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COMPLEXITY ANALYSIS OF INTERIOR POINT METHODS FOR LINEAR
PROGRAMMING BASED ON A PARAMETERIZED KERNEL FUNCTION

MoUSAAB BouAFiAl?, DJAMEL BENTERKI® AND ADNAN YASSINE?

Abstract. Kernel function plays an important role in defining new search directions for primal-
dual interior point algorithm for solving linear optimization problems. This problem has attracted the
attention of many researchers for some years. The goal of their works is to find kernel functions that
improve algorithmic complexity of this problem. In this paper, we introduce a real parameter p > 0
to generalize the kernel function (5) given by Bai et al. in [Y.Q. Bai, M El Ghami and C. Roos,
SIAM J. Optim. 15 (2004) 101-128.], and give the corresponding primal-dual interior point methods
for linear optimization. This parameterized kernel function yields the similar complexity bound given
in [Y.Q. Bai, M El Ghami and C. Roos, SIAM J. Optim. 15 (2004) 101-128.] for both large-update
and small-update methods.
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1. INTRODUCTION

We consider the standard linear optimization
(P) min{c"z : Az = b,z > 0},
where A € R™ " rank(A) = m, b € R™, and ¢ € R", and its dual problem
(D) max{bTy: ATy +s=c,s>0}.

In 1984, Karmarkar [14] proposed a new polynomial-time method for solving linear programs. This method and
its variants that were developed subsequently are now called interior point methods IPMs. For a survey, we
refer to recent books on the subject [22]. The primal-dual interior point algorithm which is the most efficient
for a computational point of view [1]. It is generally agreed that the iteration complexity of the algorithm
is an appropriate measure for its efficiency [10]. At present, the best known theoretical iteration bound for
small-update IPMs is better than the one for large-update IPMs. However, in practice, large-update IPMs
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are much more efficient than small-update IPMs [18,21,22]. Many researchers proposed and analyzed various
primal-dual interior point methods for linear optimization LO based on the logarithmic barrier function. In
particular, Andersen et al. [1], den Hertog [13] and Todd [20] proposed for different logarithmic barrier functions
a primal-dual interior point methods with complexity O (n log %) for large-update methods and O (\/ﬁlog %)
for small-update methods. Peng et al. [16,17] introduced self-regular barrier functions for primal-dual IPMs
for LO and obtained the best complexity result so far O(y/nlognlog2) for large-update primal-dual ITPMs
with some specific self-regular barrier functions. Recently, Bai et al. [2-7], Ghami et al. [10,11] and Cho [§]
proposed new primal-dual IPMs for LO problems based on various kernel functions to improve the iteration
bound for large-update methods from O (n log %) to O (\/ﬁlognlog %) For its part, EL Ghami et al. [9] used
a new kernel function with a trigonometric barrier term and proposed a new primal-dual IPMs and proved

that the iteration bound of large-update methods is O (n% log %) Motivated by the above works, in this paper

we present a primal-dual interior-point algorithm for LO based on the generalization of the kernel function (5)
given by Bai et al. in [5]. This function is defined

P(t)=p <t2 _ 1) Ler(i-1) 7,

2

where the parameter p is assumed to be a positive real number. If p = 1, we obtain the kernel function (5) given
by Bai et al. in [5]. We show that the iteration bounds are O(y/n(logn)?log ) for large-update methods and
O(y/nlog2) for small-update methods.

Without loss of generality, we assume that (P) and (D) satisfy the interior point condition IPC, i.e., there
exist (20,99, s°) such that

Az =b, 20 >0, ATy +s9=¢, s">0 (1.1)
It is well-known that finding an optimal solution of (P) and (D) is equivalent to solve the following system:
Ar =b, x >0,
ATy+s=c¢, 5>0, (1.2)
zs = 0.

The paper is organized as follows. In Section 2, we recall how a given kernel function defines a primal-dual
corresponding IPMs, and we present the generic form of this algorithm. In Section 3, we define a parameterized
kernel function and give its properties which are essential for the complexity analysis. In Section 4, we derive
decrease of the barrier function during an inner iteration result for both large-update and small-update methods.
Finally, concluding remarks are given in Section 5.

We use the following notations throughout the paper. R} and R’ , denote the set of n-dimensional nonneg-
ative vectors and positive vectors respectively. For x, s € R", z,;, and zs denote the smallest component of the
vector z and the vector componentwise product of the vector z and s, respectively. We denotes by X = diag(x)
the n x n diagonal matrix with the components of the vector x € R™ are the diagonal entries. e denotes the
n-dimensional vector of ones. For functions f,g : R}, — R% ., f(z) = O(g(x)) if f(xz) < Cig(x) for some
positive constant Cy and f(z) = O(g(x)) if Cag(z) < f(x) < Csg(x) for some positive constant C and Cs and
finally, ||| denotes the 2-norm of a vector.

2. THE PROTOTYPE ALGORITHM

The basic idea of primal-dual IPMs is to replace the equation of complementarity condition for (P) and (D)
define in (1.2), by the parameterized equation xs = pe, with g > 0. Thus we consider the system

Ar =b, x >0,
ATy+s=r¢c, >0, (2.1)

TS = [e.
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If the IPC is satisfied, then there exists a solution, for each 1 > 0, and this solution is unique. It is denoted as
(x(p),y(u), s(u)), and we call z(u) the p-center of (P) and (y(u), s(u)) the p-center of (D). The set of py-centers
(with g running through all positive real numbers) gives a path, which is called the central path of (P) and (D).
The relevance of the central path for LO was recognized firstly by Sonnevend [19] and Megiddo [15]. If u — 0,
then the limit of the central path exists, and since the limit points satisfy the complementarity condition, the
limit yields optimal solutions for (P) and (D).

From a theoretical point of view, the IPC can be assumed without loss of generality. In fact, we may and
will assume that 20 = s = e. In practice, this can be realized by embedding the given problems (P) and (D)
into a homogeneous self-dual problem which has two additional variables and two additional constraints. For
this and the other properties mentioned above, see [18].

Without loss of generality, we assume that (z(u),y(1), s(u)) is known for some positive p. For example, due
to the above assumption, we assume that for ;4 = 1, z(1) = s(1) = e. We then decrease u to u = (1 — 0)p for
some fixed 6 €]0, 1], and we solve the following Newton system:

AAx =0,
AT Ay + As =0, (2.2)
sAx + xAs = pe — xs.

This system uniquely defines a search direction (Az, Ay, As). By taking a step along the search direction with
the stepsize defined by some line search rules, we construct a new triple (x,y,s). If necessary, we repeat the
procedure until we find iterates that are close to (x(u), y(x), s(p)). Then p is again reduced by the factor 1 — 6,
and we apply Newton’s method targeting the new p-centers, and so on. This process is repeated until p is small
enough, i.e., until nu < ¢; at this stage, we have found an e—optimal solution of problems (P) and (D). The
result of a Newton step with step size « is denoted as

zt =ax+adz, yT =y + ady, sT = s+ ads, (2.3)

where the step size o satisfies (0 < a < 1).
Now, we introduce the scaled vector v and the scaled search directions d, and ds as follows:

v= T d, = viz g _ vds, (2.4)

w’ x s
The system (2.2) can be rewritten as follows:

Ad, =0,
A Ay +d, =0, (2.5)
dy +ds =v ' —w,

where A = %AV‘lX7 V = diag(v), X = diag(z). Note that the right-hand side of the third equation in (2.5)
equals to the negative gradient of the logarithmic barrier function ¥, that is

dy +dy = —VW (v), (2.6)

where the barrier function ¥ : R, — is defined as follows:

n

U (v) =W (2,5 0) = > 1 (v3), (2.7)

i=1

where n is the dimension of the problem (number of variables) and 1 is an univariate function called kernel.
So, each barrier function ¥ is determined by its kernel ¥. And each kernel function gives rise to a primal-dual
interior point algorithm.
2-1
Vi

b () = L= —logu. (2.8)
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1 is called the kernel function of the logarithmic barrier function ¥. In this paper, we introduce a parameter-
ized kernel function, which will be defined in Section 2. Note that the pair (z,s) coincides with the u-center
(x(p), s(w)) if and only if v = e. One can easily verify that the kernel function v as defined by (2.8) is a strictly
convex function which is defined for any ¢t € Ry and which is minimal at ¢ = 1, where as the minimal value
equals 0.

It is clear from the above description that the closeness of (z,s) to (x(u),s(x)) is measured by the value
of ¥ (v), with 7 > 0 as a threshold value. If ¥ (v) < 7, then we start a new outer iteration by performing a
p—update; otherwise we enter an inner iteration by computing the search directions at the current iterates with
respect to the current value of p and apply (2.4) to get new iterates. If necessary, we repeat the procedure until
we find iterates that are in the neighborhood of (x(u), s(i1)). Then u is again reduced by the factor 1 — 6 with
0 < 0 < 1, and we apply Newton’s method targeting the new p-centers, and so on. This process is repeated
until g is small enough, i.e., until np < e. At this stage, we have found an e-approximate solution of LO.

The parameters 7,0 and the step size a should be chosen in so that the algorithm is optimized in the sense
that the number of iterations required by the algorithm is as small as possible. The choice of the so-called barrier
update parameter 6 plays an important role both in theory and in practice of IPMs. Usually, if 6 is a constant
independent of the dimension n of the problem, for instance 6 = %, then we call the algorithm a large-update
(or long-step) method. If 6 depends on the dimension of the problem, such as § = %, then the algorithm is

named a small-update (or short-step) method.

The choice of the step size «, (0 < a < 1) is another crucial issue in the analysis of the algorithm. It has to
be made such that the closeness of the iterates to the current u-center improves by a sufficient amount. In the
theoretical analysis, the step size « is usually given a value that depends on the closeness of the current iterates
to the p-center.

Prototype algorithm for LO

Begin algorithm
A threshold parameter 7 > 0;
an accuracy parameter € > 0;
a fixed barrier update parameter 6,0 < 0 < 1;
begin
r=e;s=e;pu=1,v=e.
while nu > € do
begin (outer iteration)
p=(1-0)u
while ¥ (z,s; 1) > 7 do
begin (inner iteration)
solve the system (2.5) via (2.4) to obtain (Axz, Ay, As);
chose a suitable a step size «;

r=x+ alx;
y =y +ady;
s = s+ ads;
v = xs .

77

end (inner iteration)
end (outer iteration)
End algorithm.

FIGURE 1. Algorithm.
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3. THE PARAMETERIZED KERNEL FUNCTION AND ITS PROPERTIES

In this section, we present a parameterized Kernel function and give its properties which are essential to our
complexity analysis.

We call univariate function ¢ : Ry — R4 a Kernel function if 1 is twice differentiable and satisfies the
following conditions:

¥'(1) =4(1) =0,
'(t) > 0,
Jim o (8) = lim 1) (t) = +oo. (3.1)

Now, we recall that our parameterized univariate function v is defined by:

v (t) =p (” ) e, (32)

where, the parameter p is assumed to be a positive real number. For this purpose, we give the first three
derivatives with respect to t as follows:

D opi_
V'(t) = pt — t—er(" Y,

2 2
W (1) =p+ (—p + p—) P,

13 t4
6 6 2 3
W () = — (t—f + fg + lt’—ﬁ) (31 (3.3)
Obviously, ¥ is a Kernel function and
(1) > p. (3.4)

In this paper, the barrier function ¥ is defined by the parameterized kernel function, then (2.6) becomes
dy +ds ==V (v), (3.5)

where

v (v) = 27/’ (vi), (3.6)
i=1
1) is defined in (3.2). Hence, the new search direction (Ax, Ay, As) is obtained by solving the following modified
Newton system:
AAzx =0,
AT Ay 4+ As =0,
sAx + xAs = —pwVY¥ (v). (3.7)

Note that d, and ds are orthogonal because vector d, belongs to null space and vector ds to the row space of
the matrix A.
Since d,, and dg are orthogonal, we have

v = o(p)

dy =ds =0<= V¥ (v)=0<=v=ec<= V¥ (v) =0
s = s(p).
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We use ¥ as the proximity function to measure the distance between the current iterate and the p-center for

given p > 0. We also define the norm-based proximity measure, d : R, — R, as follows:
5(v) = 3 V¥ ()] = 5 [ldz + ds]]-
Lemma 3.1. For i, we have the following results.

(i) 9 is exponentially convex for all t > 0; that is

U (VAE) < 3 (6 (0) + 9 ().
(il) 9" is monotonically decreasing for all t > 0.
(iii) " (¢) — ¢’ (t) >0 for all t > 0.
(iv) @" @)y (Bt) — By ()" (Bt) >0, t>1, F> 1.
Proof. For (i), using (3.3), we have
t" (t) + ' (t) = 2pt + (t% + ]Z—j) P10 > 0 for all ¢ > 0,

and by Lemma 2.1.2 in [17], we have the result.
For (ii), using (3.3), we have ¢"'(¢) < 0, so we have the result.
For (iii), using (3.3), we have

3 2
t" (t) — g (t) = (t_f + %) p(5-1) > 0 for all £ > 0.

For (iv), using Lemma 2.4 in [5], (ii) and (iii), we have the result. This completes the proof.

Lemma 3.2. For ¢, we have

p 2 1 / 2
5 (t=1) Sd)(t)S%W(tﬂ» t>0
w(t)<p2—;3p(t—1)2, t>1

Proof. For (3.9), using (3.1) and (3.4), we have

w@%:j]wwwdmx>/]nMM=§@—n2
Y(t) = /t j V" (y) dyda
<%jjwww%m@m

[ @ @)

1

1
p
L
:5/wumw@>

1

= [ ).

2p

(3.8)

(3.9)

(3.10)
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For (3.10), since ¢(1) = ¢/(1) = 0, ¥""(t) < 0, ¥" (1) = p? + 3p, and by using Taylor’s theorem, we have

V(0 = )+ (1) (= 1)+ 58" (1) (6= 1)+ 50" € (€~ 1)
= S0 () (- 1P+ 207 (€ (- 1)
< 30 () (- 1)?
_szQFSp (t—1)°

for some &, 1 < ¢ <t. This completes the proof.

Let ¢ : [0,400[ — [1,400[ be the inverse function of ¢ for ¢ > 1 and p : [0, +o0] —

function of Sty for all ¢ € ]0,1]. Then we have the following lemma.

Lemma 3.3. For i, we have

2 2
144/ 5——5s5<o0(s)<14+4/-5, s2>0,
V p?+3p Sels)< Vp

1
p(z)> ——, =z2>0.

%z—kl

]0,1] be the inverse

(3.11)

(3.12)

Proof. For (3.11),let s=1(t), t > 1, i.e., o(s) =t, t > 1. By the definition of ¢ (¢), we have

s:§t2+ep(%*1)—(1+g>, p > 0.

By (3.4) and ¢ > 1, we have

t x t =
P (t)>p e 1/ / ¥ (y) dydz > 1/ 1/ pdyda

<:>w(t)>g(t—1)2

=>s>g(t—1)2

2
t=o0(s)<1+44/-s
p

By (3.10), we have s =9 (t) < B’ +3p (t—1)% so

2
t=o0(s)>14, 2
=0(s ————5"
ew = p? +3p

which implies that
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For (3.12), let z = S/ (t), t €]0,1]. By the definition of p: p(z) =t, t €]0,1], we have e?(:=1) > 1. By the

definition of v (t), we have

NI" oIS

Y

which implies that

This completes the proof.

O

Let ¢y (t) = t%ep(%*l), p >0, for all t €]0,1] and p : [0, +00[—]0, 1] be the inverse function of v. Then, we

have the following lemma.

Lemma 3.4. For 1y, we have

1
, 220

p(z) >

E—
1+ log (%)p
p(z) 2 p(p+2z), =z2>0.

Proof. For (3.13), let z =4y (t) = t%ep(%_l), p >0, for all t €]0,1].
We have

2
ep(%—l) — t_z < f’

p D
which implies that

1

t=p(z)> ———, 22>0.
1+ log (%) !
For (3.14), we have
-1 -1
s= S ()= (- (1), 2 20,

which implies that
¥y (t) = pt + 22

since t < 1, we have
Yy (t) <p+22

and since p is monotone decreasing with respect to z > p, we have

t=p(z) 2pp+22).

This completes the proof.

(3.13)

(3.14)
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Lemma 3.5. Let ¢: [0, +oo[— [1,+o0[ be the inverse function of ¥ for t > 1. Then, we have

¥ (Bv) < ny (ﬂ@ <¥)> , VER4,, B>1

Proof. Using Lemma 3.1(iv), and Theorem 3.2 in [5], we can get the result. This completes the proof. O
Lemma 3.6. Let 0 <0 <1, vy = \/%Te’ If ¥ (v) <t then, we have

o< 58 o )

> 1 and Q(W(v)) > 1, we get 2

n

—~
~—

. 1
Proof. Since 715
By (3.10), with

p~+ 3p

b (t) < (t—l)z, t>1,

m, (3.11) and ¥ (v) , we have

i< (= ( ))

ot (e () )

Using Lemma 3.5 with § =

IA

Denote

2
() = % (9f+ \/T> =L(n.0,7), (3.15)

then, (¥), is an upper bound for ¥ (v, ) during the process of the algorithm.

4. DECREASE OF THE BARRIER FUNCTION DURING AN INNER ITERATION

In this section, we compute a default, step size o and the resulting decrease of the barrier function. After a
damped step we have

T =z 4 adz;

Yy =y+ady;
T = s+ aAds.
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Using (2.4), we have

So, we have
xtst

1

= /(v + ad,) (v+ ad,).

Define, for a > 0,

flo) =¥ (vy) =¥ (v).
Then f(a) is the difference of proximities between a new iterate and a current iterate for fixed p. By
Lemma 3.1(i), we have

(¥ (v+ ady) + ¥ (v + ady)) .

DN | =

V(vy) =V <\/(v +ady) (v + ads)> <
Therefore, f (o) < f1(a), where
Fi(@) = 5 (7 (0 + ade) + 7 (v + ad)) ~ ¥ (0). (4.1)
Obviously, f(0) = f1(0) = 0. Taking the first two derivatives of f; (o) with respect to «, we have
1

W (i + ady,) do, + 3 (v + 0dy,) dyg) |

fila) = 5
i=1

1 n
V@) = 50 (U (vt ade) &2, + 0" (v + ady) &)
i=1

Using (3.5) and (3.8), we have

1 1
f1(0) = 5V ()" (dy +dy) = —5 Vv (v)' V& (v) = —26(v)>.
For convenience, we denote

vy =min (v), 6§ =0(v), ¥ =¥ (v).

Lemma 4.1. Let §(v) be as defined in (3.8). Then, we have

o(v) > 5!?(11) = §y7
Proof. Using (3.9), we have
V)= Y0 () £ 3o (0 () = o [V W = 5 5P,
i=1 i=1
S0)
5(v) > gu'/(v) - gw

This completes the proof. O
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Remark 4.2. Throughout the paper, we assume that 7 > 1. Using Lemma 4.1 and the assumption that
¥ (v) > 7, we have

From Lemmas 4.1-4.4 in [5], we have the following Lemmas 4.3-4.6.
Lemma 4.3. Let fi(a) be as defined in (3.14) and §(v) be as defined in (3.8). Then, we have
7 (@) < 262" (Umin — 2006) .
Lemma 4.4. If the step size « satisfies the inequality
V' (Umin) = ¥’ (Umin — 200) < 20, (4.2)

then, we have

fi (@) <0.
Lemma 4.5. let p : [0, +00[—]0,1] be the inverse function of St for all t €]0,1]. Then, the largest step size
& satisfying (4.2) is given by

&= 5 (0 (6) ~ p (20))

Lemma 4.6. Let a be as defined in Lemma 4.5. Then

- 1
Q> ————

P (p (20))

Lemma 4.7. Let p and a be as defined in Lemma 4.6. If
U=v@)>T12>1,

then we have
1

p+[2+p) (p+4) /20 {1+10g(1+% gy'/);r

a >

Proof. Using Lemma 4.6, the definition of 4" (¢) and (3.14), we have

_ 1
@) P r2@)

By Lemma 4.1, we have § > /LW, and of the increasing functions " (¢) and p (§), we have
2

62\/27'/@0(25)20(2\/7@’)
¢>W%p@&>s¢W(p(2¢§;))

1 1
V)~V (p VED)

N3
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Then

a >

m
w"( (\/_))

Rar (p+2(2 57)))
Now putting t = p (p—|—2(2 %!P)):B(p—&—éhﬁ )thenweobtaintgland

a >

1 1 1
>

Z o BB @) -t BB @) - p D Eh @)

‘We have also

IN
—_
+
5}
O]
VRS
i)
+
’U"’;
&
~_—
5

and

Finally we get

joy}
Y

112
p+(2+p) (p+4/59) {1+log(1—|—% gu'/)]

1

p+[(2+p)(p+4) /3] [1—|—log(1—|—% gw)%r

Y

This completes the proof

Denoting
1

p+[2+p) (p+4)/5¥] [1—|—log(1—|—% gw)ir

Qu

o becomes a default step size and that o <a
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Lemma 4.8 (4.5 in [5]). If the step size a satisfies o < &, then
f(a) < —ad?.

Remark 4.9. The decrease of the barrier function ¥ depends of the sign of the function f. In fact, in Lemma 4.8,
we have f(a) < 0 for some a and in Lemma 4.11, we obtain the total number of inner iteration K which
guaranteed ¥ (v) < 7.

Lemma 4.10. Let & be the default step size as defined in (4.3) and let
(&D)o >V (v)>1
Then

f (E) —V5 1)l - (4.4)
[\/2p+ C+p) (0 +9)] {l—l-log (1+4 \/g—)]
Proof. Using Lemma 4.8 (4.5 in [5]) with a = a and (4.3), we have

(5) — a6

52
p+[(2+p)(p+4)\/%[1+log(l+% glp)iy

By Lemma 4.1, we have § > \/g_LT/, and \/g_w > \/g SO
1(E)<- V3’ .
\/5_&17{\/%]3+(2+p)(p+ )] {1+log(1+4\/_)p]

f

[\/>p+ 2+ p) p—|—4} {1—l—log 144 \/g—)l]

This completes the proof. O

N
S

=

/2 + 2+ p) 0+ )] [l+log(1+§ )

< —

After the update of u to (1 — 6) u, we have

W (vy) < % (0\/_+ \/T>2 = L(n,0,7).

We need to count how many inner iterations are required to return to the situation where ¥ (v) < 7. We denote
the value of ¥ (v) after the 1 update as (¥),; the subsequent values in the same outer iteration are denoted as
(W), k=1,2,..., K, where K denotes the total number of inner iterations in the outer iteration. The decrease
in each inner iteration is given by (4.4). In [5], we can find the appropriate values of x and v € ]0, 1]:

P

2

[\/>p+ 2+p) (p+4)] [1+log(1+ VE@),)

1
with v = =
5 ithy =3

=
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Lemma 4.11. Let K be the total number of inner iterations in the outer iteration. Then we have

Tl

4P +2v2(2+p) (p+4) < 4 Ip > 1
K < 14+log(1+—4/2 (W )2
v g(1+ 5 /5 @) | ()
Proof. By Lemma 1.3.2 in [16], we have

2l

K < 0]

Ry

AP+ 2VE@ 4 p) (p+4) 2l
VP+2V2(2+p)(p+ < 4 Ip >P 1
= l14+log(1+—4/= (¥ )2
v g(15 /5 @) | ()
This completes the proof. O

Theorem 4.12. Let an LO problem be given, let (¥), be as defined in (3.15) and let 7 > 1. Then, the total
number of iterations to have an approximate solution with nu < € is bounded by

4/p+2v2(2+p) (p+4)
\/]_)

Proof. Recall that (¥), is the upper bound according to (3.15). The number of outer iterations is bounded above

4 [p »
1+1 1+ —y/5 W@
+og(+p 2()0)

by lOgQ% (see [18], Lem. II1.17, page 116). Through multiplying the number of outer iterations by the number of

inner iterations, we get an upper bound for the total number of iterations, namely,

4/P+2V2(2+p) (p+4)
VD

This completes the proof. O

4 Jp »
1+1 1+ —4/5 W
+og(+p 2()0)

For large-update methods with 7 = O (n) and 6 = © (1), we distinguish the two cases:
The first case if p € [1, 400, we get for large-update methods (¥), = O (pzn) and O (\/n_p5(logpn)2 log %)
iterations.
The second case if p €]0, 1], we get for large-update methods (¥)y = O(n) and O (\/;Is(log %)2 log %) iterations.
For small-update methods, we have 7 = O(1) and 6 = @(ﬁ), we distinguish the two cases:
The first case if p € [1, +0o[, we get for small-update methods (¥)y = O(p?) and O(\/n_p510g 2) iterations.
The second case if p €]0, 1], we get for small-update methods (¥); = O(1) and O(\/pzslog ) iterations.

5. CONCLUDING REMARKS

In this paper, we have analyzed large-update and small-update versions of the primal-dual interior point
algorithm described in Figure 1 that are based on the parameterized kernel function (3.2). The proposed
function is not logarithmic and not self-regular. We proved that the iteration bound of a large-update interior
point method based on the kernel function considered in this paper is O(y/n(logn)?log 2) and for small-update
methods, we obtain the best know iteration bound, namely O(y/nlog 2), just take p = ©(1).
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