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EXPLORING THE DISJUNCTIVE RANK OF SOME FACET-INDUCING
INEQUALITIES OF THE ACYCLIC COLORING POLYTOPE
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Abstract. In a previous work we presented six facet-inducing families of valid inequalities for the
polytope associated to an integer programming formulation of the acyclic coloring problem. In this
work we study their disjunctive rank, as defined by [E. Balas, S. Ceria and G. Cornuéjols, Math.
Program. 58 (1993) 295–324]. We also propose to study a dual concept, which we call the disjunctive
anti-rank of a valid inequality.
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1. Introduction

A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive
distinct colors whenever they are adjacent. An acyclic coloring of a graph G is a coloring such that no cycle
of G receives exactly two colors, i.e., such that the subgraph of G induced by any two color classes is acyclic.
The acyclic chromatic number χA(G) of a graph G is the minimum number of colors in any such coloring of G.
Given a graph G, the acyclic coloring problem consists in finding χA(G), and this problem has been shown to
be NP-hard [12].

The acyclic coloring problem arises in the context of matrix partitioning for the estimation of the Hessian
matrix associated to numerical optimization problems [13,15], although it was introduced by Grünbaum in [18]
in a different context. Many previous research efforts on this problem consisted in finding bounds on χA(G) for
particular classes of graphs [2, 6–8, 11, 14]. Efficient heuristic algorithms for the acyclic coloring problem were
developed in [16, 17]. However, not too many approaches in order to solve this problem in practice exist.

These considerations and the interest of this problem as a combinatorial model, motivate us to approach
this problem from the perspective of integer linear programming. We presented in a previous work [10] an
integer programming model for the acyclic coloring problem, based on existing formulations for the classical
vertex coloring problem. We studied the structure of the polyhedron associated with this formulation with the
objective of finding valid inequalities that can contribute to an algorithm based on cutting-plane methods. In
particular, we introduced six families of facet-inducing inequalities.

Lift-and-project methods provide a systematic way to generate a sequence of convex relaxations of a polytope,
converging to the convex hull of the feasible solutions. These methods usually start with a linear relaxation, and
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construct a sequence of polytopes – each included in the previous one – that ends with the convex hull. Many of
these methods use higher dimensional formulations during the construction of this sequence of polytopes, because
these formulations sometimes allow compact representations of exponentially many facets. Many lift-and-project
operators have been proposed, the most prominent being the Balas–Ceria–Cornuéjols operator [5], the Sherali-
Adams operator [27], the Lovász–Schriver operator [23], and the Lasserre operator [19]. For a thorough analysis
of these procedures, we refer the reader to [4].

A concept derived from the existence of such operators is the rank of a valid inequality, defined as the
minimum number of applications of the operator needed to get a polytope for which the inequality is valid
(this concept is well defined since the last polytope in the sequence is the convex hull of feasible solutions, so
it satisfies the valid inequality). This value has been proposed as a measure of theoretical interest of a valid
inequality, in contrast to computational measurements assesing the contribution of the inequality within cutting
plane environments.

In this work we are interested in the rank of the families of valid inequalities presented in [10]. In particular,
we study the rank associated to the Balas–Ceria–Cornuéjols (BCC) operator, usually called the disjunctive
rank. We propose to also study a dual concept, which we call the disjunctive anti-rank of a valid inequality,
defined as the maximum number of applications of the BCC operator ensuring a polytope that satisfies the
inequality. In [10] a preliminary branch-and-cut procedure was implemented, experimentally showing that two
of the families of valid inequalities considered in this work allowed to achieve the best perfomance. An additional
motivation for the present work is to verify whether these computational results correlate with the theoretical
strength of these inequalities, as measured by their disjunctive rank and anti-rank. Previous analyses of the
disjunctive rank of valid inequalities for particular problems can be found in [1, 22, 25], and further studies of
lift-and-project applications to particular problems are carried out in [3, 20, 21, 24, 26], among others.

This paper is organized as follows. In Section 2 we recall the definition of the BCC operator and the disjunctive
rank of a valid inequality, and introduce the definition of the anti-rank of a valid inequality. In Section 3 we
introduce the integer linear programming model for the acyclic coloring problem and give some definitions. In
Section 4 we study the disjunctive rank and anti-rank of six families of facet-inducing inequalities. Finally, in
Section 5 we provide some concluding remarks and directions for future work. A preliminary version of these
results appeared without proofs in the conference paper [9].

2. The BCC operator

We now formally define the BCC operator introduced by Balas et al. [5]. Let P = conv{x ∈ {0, 1}n : Ax ≤ b}
be the convex hull of the integer points within L = {x ∈ [0, 1]n : Ax ≤ b}. The BCC operator takes the polytope
L and a variable xi for i ∈ {1, . . . , n} and generates a new polytope Pxi(L) ⊆ L, in the following way:

(1) Multiply the system Ax ≤ b by xi and 1− xi, getting the systems xi(b−Ax) ≥ 0 and (1− xi)(b−Ax) ≥ 0.
(2) Identify xi := x2

i and yk := xixk for k �= i, thus getting a lifted polytope Li ⊆ R2n−1.
(3) Project Li back to the space of the original x-variables, and call Pxi(L) the resulting polytope.

We refer to the procedure applied to the variable xi as BCCxi . We can now repeat the procedure with some other
variable xj , for j �= i, thus getting the polytope Pxj (Pxi(L)). It can be seen that the order of the lifted variables
does not change the resulting polytope [5], i.e., Pxj (Pxi(L)) = Pxi(Pxj (L)), so we simply denote this polytope
by PA(L), where A = {xi, xj}. If A ⊂ A′ then PA′(L) ⊆ PA(L) and, crucially, PV(L) = P for V = {x1, . . . , xn}.

Figure 1 provides an example for the linear relaxation L = {x ∈ R3
+ : x1 + x2 + x3 ≤ 1 + ε} for ε ∈ (0, 1),

hence the convex hull of the integer solutions is P = {x ∈ R3
+ : x1 + x2 + x3 ≤ 1}. Starting from L, each path

generates a sequence of polytopes ending at P after 3 steps. Consider the inequality x1 ≤ 1, which is valid for
P (although not for L). The polytopes marked with (*) in the figure are those satisfying x1 ≤ 1. For every path
from L to P , at some point the inequality x1 ≤ 1 is satisfied, and the disjunctive rank is the minimum height
k such that some polytope at height k satisfies the inequality.
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Figure 1. The sketch shows the polyhedra obtained after successively applying the BCC
operator from the linear relaxation L = {x ∈ R3

+ : x1 +x2 +x3 ≤ 1+ε}. The polytopes marked
with (*) satisfy the valid inequality x1 ≤ 1. One polytope in the first level (i.e., obtained
by exactly one application of the BCC operator) safisfies the inequality x1 ≤ 1, hence this
inequality has disjunctive rank 1. All polytopes in the third level satisfy x1 ≤ 1 whereas there
is a polytope in the second level not satisfying this inequality, hence x1 ≤ 1 has disjunctive
anti-rank 2.

Definition 2.1. [5] Let πx ≤ π0 be a valid inequality for P . The inequality πx ≤ π0 has disjunctive rank k if
and only if there exists a set A of variables such that |A| = k and πx ≤ π0 is valid for PA(L), and πx ≤ π0 is
not valid for PB(L) for any set B of variables with |B| = k − 1.

The disjunctive rank is a theoretical measure associated with a valid inequality, given by the minimum number
of applications of the BCC operator [5] needed to obtain the inequality. Note that if the disjunctive rank of a
valid inequality for P is 0 then it is also valid for the linear relaxation L. In this work we propose to also study
the maximum number of such applications, which we call the disjunctive anti-rank of a valid inequality and is,
in some sense, the dual concept of the disjunctive rank. In Figure 1, the disjunctive rank corresponds to the
maximum height t such that there exists some polytope at height t not satisfying the valid inequality.

Definition 2.2. Let πx ≤ π0 be a valid inequality for P with nonzero disjunctive rank. The inequality πx ≤ π0

has disjunctive anti-rank t if and only if there exists a set B of variables with |B| = t such that πx ≤ π0 is not
valid for PB(L), and πx ≤ π0 is valid for PA(L) for any set A of variables with |A| = t + 1.

The disjunctive rank of a valid inequality is less than or equal to the anti-rank. Therefore if the disjunctive
anti-rank of a valid inequality is 0 then the rank is also 0. Moreover, if the disjunctive rank is 0, then the linear
relaxation satisfies the inequality and the anti-rank is 0 too. The disjunctive anti-rank is a natural measure
associated with a valid inequality, in this case providing a lower bound on the number of BCC iterations needed
to obtain a polytope PA(L) satisfying the valid inequality without regard of the choice of the set A of variables,
see Figure 1.

The following result provides a useful property of the BCC operator.
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Theorem 2.3. [5] If A is a subset of variables, then PA(L) = conv{x ∈ L : xi ∈ {0, 1} for every xi ∈ A}.

This theorem is the basis for the analysis of the disjunctive rank of valid inequalities, since it provides a
straightforward way of checking whether a (possibly fractional) solution in L belongs to PA(L) or not, for a
given subset A of variables. This direct check enables the approaches followed in the proofs in Section 4.

To the best of our knowledge, the other lift-and-project operators mentioned in the introduction do not admit
a similar result characterizing feasible solutions of the resulting convex bodies, and this makes the exploration of
the corresponding disjunctive ranks a more difficult issue. Lacking such a simple characterization, the strategy
for finding bounds on the disjunctive rank followed in this work might not be applied for these other operators
in a direct way. Due to these facts, we concentrate in this work on the BCC operator as a first approach on the
lift-and-project rank of the known inequalities for the standard formulation of the acyclic coloring problem.

3. Integer programming formulation for acyclic coloring

Let G = (V, E) be a simple connected graph, and denote by T the set of available colors. For v ∈ V and
c ∈ T , we define the assignment variable xvc to be xvc = 1 if the vertex v is assigned the color c, and xvc = 0
otherwise. For every c ∈ T we define the color variable wc to be wc = 1 if some vertex uses the color c, and
wc = 0 otherwise.

Denote by C(G) ⊆ 2V the set of all cycles of G. The acyclic coloring problem can be formulated in terms of
the assignment variables and the color variables in the following way:

min
∑
c∈T

wc

s.t.
∑
c∈T

xvc = 1 ∀v ∈ V, (3.1)

xuc + xvc ≤ wc ∀uv ∈ E ∀c ∈ T , (3.2)∑
v∈A

xvc + xvc′ ≤ |A| − 1 ∀A ∈ C(G), ∀c, c′ ∈ T , (3.3)

xvc ∈ {0, 1} ∀v ∈ V, c ∈ T , (3.4)
wc ∈ {0, 1} ∀c ∈ T . (3.5)

Let p = |V ||T |+ |T |. We define P (G, T ) ⊂ Rp to be the convex hull of the vectors (x, w) ∈ {0, 1}p satisfying
constraints (1)–(5). Let L(G, T ) ⊂ [0, 1]p be the linear relaxation of P (G, T ), i.e., the points (x, w) ∈ [0, 1]p

satisfying the constraints (1)–(3). When the graph G and the color set T are clear from the context, we
denote the linear relaxation L(G, T ) by L. Finally, let V be the set of variables from models (1)–(5), i.e.,
V = {xvj : v ∈ V, c ∈ T } ∪ {wc : c ∈ T }.

In the following lemma we collect some straightforward facts that will arise frequently in Section 4.

Lemma 3.1. Let (x, w) ∈ L(G, T ), let C ⊆ V be an even cycle, and let c ∈ T .

(i) The point (x,w) satisfies the inequality
∑

v∈C xvc ≤ |C|
2 wc.

(ii) If at most |C| − 1 variables from {xvd}v∈C,d∈T are allowed to take fractional values, then there exist at
most |C|/2 − 1 variables from {xvc}v∈C at fractional values.

Proof. For part (i), since (x, w) ∈ L(G, T ) then (3.2) implies xuc + xvc ≤ wc for every edge uv in the cycle
(considered as an edge set). By summing these inequalities over all the edges from the cycle, part (i) follows.

Now for part (ii). If at least |C|/2 variables in {xvc}v∈C were fractional then by (3.1), there would exist at
least |C|/2 variables in {xvd}v∈C,d∈T \{c} that are fractional. This would therefore lead to a number of fractional
variables in {xvd}v∈C,d∈T being at least |T |. �
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v1 v2 v3 v4 .... v|C| wc

c0
1
2

1
2

1
2

1
2

.... 1
2

1

c1
1
2

0 1
2

0 .... 0 1
2

c2 0 1
2

0 1
2

.... 1
2

1

c3 0 0 0 0 .... 0 0
...

...
...

...
... ....

...
...

c|T | 0 0 0 0 .... 0 0

Figure 2. Construction for the proof of Theorem 4.2. The values in boldface correspond to
the variables in V\B.

4. Disjunctive rank and anti-rank of known inequalities

In this section we study the disjunctive rank and anti-rank of the families of facet-inducing inequalities
presented in [10] for the case where the graph G is a cycle. We assume throughout this section that G = C is
an even cycle, and all the inequalities presented in this section involve such a cycle. Under technical hypotheses,
these inequalities are facet-defining for P (G, T ) for any graph G [10]. For v ∈ C, we define Cv ⊂ C to be the
set of all vertices at even distance in C to the vertex v. We define C = {v1, v2, . . . , v|C|} to be the set of vertices
where vivi+1 ∈ E for 1 ≤ i ≤ |C| − 1 and v|C|v1 ∈ E.

4.1. The two-color inequalities

We first study the so-called two-color inequalities, which was the best-performing familiy of valid inequalities
in the branch-and-cut procedure reported in [10].

Definition 4.1. Let c0, c1 ∈ T with c0 �= c1. The two-color inequality associated with C, c0, and c1 is

∑
v∈C

(xvc0 + xvc1) ≤ 1 +
(
|C|
2

− 1
)

wc0 +
(
|C|
2

− 1
)

wc1 . (4.1)

In order to efficiently describe the constructions of feasible solutions given in this section, we introduce the
graphical representation depicted in Figure 2. This graphical representation specifies the value that each variable
takes in a solution. For example, the value 0 in column v2 and row c1 in Figure 2 asserts that the variable xv2c1

takes value 0. The last column represents the values of the w-variables.

Theorem 4.2. The disjunctive rank of the two-color inequality (4.1) is 2.

Proof. We shall first prove that the disjunctive rank of (4.1) is less than or equal to 2. Let A ⊆ V be the set
{wc0 , wc1}. We must prove that (4.1) is valid for PA(L). Let z = (x, w) be a (possibly fractional) solution such
that wc0 , wc1 ∈ {0, 1} (so Thm. 2.3 implies z ∈ PA(L)) and consider the following cases:

(1) If the variables in A take value 1 in z, i.e., wc0 = wc1 = 1, then the left-hand side (LHS) of (4.1) is less
than or equal to |C| − 1, as z satisfies (3.3), with A = C, c = c0 and c′ = c1. Note that the right-hand side
(RHS) of inequality (4.1) equals |C| − 1 in this case.

(2) If exactly one variable in A takes value 1 in z, say, wc0 = 1 and wc1 = 0, then the LHS of (4.1) is less than
or equal to |C|

2 by Lemma 3.1(i). Since the RHS of inequality (4.1) equals |C|
2 , then z satisfies (4.1).

(3) If both variables in A take value 0 in z, i.e., wc0 = wc1 = 0, then by (3.2), the LHS of (4.1) takes value 0.
The RHS of inequality (4.1) equals value 1 hence it is satisfied by z.
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Since in the three cases the two-color inequality is satisfied and z is an arbitrary solution of PA(L), we
conclude that (4.1) is valid for PA(L). Then, the disjunctive rank of (4.1) is less than or equal to 2.

We now prove that the disjunctive rank of (4.1) is greater than or equal to 2. Let B ⊆ V be an arbitrary
set of variables with cardinality 1. In order to prove that the two-color inequality is not valid for PB(L), we
show a solution z ∈ PB(L) that violates (4.1). To this end, consider the solution depicted in Figure 2, which
violates (4.1) but satisfies (3.1)-(3.3), and consider the following cases:

• If B = {wci} for some i �= 1, then the solution in Figure 2 belongs to PB(L) by Theorem 2.3 and violates (4.1).
• If B = {wc1}, then the solution obtained from Figure 2 by swapping the colors c0 and c1 violates (4.1) and

belongs to PB(L) by Theorem 2.3.
• If B = {xvc1}, then assume w.l.o.g. that v = v2. Again, the solution specified by Figure 2 violates (4.1).
• If B = {xvc0}, again assume w.l.o.g. that v = v2. The solution obtained from Figure 2 by swapping the

colors c0 and c1 violates (4.1).
• If B = {xvc} with c /∈ {c0, c1}, then assume w.l.o.g. that v = v1. The solution obtained from Figure 2 by

swapping the colors c and c2 violates (4.1).

We conclude that for any singleton B the inequality (4.1) is not valid for PB(L), hence the disjunctive rank
of (4.1) equals 2. �

In order to establish the disjunctive anti-rank of (4.1) we first prove the following lemma.

Lemma 4.3. If z = (x, w) ∈ L violates the two-color inequality, then 1 < wc0 + wc1 < 2.

Proof. Let z = (x, w) ∈ L be a solution violating (4.1). Then,

1 +
(
|C|
2

− 1
)

(wc0 + wc1) <
∑
v∈C

(xvc0 + xvc1) .

By Lemma 3.1(i), we have
∑

v∈C xvc0 ≤ |C|
2 wc0 and

∑
v∈C xvc1 ≤ |C|

2 wc1 . Therefore,
∑

v∈C (xvc0 + xvc1) ≤
|C|
2 (wc0 + wc1) and

1 +
(
|C|
2

− 1
)

(wc0 + wc1) <
|C|
2

(wc0 + wc1).

So we conclude 1 < wc0 + wc1 .
On the other hand, the constraint (3.3) asserts

∑
v∈C (xvc0 + xvc1) ≤ |C| − 1. Then,

1 +
(
|C|
2

− 1
)

(wc0 + wc1) < |C| − 1.

So we conclude wc0 + wc1 < 2. �

We can now prove the following result. Recall that p = |V ||T | + |T |.

Theorem 4.4. The disjunctive anti-rank of the two-color inequality (4.1) is p − (|C| + 1).

Proof. We first prove that for any set A ⊆ V with p − |C| variables, the inequality (4.1) is valid for PA(L). Let
(x, w) ∈ PA(L). If wc0 + wc1 ≤ 1 or wc0 + wc1 = 2 then Lemma 4.3 implies that (4.1) is satisfied, so assume
1 < wc0 + wc1 < 2 (hence wc0 > 0 and wc1 > 0) and consider the following cases:

(1) If wc0 = 1 then 0 < wc1 < 1, hence none of the variables in {xvc1}v∈C can take value 1. Since |V \
(A ∪ {wc1})| = |C| − 1, by Lemma 3.1(ii) at most |C|

2 − 1 variables from {xvc1}v∈V can take fractional
values and the remaining ones take value 0. The model constraint (3.2) implies xvc1 ≤ wc1 , so

∑
v∈C xvc1 ≤(

|C|
2 − 1

)
wc1 . As

∑
v∈C xvc0 ≤ |C|

2 , the LHS of (4.1) is less than or equal to
(

|C|
2 − 1

)
wc1 + |C|

2 . Note that
the RHS of inequality (4.1) equals this value, so (4.1) is satisfied. A symmetrical argument settles the case
wc1 = 1.
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v1 v2 v3 v4 .... v|C| wc

c0 0 1 0 1 .... 1 1

c1
1
2

0 1
2

0 .... 0 1
2

c2
1
2

0 1
2

0 .... 0 1

c3 0 0 0 0 .... 0 0
...

...
...

...
... ....

...
...

c|T | 0 0 0 0 .... 0 0

Figure 3. The values in boldface correspond to the variables in V\B.

(2) If 0 < wc0 < 1, then we are left with the case 0 < wc1 < 1. Therefore, at most |C| − 2 variables
different from wc0 and wc1 can take fractional values. Again, by Lemma 3.1(ii) at most |C|

2 − 1 variables
from {xvc0}v∈C (respectively {xvc1}v∈C) can take fractional values and the remaining ones take value 0,
implying that the LHS of (4.1) is less than or equal to

(
|C|
2 − 1

)
(wc0 + wc1). Note that the RHS is greater

than this value, so (4.1) is satisfied.

We conclude that the disjunctive anti-rank of (4.1) is less than or equal to p − (|C| + 1).
In order to prove the opposite inequality, let B ⊆ V be the set {xvc : v ∈ C, c ∈ T , c �= c1, c2} ∪ {xvc : v ∈

Cv2 , c = c1, c2} ∪ {wc : c ∈ T , c �= c1}. The cardinality of B is p − (|C| + 1). Let z = (x, w) ∈ PB(L) be the
feasible solution depicted in Figure 3. This solution satisfies the model constraints, violates the inequality (4.1),
and the variables in B take 0-1 values. Then, the anti-rank of (4.1) is greater than or equal to p− (|C|+1), and
the theorem follows. �

4.2. The distinguished colors inequalities

We now introduce the distinguished colors inequalities, which include in their definition an arbitrary subset
of colors, and study their disjunctive rank and anti-rank.

Definition 4.5. Let D ⊂ T with D �= ∅. The distinguished colors inequality associated with C and D is∑
v∈C

∑
c∈D

xvc ≤ |C| − 3 +
∑
c∈D

wc. (4.2)

Note that we need not consider D = ∅, since (4.2) becomes 0 ≤ 1 in this case.

Theorem 4.6. The disjunctive rank of the distinguished colors inequality is

(1) |D| if |D| ≥ 2;
(2) 0 if |D| ≤ 1.

Proof. Consider the following cases.

Case I: |D| = 1. Let D = {d}. The LHS of (4.2) equals
∑

v∈C xvd and by Lemma 3.1(i)
∑

v∈C xvd ≤ |C|
2 wd.

Since |C| ≥ 4 then 2 |C|−3
|C|−2 ≥ 1, hence |C|

2 wd ≤ |C| − 3 + wd. The inequality (4.2) is, therefore, satisfied and has
disjunctive rank 0.

Case II: |D| ≥ 2. We first prove that the disjunctive rank of (4.2) is less than or equal to |D|.
Let A ⊆ V be the set {wc : c ∈ D}. We shall prove that (4.2) is valid for PA(L). Let z = (x, w) ∈ PA(L) be

an arbitrary solution, so by Theorem 2.3 we have wc ∈ {0, 1}, and consider the following cases:

(1) If the number of w-variables in A that take value 1 is greater than or equal to 3, then the RHS of inequal-
ity (4.2) is no less than |C|, hence (4.2) is satisfied.
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vi vi+1 vi+2 vi+3 vi+4 .... vj vj+1 vj+2 vj+3 vj+4 .... v|C| wc

d1 0 1 0 1 0 .... 0 1 0 1 0 .... 1 1

d2
1
2

0 1 0 1 .... 1
2

0 1 0 1 .... 0 1

d3
1
2

0 0 0 0 .... 1
2

0 0 0 0 .... 0 1
2

d4 0 0 0 0 0 .... 0 0 0 0 0 .... 0 0
...

...
...

...
...

... ....
...

...
...

...
... ....

...
...

d|D| 0 0 0 0 0 .... 0 0 0 0 0 .... 0 0
c1 0 0 0 0 0 .... 0 0 0 0 0 .... 0 0
...

...
...

...
...

... ....
...

...
...

...
... ....

...
...

c|T \D| 0 0 0 0 0 .... 0 0 0 0 0 .... 0 0

Figure 4. Solution for the proof of Theorem 4.6. The values in boldface specify some variables
guaranteed not to belong to B.

(2) If exactly two variables in A take value 1, say wd and wd′ , then the model constraints (3.2) imply that the
LHS of (4.2) is equal to

∑
v∈C(xvd + xvd′), and the RHS of (4.2) equals |C| − 1. Since z satisfies (3.3), the

inequality (4.2) is satisfied.
(3) If exactly one variable in A takes value 1, then by Lemma 3.1(i) the LHS of (4.2) is less than or equal to

|C|
2 . As |C|

2 ≤ |C| − 2 if and only if |C| ≥ 4, the inequality (4.2) is satisfied.
(4) If all the variables in A take value 0, then the LHS is equal to 0 and the inequality (4.2) is satisfied.

Since in the four cases the distinguished colors inequality is satisfied and z is an arbitrary solution of PA(L), we
conclude that (4.2) is a valid inequality for PA(L). Then, the disjunctive rank of (4.2) is less than or equal to |D|.

We now prove that the disjunctive rank of (4.2) is greater than or equal to |D|. Let B ⊆ V be an arbitrary
set of |D| − 1 variables. We must prove that the distinguished colors inequality is not valid for PB(L).

Let D = {d1, . . . , d|D|} and T \ D = {c1, . . . , c|T \D|}. Since |B| = |D| − 1, there exists some color in D, say
d3, such that wd3 �∈ B and xvd3 �∈ B for every v ∈ C (if every d ∈ D had wd ∈ B or xvd ∈ B for some v ∈ C
then we would have at least one variable in B for each color in D, implying |B| ≥ |D|, a contradiction). The
set D = {xvc}v∈C,c∈D\{d3} contains |C|(|D| − 1) variables. Since B contains just |D| − 1 variables, then there
exists a color in D\{d3}, say d2, and two vertices in C located at even distance in C, say vi and vj , such that
xvid2 , xvjd2 �∈ B. The solution depicted in Figure 4 satisfies (3.1)–(3.3), belongs to PB(L) by Theorem 2.3, but
violates the inequality (4.2).

We, therefore, conclude that the disjunctive rank of (4.2) is less than or equal to |D|. �

Theorem 4.7. The disjunctive anti-rank of the distinguished colors inequality is

(1) 0, if |D| ≤ 1;
(2) p − (|C| + 1), if |D| = 2;
(3) p − 5, if |D| ≥ 3.

Proof. Consider the following cases.

Case I: |D| ≤ 1. The disjunctive rank is 0, which implies that the linear relaxation satisfies inequality (4.2).
Hence, the disjunctive anti-rank of (4.2) is also 0.
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Case II: |D| = 2. We first verify that for any set A ⊆ V with p− |C| variables, the inequality (4.2) is valid for
PA(L). Let (x, w) ∈ PA(L) be an arbitrary point, and consider the following cases:

(1) If wd1 , wd2 ∈ Z then we split the analysis into the following cases:
(a) If wd1 = wd2 = 1, then the inequality (4.2) states that

∑
v∈C(xvd1 + xvd2) ≤ |C| − 1. This inequality is

satisfied as it is one of the model constraints (3.3).
(b) If wd1 �= wd2 , say wd1 = 1 and wd2 = 0, then the inequality (4.2) states that

∑
v∈C xvd1 ≤ |C| − 2. This

inequality is satisfied as
∑

v∈C xvd1 ≤ |C|
2 by Lemma 3.1(i).

(c) If wd1 = wd2 = 0, then (4.2) is trivially satisfied.
(2) If wd1 = 0 and 0 < wd2 < 1, then xvd1 = 0 for v ∈ C. Constraints (3.2) imply xud2 + xvd2 ≤ wd2 for

every edge uv in the cycle, and summing over all such edges yields
∑

v∈C xvd2 ≤ wd2 |C|/2. The RHS of
inequality (4.2) equals |C| + wd2 − 2 and, since wd2 |C|/2 ≤ |C| + wd2 − 2, the inequality (4.2) is satisfied.

(3) If wd1 = 1 and 0 < wd2 < 1, then the inequality (4.2) states that
∑

v∈C(xvd1 + xvd2) ≤ |C| − 2 + wd2 .
By contradiction, suppose that

∑
v∈C(xvd1 + xvd2) > |C| − 2 + wd2 for a solution (x, w) ∈ PA(L). Since

|V \ (A ∪ {wd2})| = |C| − 1, Lemma 3.1(ii) implies that at most |C|
2 − 1 variables from {xvd2}v∈C take

fractional values and the remaining ones are 0. As wd1 = 1, then
∑

v∈C(xvd1 +xvd2) ≤
|C|
2 +

(
|C|
2 − 1

)
wd2 .

Hence,

|C|
2

+
(
|C|
2

− 1
)

wd2 > |C| − 2 + wd2 . (4.3)

From (4.3) we obtain that wd2 > 1 if |C| �= 4, and 0 > 0 if |C| = 4; a contradiction, hence (4.2) is satisfied.
(4) If 0 < wd1 , wd2 < 1 (hence wd1 , wd2 /∈ A), Lemma 3.1(ii) ensures that at most |C|

2 − 1 variables from
{xvd1}v∈C (respectively {xvd2}v∈C) can take fractional values. Therefore,

∑
v∈C

(xvd1 + xvd2) ≤
(
|C|
2

− 1
)

(wd1 + wd2).

We now prove that
(
|C|
2

− 1
)

(wd1 + wd2) ≤ |C| − 3 + wd1 + wd2 . (4.4)

If (4.4) does not hold and |C| �= 4, then wd1 + wd2 > 2 |C|−3
|C|−4 ≥ 1, implying wd1 + wd2 > 2, a contradiction.

If (4.4) does not hold and |C| = 4, we get 0 > 1. Thus, (4.4) holds and the inequality (4.2) is satisfied.

We conclude that the disjunctive anti-rank of (4.2) is less than or equal to p − (|C| + 1).
For the converse direction, note that |T \ D| ≥ 1, since otherwise the polytope is empty. Let B ⊆ V be the

set {xvc : v ∈ C, c ∈ T , c �= c0, d2} ∪ {xvc : v ∈ Cv2 , c = c0, d2} ∪ {wc : c ∈ T , c �= d2}. The cardinality
of B is p − (|C| + 1). Let z = (x, w) ∈ PB(L) be the solution depicted in Figure 5, where D = {d1, d2} and
T \ D = {c1, . . . , cn}.

This solution satisfies the model constraints, violates the inequality (4.2) and the variables in B take values
in {0, 1}. Therefore, the disjunctive anti-rank is greater than or equal to p − (|C| + 1).

Case III: |D| ≥ 3. In order to prove that the disjunctive anti-rank is less than or equal to p− 5, we shall verify
that for any set A ⊆ V of p − 4 variables, the inequality (4.2) is valid for PA(L). Consider the following cases:

(1) If
∑

d∈D wd ≥ 3, then the inequality (4.2) is trivially satisfied.
(2) If {wd}d∈D ⊆ A and at most two variables from this set take value 1, say wd1 and wd2 , then the inequal-

ity (4.2) states that
∑

v∈C(xvd1 + xvd2) ≤ |C| − 1, which is equivalent to the model constraint (3.3) and is
therefore satisfied.
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v1 v2 v3 v4 . . . v|C| wc

d1 0 1 0 1 . . . 1 1

d2 1 − 2
|C| 0 1 − 2

|C| 0 . . . 0 1 − 2
|C|

c0
2

|C| 0 2
|C| 0 . . . 0 1

c1 0 0 0 0 . . . 0 0
...

...
...

...
... . . .

...
...

c|T |−2 0 0 0 0 . . . 0 0

Figure 5. The values in boldface correspond to variables guaranteed to belong to V\B.

v1 v2 v3 v4 v5 v6 v7 .... v|C| wc

d1 0 1 0 1 0 1 0 .... 1 1

d2
1
2

0 1
2

0 1 0 1 .... 0 1

d3
1
2

0 1
2

0 0 0 0 .... 0 1
2

d4 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...

d|D|
...

...
...

...
...

...
... ....

...
...

c1

...
...

...
...

...
...

... ....
...

...
...

...
...

...
...

...
...

... ....
...

...
c|T \D| 0 0 0 0 0 0 0 .... 0 0

Figure 6. Solution for the proof of Theorem 4.7. The values in boldface correspond to variables
guaranteed not to belong to B.

(3) If at least one variable from {wd}d∈D is not in A, and adding the facts that at most four variables take
fractional values, that

∑
d∈D wd < 3 and that the model constraint (3.1) must be satisfied, then at most

one vertex has the corresponding xvd-variable with a fractional value and the rest of them take value 0. Let
v be such a vertex. Furthermore, at most two w-variables in A take value 1. Consider the following cases.
(a) Two variables from {wd}d∈D in A, say wd1 and wd2 , take value 1. The LHS is less than or equal to

|C| − 1 +
∑

d∈D
d �=d1,d2

xvd. As
∑

d∈D
d �=d1,d2

xvd ≤
∑

d∈D wd − 2, the inequality (4.2) is satisfied.

(b) Exactly one variable from {wd}d∈D in A, say wd1 , takes value 1. The LHS is less than or equal to
|C|
2 +

∑
d∈D
d �=d1

xvd. As
∑

d∈D
d �=d1

xvd ≤ |C|
2 − 3 +

∑
d∈D wd, the inequality (4.2) is satisfied.

(c) None of the variables from {wd}d∈D in A take value 1. The LHS is equal to
∑

d∈D xvd and this is less
than or equal to the RHS of (4.2). Then the inequality (4.2) is satisfied.

For the converse direction, let B = V \ {xv1d2 , xv1d3 , xv3d2 , xv3d3 , wc3}, which has p − 5 elements. Let z =
(x, w) ∈ PB(L) be the feasible solution depicted in Figure 6. This solution satisfies the model constraints, violates
the inequality (4.2) and the variables in B take values in {0, 1}. Therefore, the disjunctive anti-rank is greater
than or equal to p − 5. We conclude that the disjunctive anti-rank of (4.2) is p − 5 when |D| ≥ 3. �
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4.3. The prominent vertex inequalities

We now turn to the so-called prominent vertex inequalities, whose rank we, unfortunately, were not able to
fully characterize. We first present the (partial) characterization and then discuss the open case. Recall that C
is an even cycle.

Definition 4.8. Let c0, c1 ∈ T and let D ⊂ T \ {c0, c1}. The prominent vertex inequality associated with the
cycle C, the colors c0, c1, and the color set D is

∑
u∈C\{v2}

xuc0 +
∑

u∈Cv2

∑
c∈D∪{c0}

xuc ≤ |C|
2

wc0 +
∑
c∈D

wc +
∑

c∈T \D∪{c0,c1}

∑
u∈Cv1

xuc +
(
|C|
2

− 2
)

. (4.5)

We first study the disjunctive rank of the prominent vertex inequalities. In the following result, the hypothesis
states that the set of colors D is not empty and excludes the case in which |C| = 4 and |D| = 1.

Theorem 4.9. The disjunctive rank of (4.5) is |D| + 1 + � |C|
4 � whenever (I) D �= ∅ and (II) |C| ≥ 6 or

|D| > 1.

Proof. We shall first prove that the disjunctive rank of (4.5) is less than or equal to |D| + 1 + � |C|
4 � whenever

D �= ∅. Let A ⊆ V be the set {wc0} ∪ {wd : d ∈ D} ∪ {xv4k−1c0 : k = 1, . . . , � |C|
4 �}. We must prove that (4.5)

is valid for PA(L). Let z = (x, w) ∈ PA(L) be a (possibly fractional) solution (so Thm. 2.3 implies that all the
variables in A take values in {0, 1}) and consider the following cases:

(1) If the number of w-variables in A that take value 1 in z is greater than or equal to 2, then Lemma 3.1(i) and
constraint (3.1) imply that the LHS of (4.5) is less or equal than |C|

2 wc0 + |C|
2 . Note that the RHS of (4.5)

is greater than or equal to |C|
2 wc0 + |C|

2 , as
∑

c∈D wc ≥ 2.
(2) If the number of w-variables in A that take value 1 in z is less than or equal to 1, then consider the following

cases:
(a) If all the variables in A associated with the color c0 take value 1 in z, then xvc0 = 0 for all v ∈ Cv2 , as

z satisfies (3.2) and wc0 = 1.
(i) If there exists d ∈ D such that wd = 1, then the assumption of Case 2 implies that wd′ = 0 for

every d′ ∈ D. Then, the LHS of (4.5) is equal to
∑

v∈Cv1
xvc0 +

∑
v∈Cv2

xvd, implying

∑
v∈Cv1

xvc0 +
∑

v∈Cv2

xvd ≤
∑
v∈C

(xvc0 + xvd) ≤ |C| − 1,

as z represents an acyclic coloring. As the right-hand-side of (4.5) is greater than or equal to
|C| − 1, the inequality is satisfied.

(ii) If wd = 0 for all d ∈ D, then the LHS of (4.5) is equal to
∑

v∈Cv1
xvc0 , which is less than or equal to

|C|
2 . On the other side, the RHS of (4.5) is greater than or equal to |C|− 2, so the inequality (4.5)

is satisfied.
(b) If there exist xvic0 , xvjc0 ∈ A such that xvic0 = 0 and xvjc0 = 1, then wc0 = 1. Let C′ = C\{v2, vj}.

Since xvjc0 = 0, Lemma 3.1(i) implies that

∑
v∈C\{v2}

xvc0 =
∑
v∈C′

xvc0 ≤
(
|C|
2

− 1
)

wc0 =
(
|C|
2

− 1
)

. (4.6)

Consider the following cases:
(i) If there exists d ∈ D such that wd = 1, then the RHS of (4.5) is greater then or equal to |C| − 1.

By combining (4.6) and the fact that
∑

v∈Cv2
(xvd1 + vvc0) ≤

|C|
2 , we get that the LHS of (4.5) is

less than or equal to |C| − 1. Then, the inequality (4.5) is satisfied.
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v1 v2 v3 v4 v5 v6 v7 · · · v|C| wc

c0 0 1 0 1 0 1 0 .... 1 1

c1 1 0 1
2

0 1
2

0 1 .... 0 1

d1 0 0 1
2

0 1
2

0 0 .... 0 1
2

d2 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...

d|D|
...

...
...

...
...

...
... ....

...
...

t1
...

...
...

...
...

...
... ....

...
...

...
...

...
...

...
...

...
... ....

...
...

t|T \D|−2 0 0 0 0 0 0 0 .... 0 0

Figure 7. Solution for the proof of Theorem 4.9, for i = 3. The variables in boldface do not
belong to B.

(ii) If wd = 0 for all d ∈ D, then the LHS of inequality (4.5) is equal to
∑

v∈C\{v2} xvc0 +
∑

v∈Cv2
vvc0 .

Since xvic0 = 1, then xvi−1c0 = xvi+1c0 = 0, where the subindices are taken modulo n. This implies∑
v∈Cv2

vvc0 ≤ |C|
2 − 2. So, the LHS of (4.5) is less then or equal to |C| − 3. As the RHS of (4.5)

is greater than or equal to this value, the inequality (4.5) is satisfied.
(c) If xvic0 = 0 for all xvic0 ∈ A, then consider the following cases:

(i) If wd = 1 for some d ∈ D and wc0 = 1, then a similar argument as in Case 2(b)(i) shows that (4.5)
is satisfied.

(ii) If wd = 1 for some d ∈ D and wc0 = 0, then wd′ = 0 for every d′ ∈ D, d′ �= d. This, together with
the constraints (3.1), implies

∑
v∈Cv1

∑
c∈T \D∪{c0,c1} xvc = |C|

2 −
∑

v∈Cv1
(xvc1 + xvd), hence we

can rewrite the inequality (4.5) in the following way:
∑

v∈Cv2

xvd +
∑

v∈Cv1

(xvc1 + vvd) ≤ |C| − 1,

and this inequality is satisfied since z represents an acyclic coloring.
(iii) If wd = 0 for every d ∈ D, then (4.5) is trivially satisfied.

Since in all the cases the prominent vertex inequality is satisfied and z is an arbitrary solution of PA(L), we
conclude that (4.5) is valid for PA(L). Then the disjunctive rank of (4.5) is less than or equal to |D|+1+ � |C|

4 �.
We now prove that the disjunctive rank of (4.5) is greater than or equal to |D|+ 1 + � |C|

4 �. Let B ⊆ V be an
arbitrary set of variables with cardinality |D|+ � |C|

4 �. In order to prove that the prominent vertex inequality is
not valid for PB(L), we show a solution z ∈ PB(L) that violates (4.5). To this end, consider the following cases:

(1) If wd �∈ B for some d ∈ D, since |C| ≥ 6 or |D| > 1, a straightforward counting argument shows that
|B| = |D| + � |C|

4 �, implying that
(a) there exists d1 ∈ D and i ∈ {1, . . . , n} such that wd1 �∈ B and xvid1 , xvi+2d1 , xvic1 , xvi+2c1 �∈ B (see Fig. 7

for an example with i = 3), or
(b) there exist d1, d2 ∈ D and i ∈ {1, . . . , n} such that wd2 �∈ B and xvid1 , xvi+2d1 , xvid2 , xvi+2d2 �∈ B (see

Fig. 8 for an example with i = 4).
If (a) holds then the solution depicted in Figure 7 settles this case, and if (b) holds then the solution depicted
in Figure 8 settles this case.
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v1 v2 v3 v4 v5 v6 v7 · · · v|C| wc

c0 0 0 0 0 0 0 0 .... 0 0
c1 1 0 1 0 1 0 1 .... 0 1

d1 0 1
2

0 1
2

0 1 0 .... 1 1

d2 0 1
2

0 1
2

0 0 0 .... 0 1
2

d3 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...

d|D|
...

...
...

...
...

...
... ....

...
...

t1
...

...
...

...
...

...
... ....

...
...

...
...

...
...

...
...

...
... ....

...
...

t|T \D|−2 0 0 0 0 0 0 0 .... 0 0

Figure 8. Solution for the proof of Theorem 4.9, for i = 2. The variables in boldface do not
belong to B.

v1 v2 v3 v4 v5 v6 v7 · · · v|C| wc

c0 1 0 1
2

1
2

1
2

0 1 .... 0 1

c1 0 0 1
2

0 1
2

0 0 .... 0 1

d1 0 1 0 1
2

0 1 0 .... 1 1

d2 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...

d|D|
...

...
...

...
...

...
... ....

...
...

t1
...

...
...

...
...

...
... ....

...
...

...
...

...
...

...
...

...
... ....

...
...

t|T \D|−2 0 0 0 0 0 0 0 .... 0 0

Figure 9. Solution for the proof of Theorem 4.9. The variables in boldface do not belong to B.

(2) If wd ∈ B for every d ∈ D, then there must exist some d1 ∈ D and i ∈ {1, . . . , n} such that
xvic0 , xvi+1c0 , xvi+2c0 , xvic1 , xvi+2c1 , xvi+1d1 �∈ B. If such a structure is not present, then B contains at least
|C|/3 variables from {xvc0 , xvc1}v∈C. The solution specified by Figure 9 only has fractional values for these
variables and violates (4.5), thus establishing this case.

Therefore, for any set B we can construct a solution that violates the inequality (4.5) and satisfies (3.1)–(3.3).
Then, we conclude that for any set B the inequality (4.5) is not valid for PB(L). �

Note that the disjunctive rank of (4.5) is not fully characterized by Theorem 4.9. If the hypothesis (b) does not
hold, i.e., if |C| = 4 and |D| = 1, then the disjuctive rank depends on the existence of colors in T \D∪ {c0, c1},
as the following proposition shows. We ommit the proof since it is based on similar arguments as the proof of
Theorem 4.9.

Proposition 4.10. Assume |C| = 4 and |D| = 1. If T \D∪{c0, c1} �= ∅ then the disjunctive rank of (4.5) is 3,
and the disjunctive rank of (4.5) is 2 otherwise.
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v1 v2 v3 v4 v5 v6 v7 · · · v|C| wc

c0 0 |C|−2
|C| 0 |C|−2

|C| 0 |C|−2
|C| 0 .... |C|−2

|C|
|C|−2
|C|

c1 1 0 1 0 1 0 1 .... 0 1

t1 0 2
|C| 0 2

|C| 0 2
|C| 0 .... 2

|C| 1

t2 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...
t|T |−2 0 0 0 0 0 0 0 .... 0 0

Figure 10. A solution violating (4.5).

Theorem 4.9 and Proposition 4.10 leave the case D = ∅ open. We conjecture the rank to be 1 in this case.
The solution depicted in Figure 10 violates the inequality (4.5) but satisfies (3.1)–(3.3). In order to prove that
the rank of (4.5) is at most 1, we must take a singleton A and show that (4.5) holds for PA(L). Unfortunately,
we were not able to settle this case. We conjecture that A = {xv3c0} may allow to complete such a proof,
but showing that a solution (x, w) ∈ PA(L) with xv3c0 = 0 satisfies the inequality does not seem to be a
straightforward task.

Theorem 4.11. The disjunctive anti-rank of (4.5) is p − 5 if D �= ∅.

Proof. We first prove that for any set A ⊆ V with p − 4 variables, the inequality (4.5) is valid for PA(L). Let
(x, w) be an arbitrary extreme point in PA(L), which has, by Theorem 2.3, at most four variables with fractional
values.

If
∑

d∈D wd ≥ 2, then the RHS of (4.5) is greater than or equal to (1 + wc0)
|C|
2 . Constraint (3.1) ensures∑

u∈Cv2

∑
c∈D∪{c0} xuc ≤ |C|

2 which, together with Lemma 3.1(i), implies that (4.5) is satisfied. We, therefore,
restrict ourselves to the case

∑
d∈D wd ≤ 1. Assume that this holds and consider the following cases:

(1) If
∑

v∈Cv2
xvc0 = |C|

2
, then

∑
v∈C\{v2} xvc0 = |C|

2 − 1. Also, the second term in the LHS of (4.5)
is less than or equal to |C|/2. Since (x, w) satisfies the model constraint (3.3), then

∑
c∈D wc +∑

c∈T \D∪{c0,c1}
∑

u∈Cv1
xuc ≥ 1. Thus, the inequality (4.5) is satisfied.

(2) If |C|
2

− 1 <
∑

v∈Cv2
xvc0 < |C|

2
, then wc0 = 1, at least one variable from {xvc0}v∈Cv2

takes a fractional
value, and xvc0 �= 0 for all v ∈ Cv2 . Since at most four variables can take fractional values, then at
most two variables from {xvc0}v∈Cv2

can take fractional values, and this implies that xvc0 = 0 for every
v ∈ Cv1 . Therefore,

∑
v∈C\{v2} xvc0 ≤ |C|

2 − 1 and the LHS of (4.5) is less than or equal to |C| − 1. As∑
v∈C (xvc0 + xvc1) ≤ |C| − 1 by constraint (3.3), then

∑
c∈T \{c0,c1}

∑
u∈Cv1

xuc ≥ 1. If wd1 < 1 for some
d1 ∈ D, then xvd1 = 0 for every v ∈ Cv1 . So,

∑
c∈T \D∪{c0,c1}

∑
u∈Cv1

xuc ≥ 1 and the inequality (4.5) is
satisfied. If wd1 = 1 for some d1 ∈ D (hence wd = 0 for every d ∈ D, d �= d1 since

∑
d∈D wd ≤ 1), then the

inequality (4.5) is trivially satisfied.
(3) If 0 <

∑
v∈Cv2

xvc0 ≤ |C|
2

− 1 and wc0 = 1, we claim that
∑

v∈C\{v2} xvc0 ≤ |C|
2 −1. To this end, consider

the following cases:
(a) If xvc0 ∈ Z for all v ∈ Cv1 or for all v ∈ Cv2 , then

∑
v∈C\{v2} xvc0 ≤ |C|

2 − 1.
(b) If there exist xvtc0 ∈ Cv2 and xvt′c0 ∈ Cv1 with 0 < xvtc0 , xvt′ c0 < 1 and such that vtvt′ /∈ E, then there

exist colors c2, c3 ∈ T \{c0} such that xvtc2 and xvt′ c3 take fractional values. Since (x, w) has at most
four variables with fractional values, then xvt−1c0 = xvt+1c0 = xvt′−1c0 = xvt′+1c0 = 0, where indices are
taken modulo n. This implies that at least three variables from {xvc0}v∈C\{v2} take null values, hence∑

v∈C\{v2} xvc0 ≤ |C|
2 − 1.
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(c) If there exist xvtc0 ∈ Cv2 and xvt′ c0 ∈ Cv1 with 0 < xvtc0 , xvt′ c0 < 1 and such that vtvt′ ∈ E, then a
similar argument shows that xvt−1c0 = xvt′+1c0 = 0. Therefore,

∑
v∈C\{v2} xvc0 ≤ |C|

2 − 1.

In all three cases the claim holds, hence the LHS of (4.5) is less than or equal to |C|−2. As the RHS of (4.5)
is greater than or equal to this value, the inequality (4.5) is satisfied.

(4) If
∑

v∈Cv2
xvc0 = 0 and wc0 = 1, then

∑
v∈C\{v2} xvc0 ≤ |C|

2 . On the one hand, if wd1 = 1 for some
d1 ∈ D, the assumption

∑
d∈D wd ≤ 1 implies wd = 0 for every d ∈ D, d �= d1. Then, the LHS of (4.5) is

equal to
∑

v∈C\{v2} xvc0 +
∑

v∈Cv2
xvd1 which, by the model constraint (3.3), is less than or equal to |C|−1.

We conclude that the inequality (4.5) is satisfied. On the other hand, if
∑

d∈D wd < 1, then at most one
variable from {xvd}v∈Cv2 ,d∈D can take a fractional value, since at most four variables take fractional values
in (x, w). This implies

∑
v∈Cv2

∑
d∈D xvd ≤

∑
d∈D wd, and the inequality (4.5) is satisfied.

(5) If 0 < wc0 < 1, then at most three variables from {xvc}v∈C,c∈T are allowed to take fractional values.
Therefore, at most one variable from {xvc0}v∈C can take a fractional value. Furthermore, if xvtc0 takes a
fractional value, then at most one variable from {wd}d∈D can take a value different from 0 (since otherwise
we would have more than four variables with fractional values). Let wd1 be such variable, and consider the
following cases:
(a) If wd1 = 1 and |C|

2 − 1 <
∑

v∈Cv2
xvd1 ≤ |C|

2 , then, as
∑

v∈C(xvc1 +xvd1) ≤ |C| − 1, the sum∑
c∈T \D∪{c0,c1}

∑
u∈Cv1

xuc is greater than or equal to 1. Then the inequality (4.5) is satisfied.

(b) If wd1 = 1 and
∑

v∈Cv2
xvd1 ≤ |C|

2 − 1, then the LHS of (4.5) is less than or equal to 2wc0 + |C|
2 − 1.

Therefore, the inequality (4.5) is satisfied.
(c) If wd1 < 1, then xvtd1 is the only variable in {xvd1}v∈C allowed to take a non-null value (if xud1 > 0 for

some u �= vt, then xud1 ≤ wd1 < 1, thus generating at least five variables with fractional values). So,
the LHS of the inequality is less than or equal to 2xvtc0 + xvtd1 . As this value is less than or equal to
2wc0 + wd1 , the inequality (4.5) is satisfied.

(6) If wc0 = 0, then the LHS of (4.5) is equal to
∑

v∈Cv2

∑
d∈D xvd. Consider the following cases:

(a) If
∑

d∈D wd < 1, then a similar argument as in Case 4 shows that (4.5) holds.
(b) If wd1 = 1 for some d1 ∈ D, then the LHS of (4.5) is equal to

∑
v∈Cv2

xvd1 . If
∑

v∈Cv2
xvd1 ≤ |C|

2 − 1,

then the inequality (4.5) is satisfied. If |C|
2 − 1 <

∑
v∈Cv2

xvd1 ≤ |C|
2 , then

∑
v∈Cv1

xvd1 = 0. Therefore,∑
c∈T \D∪{c0,c1}

∑
u∈Cv1

xuc ≥ 1 and again the inequality (4.5) is satisfied.

We conclude that the disjunctive anti-rank of (4.5) is less than or equal to p − 5.
We now prove that the disjunctive anti-rank is greater than or equal to p − 5. Let d1 ∈ D and define B ⊆ V

to be the set V \ {xv1c1 , xv1d1 , xv3c1 , xv3d1 , wd1}, which has |B| = p − 5. Let z = (x, w) ∈ PB(L) be the feasible
solution depicted in Figure 11. This solution satisfies the model constraints, violates the inequality (4.5) and
the variables in B take 0-1 values. Hence, the disjunctive anti-rank is greater than or equal to p − 5 and the
theorem follows. �

4.4. Further families of valid inequalities

We now present results for the rest of the families presented in [10]. We do not include the proofs of the
following theorems as they involve similar arguments to the previous ones.

Definition 4.12. Let v1 ∈ C and let c0, c1 ∈ T , c0 �= c1. The reinforced two-color inequality associated with
C, v1, c0 and c1 is ∑

u∈C\{v1}
xuc0 +

∑
u∈Cv1

(xuc0 + xuc1) ≤
|C|
2

+
(
|C|
2

− 1
)

wc0 . (4.7)

Theorem 4.13. The disjunctive rank of (4.7) is � |C|
4 � and the disjunctive anti-rank of (4.7) is p − (|C| + 1).
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v1 v2 v3 v4 v5 v6 v7 · · · v|C| wc

c0 0 1 0 1 0 1 0 .... 1 1

c1
1
2

0 1
2

0 1 0 1 .... 0 1

d1
1
2

0 1
2

0 0 0 0 .... 0 1
2

d2 0 0 0 0 0 0 0 .... 0 0
...

...
...

...
...

...
...

... ....
...

...

d|D|
...

...
...

...
...

...
... ....

...
...

t1
...

...
...

...
...

...
... ....

...
...

...
...

...
...

...
...

...
... ....

...
...

t|T \D|−2 0 0 0 0 0 0 0 .... 0 0

Figure 11. Solution for the proof of Theorem 4.11. The values in boldface correspond to the
variables in V\B

Definition 4.14. Let v1, v2, v3 ∈ C be three consecutive vertices and let c0 ∈ T . Let D,D′ ⊂ T \ {c0} such
that D ∩ D′ = ∅. The three-consecutive vertices inequality associated with C, v1, v2, v3, c0, D, and D′ is

∑
u∈C\{v2}

xuc0+
∑
c∈D

xv3c+
∑
c∈D′

xv1c+
∑

c∈D∪D′
xv2c ≤

(
|C|
2

− 1
)

wc0+
∑

c∈D∪D′
wc+

∑
u∈Cv2\{v2}

∑
c∈T \({c0}∪D∪D′)

xuc.

(4.8)

Theorem 4.15. If T \ (D ∪D′ ∪ {c0}) = ∅, then the disjunctive rank of (4.8) is

(1) |D| + |D′| + 1, if D �= ∅, D′ �= ∅ and |C| ≥ |D|+|D′|+2
|D|+|D′|−12;

(2) |C|
2 − 1, if D �= ∅, D′ �= ∅, |C| ≤ 6 and |D| + |D′| = 2;

(3) 2, if |C| = 4, D �= ∅, D′ �= ∅ and |D| + |D′| = 3;
(4) |D′|, if D = ∅;
(5) |D|, if D′ = ∅.
If |T \ (D ∪ D′ ∪ {c0})| ≥ 1, then the disjunctive rank of (4.8) is

(1) |D| + |D′| + � |C|
4 � if |D ∪ D′| ≥ 2;

(2) � |C|
4 � if |D ∪ D′| = 1;

(3) 0, if |D ∪ D′| = 0.
The disjunctive anti-rank of (4.8) is
(1) p − 5, if |D ∪ D′| ≥ 2;
(2) p − 6, if |D ∪ D′| = 1;
(3) 0, if D ∪ D′ = ∅.
Definition 4.16. Let v1, v2, v3, v4 ∈ C be four consecutive vertices and let c0, c1, c2 ∈ T . The four-consecutive
vertices inequality associated with C, v1, v2, v3, v4, c0, c1, and c2 is

∑
u∈C\{v3}

xuc0 +
∑

u∈C\{v2}
xuc1 +xv1c0 +xv4c1 ≤

(
|C|
2

− 1
)

(wc0 + wc1)+
∑

c∈T \{c0,c2}
xv2c+

∑
c∈T \{c1,c2}

xv3c+1.

(4.9)

Theorem 4.17. The disjunctive rank of (4.9) is 4. The disjunctive anti-rank of (4.9) is p − (|C| + 1).
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5. Conclusions and open problems

In this work we studied the disjunctive rank of six families of valid inequalities presented in a previous work.
We introduced a dual concept, the disjunctive anti-rank of a valid inequality, which gives the number of BCC
iterations needed in order to always obtain a polytope that satisfies the inequality. It is interesting to note that
the disjunctive rank of the families of inequalities studied in this work does not seem to be correlated with
the practical contribution of each family to a branch-and-cut procedure for acyclic coloring. In the preliminary
branch-and-cut procedure implemented in [10], the two-color inequalities (4.1) and the distinguished colors
inequalities (4.2) allowed to achieve the best performances. This observation does not seem to correlate to the
disjunctive ranks presented in Section 4.

This work leaves open many issues, among which we can mention the following ones.

• The rank and anti-rank for the prominent vertex inequalities is not fully characterized by the results in this
paper. It would be interesting to further explore this issue.

• In this work we settled ourselves to exploring the rank of the known valid inequalities for the standard
formulation of acyclic coloring associated with the BCC operator, since this operator provides a neat envi-
ronment for such study. Anyway, it would be interesting to study the rank of these inequalities under the
other known lift-and-project operators. In particular, it would be interesting to assess whether the ranks are
similar across the different operators.

• Finally, exploring the Chvátal rank of these inequalities may also be an interesting task. This could not be
an easy task for some of the more involved valid inequalities.

Acknowledgements. We are indebted to the annonymous reviewer for his/her detailed comments and suggestions, which
greatly helped to improve this paper.
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