server has two heterogeneous
phases with Coxian-2 distribution. The vacation times are assumed to be general. When the server goes
for vacation, service become unavailable and customers may decide to renege at each vacation times.
We assume reneging follow exponential distribution. All stochastic processes involved in this system
(service and vacation times) are independent of each other. We derive the PGF’s of the system and by
using them the performance measures are obtained. Some numerical approch are examined the validity
of results.
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1. Introduction

In queuing systems when vacation occurs, then it becomes impatience of customers and one the phenomena is
reneging from system. In queueing literature, a customer is said to have reneged if it leaves the system without
recieving its service entirely. It is a commonly observed phenomenon which customers join to queue and in the
process of waiting, either in the queue or while recieving service, get impatient and leave the system. For the first
time Barrer [5,6] studied the concept of deterministic reneging in the queue with Markovian arrival and service
rates. Haight [12] considered a queue in which a customer having joined may decide to leave and give up service
if it appears that the time consumed will exceed some maximum which it available. Untile now there ara many
works in this implication that a good litterature survay is in [14]. But the confect of the reneging in M/G/1
queueing systems with vacation and heterogeneous services with general distributions is new. Choudhury and
Medhi[9] worked on multiserver Markovian system with balking and reneging. Recently two works are inspected
with Baruah et al. in [5,6]. In this works a two stage batch arrival queueing systems with vacation and reneging
are studied.
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In many examples such as cars check up systems, production systems, bank services, computer and commu-
nication networks, feedback occurs on each service and customers repeat only unsuccessful phase, also he/she
feedbacks to the beginning of the this phase. In addition, for overhauling or maintenance of the system, the
server may go to vacation. Significant contributions by various authors on queues with feedback and server
vacation has been seen in the last few years. Authors like Shahkar and Badamchizadeh [3, 4, 16] have studied
queues under different vacation policies.

Choudhury and Paul[10] inspected the M/G/1 system with two phases of heterogeneous service and Bernoulli
feedback. In this system a tagged customer may have an unsuccessful service , then retried until a successful
service is completed. He/She is feedbacked instantaneously to the tail of the queue with probability p(0 � p � 1)
or departs from the system with probability q = 1 − p. Salehirad and Badamchizadeh[15] has extended this
model. They worked on a multi-phase M/G/1 queue with random feedback.

Also Madan and Choudhury [13] studied a single server queue with two phases of heterogeneous services
under Bernoulli schedule and a general vacation time. In this system, without feedback, the server after the
completion of the service, may go to vacation with probability θ or remain in system with probability 1 − θ.

Our aim is to analyze the steady state condition of a single server queue consisting a batch arrival Poisson
input, two phases of heterogeneous service, randomly feedback in services, Bernoulli vacation for server with
Coxian-2 policy and reneging in vacation times. In Section 2 we deal with the mathematical model and defini-
tions. Steady-State conditions and generating functions are discussed in Section 3. Mean queue size and mean
response time are computed in Section 4, where in Section 5 some special cases are investigated. Finaly using
some numerical methods, the validity of model has been examined.

2. Mathematical model and definitions

We consider a queueing system such that:

(i) New customers arrive in batches according to a compound Poisson process with rate λ. Let Xk denote
the number of customers belonging to the kth arrival batch, where Xk, k = 1, 2, 3, . . . are with a common
distribution

Pr[Xk = n] = cn, n = 1, 2, 3, . . .

and X(z) denotes the probability generating function of X .
(ii) The server provides two phases of heterogeneous service in succession. The service discipline is assumed to

be on the basis of first come, first serve(FCFS). The first phase of service is essential for all customers, but
as soon as the essential service is completed, a tagged customer moves for second phase with probability γ1,
relapses to tail of original queue with probability η1 or leaves the system with probability ζ1 = 1− γ1 − η1.
Similarly after completion of the second phase with probability γ2 the customer leaves the system or
with probability ζ2 = 1 − γ2 feedback to the tail of original queue. The service times for two phases are
independent random variables, denoted by B1, B2. Their Laplace–Stieltjes transform (LST)are B∗

1(s), B∗
2 (s)

where we assume they have finite moments E(Bl
i) for l � 1 and i = 1, 2.

(iii) After completion of any customer’s service, the server may take a vacation with probability θ or may
continue to be in the system with probability 1 − θ.
We assume that the vacation time has two phases with phase one is compulsory. However, after phase 1
vacation, the server takes phase 2 vacation with probability p or may return back to the system with
probability 1−p. The vacation times are random variables Vi for i = 1, 2, follows a general law of probability
with distribution function Vi(x), Laplase transform V ∗

i (s) and finite moments E(V k
i ) for k ≥ 1.

(iv) Customers arriving for service may become impatient and renege (leave the system after joining the queue
and when the server is on the vacation). At each vacation time the reneging occure and is assumed to
follow exponential distribution with parameter α1 in first phase of vacation and parameter α2 in second
phase. Hence αidt is the probability that a customer can renege during a short interval of time (t, t + dt]
in phase i of vacation for i = 1, 2.



RENEGING IN A BATCH ARRIVAL TWO PHASES QUEUE WITH RANDOM FEEDBACK AND COXIAN-2 SERVER... 911

Definition 2.1. The modified service time or the time required by a customer to complete the service cycle is
given by

B =

{
Bs + Vc with probability θ

Bs with probability (1 − θ),
E(B) = E(Bs) + θ E(Vc) (2.1)

where

Bs =

{
B1 + B2 with probability γ1

B1 with probability (η1 + ζ1),
E(Bs) = E(B1) + γ1E(B2) (2.2)

and

Vc =

{
V1 + V2 with probability p

V1 with probability (1 − p),
E(Vc) = E(V1) + pE(V2) (2.3)

then the LST B∗(s) of B is given by

B∗(s) = θB∗
s (s)V ∗

c (s) + (1 − θ)B∗
s (s) (2.4)

and

E(B2
s) = E(B2

1) + 2γ1E(B1)E(B2
2) + γ1E(B2

2), E(B2) = E(B2
s) + 2θE(B2

s)E(V 2
c ) + θE(V 2

c ) (2.5)

Bs is the required time without feedback and the random variable Bf with

E(Bf ) = ζ1E(B1) + γ1γ2[E(B1) + E(B2)] (2.6)

represents the required time with feedback. Also because of reneging in vacation times we have a factor

E(VR) = α1E(V1) + α2E(V2). (2.7)

Further, for i = 1, 2 we assume that; Bi(0) = 0, Bi(∞) = 1 and Bi(x) are continuous at x = 0, so that

μi(x)dx =
dBi(x)

1 − Bi(x)
(2.8)

is the first order differential equation(hazard rate functions) of Bi. Also for i = 1, 2 we assume Vi(0) = 1,
Vi(∞) = 1 and Vi(x) are continuous at x = 0. The hazard rate functions of Vi’s are

νi(x) =
dVi(x)

1 − Vi(x)
(2.9)

Definition 2.2. Let Nq(t) be the queue size at time ′t′ and the supplementary variables are defined as:

B0
1(t)[B0

2(t)] ≡ the elapsed first [second] phase of service at time ′t′

V 0
1 (t)[V 0

2 (t)] ≡ the elapsed first second] phase of vacation at time ′t′

Now let us introduce the following random variables:

Y (t) =

⎧⎪⎨
⎪⎩

0 if the server is idle at time ′t′,
1[2] if the server is busy with first[second] phase of service at time ′t′,
3[4] if the server is on first [second] phase of vacation at time ′t′.

(2.10)
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Then we have a bivariate Markov process {Nq(t), L(t)} where L(t) = 0 if Y (t) = 0; L(t) = B0
1(t) if Y (t) = 1,

L(t) = B0
2(t) if Y (t) = 2, L(t) = V 0

1 (t) if Y (t) = 3, L(t) = V 0
2 (t) if Y (t) = 4. Now for i = 1, 2 the following

probabilities are defined as

Vi,n(x, t) = Prob[Nq(t) = n, L(t) = V 0
i (t); x < V 0

i (t) � x + dx] x > 0, n � 0 (2.11)

Pi,n(x, t) = Prob[Nq(t) = n, L(t) = B0
i (t); x < B0

i (t) � x + dx] x > 0, n � 0 (2.12)

and
R0(t) = Prob[Nq(t) = 0, L(t) = 0] (2.13)

With the assumption that steady state exists, we let

R0 = lim
t→∞R0(t) (2.14)

Pi,n(x)dx = lim
t→∞Pi,n(x, t)dx i = 1, 2 x > 0, n � 0 (2.15)

Vi,n(x)dx = lim
t→∞ qn(x, t)dx i = 1, 2 x > 0, n � 0 (2.16)

Now for i = 1, 2 the PGF of this probabilities is defined as follows:

Pi(x, z) =
∞∑

n=0

znPi,n(x) |z| � 1, x > 0 (2.17)

Pi(0, z) =
∞∑

n=0

znPi,n(0) |z| � 1 (2.18)

Also

Vi(x, z) =
∞∑

n=0

znVi,n(x) |z| � 1, x > 0 (2.19)

Vi(0, z) =
∞∑

n=0

znVi,n(0) (2.20)

3. Steady-state probability generating function

From Kolmogorov forward equations, for i = 1, 2 the steady-state conditions can be written as follows

d
dx

Pi,n(x) + [λ + μi(x)]Pi,n(x) = λ
n∑

k=1

ckPi,n−k(x) n ≥ 1, x > 0 (3.1)

d
dx

Pi,0(x) + [λ + μi(x)]Pi,0(x) = λPi,0(x) (3.2)

and
d
dx

Vi,n(x) + [λ + νi(x) + αi]Vi,n(x) = λ

n∑
k=1

ckVi,n−k(x) + αiVi,n+1(x) n ≥ 1, x > 0 (3.3)

d
dx

Vi,0(x) + [λ + νi(x)]Vi,0(x) = αiVi,1(x) (3.4)
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also

λR0 =(1 − θ)ζ1

∫ +∞

0

μ1(x)P1,1(x)dx + (1 − θ)γ2

∫ +∞

0

μ2(x)P2,1(x)dx + (1 − p)

×
∫ +∞

0

ν1(x)V1,0(x)dx +
∫ ∞

0

ν2(x)V2,0(x)dx (3.5)

At x = 0, the boundary conditions for n ≥ 0 are

P1,n(0) = λan+1R0 + (1 − θ)(1 − γ1 − η1)

×
∫ +∞

0

μ1(x)P1,n+1(x)dx + η1

∫ +∞

0

μ1(x)P1,n(x)dx

+ γ2(1 − θ)
∫ +∞

0

μ2(x)P2,n+1(x)dx + (1 − γ2)

×
∫ +∞

0

μ2(x)P2,n(x)dx + (1 − p)
∫ +∞

0

ν1(x)V1,n(x)dx +
∫ ∞

0

ν2(x)V2,n(x)dx (3.6)

P2,n(0) = γ1

∫ +∞

0

μ1(x)P1,n(x)dx (3.7)

also

V1,n(0) = θ(1 − γ1 − η1)
∫ +∞

0

μ1(x)P1,n+1(x)dx + θγ2

∫ +∞

0

μ2(x)P2,n+1(x)dx, n � 0 (3.8)

V2,n(0) = p

∫ +∞

0

ν1(x)V1,n(x)dx (3.9)

Finally the normalizing condition is

R0 +
2∑

i=1

∞∑
n=0

∫ +∞

o

Pi,n(x)dx +
2∑

i=1

∞∑
n=0

∫ +∞

0

Vi,n(x)dx = 1 (3.10)

Lemma 3.1. For i = 1, 2 from (3.1) and (3.2) we have

Pi(x, z) = Pi(0, z)[1 − Bi(x)]e−λ[1−X(z)]x x > 0 (3.11)

and from (3.3) and (3.4)

Vi(x, z) = Vi(0, z)[1 − Vi(x)]e−(λ[1−X(z)]+αi−αi
z )x x > 0 (3.12)

For i = 1, 2 we define Λi(z) = λ[1 − X(z)] + αi − αi

z and

B∗
i (s) =

∫ +∞

0

e−sxdBi(x) (3.13)

V ∗
i (s) =

∫ +∞

0

e−sxdV (x) (3.14)

as z-transform of Bi and Vi respectively, then
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Theorem 3.2. If b(z) = (ζ1 + γ1γ2B
∗
2 [(λ − λX(z)])B∗

1 [(λ − λX(z)] and a(z) = (1 − θ) + θ[(1 − p) +
pV ∗

2 (Λ2(z))]V ∗
1 (Λ1(z)), then we have

P2(0, z) = γ1P1(0, z)B∗
1 [λ − λX(z)] (3.15)

zV1(0, z) = θ{ζ1P1(0, z)B∗
1 [(λ − λX(z)] + γ2P2(0, z)B∗

2 [(λ − λX(z)]} (3.16)

V2(0, z) = pV1(0, z)V ∗
1 (Λ1(z)) (3.17)

P1(0, z) =
R0(λ − λX(z))

z[1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)] − b(z)a(z)

· (3.18)

Proof. By multiplying (3.7) in zn and summation from n = 0 to ∞, using (2.17) and (2.18) the formula (3.15)
is obtained.
By multiplying (3.8) in zn and summation from n = 0 to ∞, using (2.19) and (2.20) the formula (3.16) is
obtained.
By multiplying (3.9) in zn and summation from n = 0 to ∞, using (2.19) and (2.20) the formula (3.17) is
obtained.
By multiplying (3.6) in zn and summation from n = 0 to ∞, using (2.17) and (2.18) and also (3.5), (3.15),
(3.16), (3.17) the formula (3.18) is obtained. �

Corollary 3.3. By using (3.18) in (3.15), (3.16) and (3.17) we have

P2(0, z) =
R0γ1(λ − λX(z))

z[1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)] − b(z)a(z)

(3.19)

V1(0, z) =
θR0b(z)(λ − λX(z))

z[1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)] − b(z)a(z)

(3.20)

V2(0, z) =
θpR0b(z)(λ − λX(z))

z[1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)] − b(z)a(z)

· (3.21)

3.1. Generating functions

Since for i = 1, 2

Pi(z) =
∫ ∞
0

Pi(x, z)dx

and

Vi(z) =
∫ ∞
0

Vi(x, z)dx

we have

Corollary 3.4. From (3.11) using (3.18)

P1(z) =
R0[1 − B∗

1 (λ − λX(z))]
b(z)a(z) − z {1 − η1B∗

1 [(λ − λX(z)] − (1 − γ2)γ1B∗
1 [(λ − λX(z)]B∗

2 [(λ − λX(z)]}· (3.22)

From (3.11) using (3.19)

P2(z) =
R0γ1B

∗
1 [(λ − λX(z)][1 − B∗

2 (λ − λX(z))]
b(z)a(z) − z {1 − η1B∗

1 [(λ − λX(z)] − (1 − γ2)γ1B∗
1 [(λ − λX(z)]B∗

2 [(λ − λX(z)]}· (3.23)
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From (3.12) using (3.20)

V1(z) =
b(z)θR0(λ − λX(z))

b(z)a(z)− z {1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)]}

[1 − V ∗
1 (Λ1(z))]

Λ1(z)
·

(3.24)
From (3.12) using (3.21)

V2(z) =
b(z)θpR0V

∗
1 (Λ1(z))(λ − λX(z))

b(z)a(z)− z {1 − η1B∗
1 [(λ − λX(z)] − (1 − γ2)γ1B∗

1 [(λ − λX(z)]B∗
2 [(λ − λX(z)]}

[1 − V ∗
2 (Λ2(z))]

Λ2(z)
·

(3.25)

Remark 3.5. The unknown constant R0 can be determined by using normalizing condition (3.10) which is

R0 + P1(1) + P2(1) + V1(1) + V2(1) = 1 (3.26)

from (3.22), (3.23), (3.24) and (3.25) by using L’Hopital rule and relations (2.2) and (2.3) we have

P1(1) =R0

λE(X)E(B1)
ζ1+γ1γ2

1 −
{

λE(X)E(Bs)
ζ1+γ1γ2

+ θ[λE(X)E(Vc) − (α1E(V1) + α2E(V2))]
}

P2(1) =R0

γ1λE(X)E(B2)
ζ1+γ1γ2

1 −
{

λE(X)E(Bs)
ζ1+γ1γ2

+ θ[λE(X)E(Vc) − (α1E(V1) + α2E(V2))]
}

V1(1) =R0
θλE(X)E(V1)

1 −
{

λE(X)E(Bs)
ζ1+γ1γ2

+ θ[λE(X)E(Vc) − (α1E(V1) + α2E(V2))]
}

V2(1) =R0
θpλE(X)E(V1)

1 −
{

λE(X)E(Bs)
ζ1+γ1γ2

+ θ[λE(X)E(Vc) − (α1E(V1) + α2E(V2))]
}

hence by substituting the above values in (3.26) and simplifying we have R0 = 1 − ρ where

ρ =
λE(X)

[
E(Bs)

ζ1+γ1γ2
+ θE(Vc)

]
1 + θ[α1E(V1) + α2E(V2)]

(3.27)

R0 is the steady-state probability that the server is idle but available in the system, hence ρ < 1 can be the
stability condition under which the steady state solution exists.

Now the PGF of the queue size distribution at a random epoch is

Pq(z) = P1(z) + P2(z) + V1(z) + V2(z)

also the PGF of the system size at random epoch is

P (z) = R0 + Pq(z)

Because of the nature of model and the huge form of Pi and Vi the PGF is very huge, hence the calculate of Lq

is hard and the result is long. Yet the results as follow.
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4. Mean queue size and other measures of system

Let Lq be the mean number of customers in the queue (i.e. mean queue size), then we have

Lq =
dPq(z)

dz
|z=1 (4.1)

Proposition 4.1. From (3.28) and using (3.22), (3.23), (3.24), (3.25) we have

Lq =
λ2E(X)2

[
E(B2

s) + θE(Bf ) (E(Vc) + E(V1))
]

2(ς1 + γ1γ2) (1 + θE(VR))
+

λE(X(X − 1)) [E(Bs) + θ(ς1 + γ1γ2)E(Vc)]
2(ς1 + γ1γ2) (1 + θE(VR))

+
θλE(X)

[
(λE(X) − α1)E(V 2

1 ) + p (λE(X) − α2)E(V 2
2 )

]
1 + θE(VR)

+
λE(X) [E(Bs) + θ(ς1 + γ1γ2)E(Vc)]

2(ς1 + γ1γ2)2(1 − ρ) (1 + θE(VR))2
Ψ (4.2)

where

Ψ =λ2E(X)2E(B2
s ) + 2λE(Bs)

[
E(X2) + E(X)

]
+ 2θλE(X)E(Bf ) [λE(X)E(Vc) − (α1E(V1) + pα2E(V2))]

+ θ(ς1 + γ1γ2)
{[

(λE(X) − α1)E(V 2
1 ) + p (λE(X) − α2)E(V 2

2 )
]

+ [λE(X(X − 1))E(Vc) − 2 (α1E(V1) + pα2E(V2))]}
+ 2pθ (λE(X) − α1) (λE(X) − α2)E(V1)E(V2).

Now for computing the mean response time of a test customer in this model, let W ∗
q (s) be the LST of DF of

waiting time of a tagged customer in this model. Then we have

W ∗
q (λ − λz)B∗(λ − λz) = Pq(z) (4.3)

where B∗ is defined in (2.4).
If WR denotes the time interval from arrival time to the time when a tagged customer leaves the system after

the completion of service, i.e. waiting time plus service time, then

W ∗
R(s) = W ∗

q (s)B∗(s) (4.4)

and mean response time of a tagged customer is

E(WR) = −dW ∗
R(s)
ds

|s=0 (4.5)

By substituting from (4.3) in (4.4) we have

W ∗
R(s) = Pq

(
1 − s

λ

)
(4.6)

By using (3.28) and from (4.5) we have

E(WR) =
1
λ

Lq (4.7)

Also the average system size is L = Lq + ρ where ρ is in (3.27).
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5. Special cases and numerical results

System without vacation: If θ = 0, then the system is without vacation. Hence E(B) = E(Bs), E(B2) =
E(B2

s ) and

ρ =
λE(X)E(Bs)

ζ1 + γ1γ1

also

Lq =
(λE(X))2 E(B2

s) + λE(X(X − 1))E(Bs)
2(ς1 + γ1γ2)

+
λE(X)E(Bs)

2(ς1 + γ1γ2)2(1 − ρ)
Ψ

where
Ψ = λ2E(X)2E(B2

s ) + 2λE(Bs)[E(X2) + E(X)]

System without reneging: If α1 = α2 = 0, then system is without reneging. Hence E(VR) = 0 and

ρ = λE(X)
[

E(Bs)
ς1 + γ1γ2

+ θE(Vc)
]

System without feedback: If γ1 = 1, γ2 = 1, η1 = 0 and ζ1 = 0, then the system is without feedback. Then
E(Bf ) = E(Bs) and other formulas change naturally.

5.1. Numerical analysis

Analyzing a queueing system via actual cases is very important and a useful method to confirm validity of
the model. In this section we selected known distributions for service time and vacation time, so with this, and
by some numerical approches the validity of the system is examained. Also this approch explains that our model
can function reasonably well for certain practical problems.

Case 1. LQ vis-à-vis λ. For each i = 1, 2, let the distribution of service time be τi-Erlang as follows:

dBi(x) =
(τiμi)μixτi−1e−τiμix

(τi − 1)!
dx x > 0, τi ≥ 1

hence

B∗
i (λ − λX(z)) =

(τiμi)τi

[λ(X(z) − 1) + τiμi)]τi

so E(Bi) =
1
μi

and E(B2
i ) =

τi + 1
τiμ2

i

.

Also for j = 1, 2 we assume the distribution of vacation times be εj-Erlang

dV (x) =
(εjνj)νj xεj−1e−εjνjx

(εj − 1)!
dx x > 0, εj ≥ 1

hence

V ∗(λ − λX(z)) =
(εjνj)εj

[λ(X(z) − 1) + εjνj ]εj

so E(Vj) =
1
νj

and E(V 2
j ) =

εj + 1
εjν2

j

. If we choose geometric distribution for a batch size, i.e. cn = d(1 −

d)n−1, 0 < d < 1, then E(X) =
1
d
, E(X2) =

2 − d

d2
and

E(X(X − 1)) =
2(1 − d)

d2
·
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Figure 1. LQ vis-à-vis λ.

Table 1. Values of parameters.

μ1 μ2 τ1 τ2 γ1 γ2 ζ1 θ p ν1 ν2 ε1 ε2 α1 α2 d
5 2 1 2 .3 .5 .3 .8 .7 1 2 1 2 5 7 .8

Table 2. Values of parameters.

λ μ1 μ2 τ1 τ2 γ1 γ2 ζ1 p ν1 ν2 ε1 ε2 α1 α2 d
2 5 3 1 2 .2 .3 .5 .6 2 3 1 2 3 5 .7

Now for numerical results we assume the following values for parametrs such that the steady state condition
(ρ < 1) can be obtained. These are shown in Table 1.

Now by using above values and (3.27), the steady state condition is ρ = .35λ < 1, so λ < 2.8. By using (3.29)

Lq = .062λ2 − 1.45λ +
.07λ

1 − .35λ
Ψ

where Ψ = 11.52λ2 − 83.14λ + 191.5. The graph of model shown in Figure 1.

Case 2: LQ vis-à-vis θ. In this case we use the values of Table 2.

From (3.27) the steady state condition is ρ =
1.31 + 1.98θ

1 + 3.16θ
< 1 or θ > .26. From (3.29) we have

Lq =
2.5 + .29θ

1 + 3.16θ
+

1.17 + 1.75θ

(1.18θ − .31)(1 + 3.16)
Ψ

where Ψ = 1.29θ + 8.98. The graph of model shown in Figure 2. Unlike the usual queue systems, in this model
when θ increase then Lq decrease, this is because of reneging that customers renege the system in vacation
times. In Table 3 some values of Lq against θ are computed. Lq decrease until θ = .9, then increase slowly until
θ = 1.

Lq vis-à-vis α1 and α2: In this case by using the same distributions and values of Table 4 the steady state
condition is

ρ =
4 + .24α1 + .12α2

1 + .6α1 + .3α2
< 1

or .12α1 + .6α2 > 1. Now from(3.29) we have

Lq =
59.5 − 4.8α1 − .39α2

1 + .6α1 + .3α2
+

585.2 − 52.3α1 − 31.26α2 + 6.27α1α2

(.36α1 + .18α2 − 3)(1 + .6α1 + .3α2)
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Figure 2. LQ vis-à-vis θ.

Figure 3. LQ vis-à-vis α1 and α2.

Table 3. Values of LQ with respect θ.

θ .3 .5 .7 .9 .95 1
LQ 704 182 148 143.013 143.34 144.063

Table 4. Values of parameters.

λ μ1 μ2 τ1 τ2 γ1 γ2 ζ1 θ p ν1 ν2 ε1 ε2 d
2 3 1 1 2 .1 .3 .4 .6 .5 1 2 1 3 .5

Table 5. Values of LQ with respect αi.

α1 9 10 12 13 14 15
α2 2 4 5 7 8 9
Lq 1925 1168 775 952 1033 1154

Figure 3 shows the surface of Lq wth respect α1 and α2. Because of steady state condition, the domain of
Lq is up the line .12α1 + .6α2 = 1, or α1 > 8.3 and α2 > 1.63. Table 5 shows some values of Lq with respect α1

and α2. It seems near α1 = 12, α2 = 5, there is a relative minimum for Lq. Yet untile α2 is near 1.63, Lq takes
minimum values when α1 is near 14.5.
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6. Concluding remarks

In this paper we have studied a batch arrival two phases queueing system with randomly feedback, server’s
vacation with Coxian-2 policy and reneging in each vacation times which generalized classical M/G/1 queue.
Reneging is a usual phenomenon in queueing system with vacation that makes basic variations in effective
measures of system. In systems such as this when the probability of vacation incresing, because of reneging,
the mean size of system become decrease. An application of this model can be found in mobile network where
the messages are in batch form, the service may have many phases such that services may be unaccepted and
customer may repeat the services. Our investigations are concerned with not only queue size distribution but
also waiting time distribution. This model extends the systems in references. A practical generalization for this
system is to consider optional services and k phases of services.
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