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EXPLORING THE DISJUNCTIVE RANK OF SOME FACET-INDUCING
INEQUALITIES OF THE ACYCLIC COLORING POLYTOPE

MONICA BRAGA! AND JAVIER MARENCO!

Abstract. In a previous work we presented six facet-inducing families of valid inequalities for the
polytope associated to an integer programming formulation of the acyclic coloring problem. In this
work we study their disjunctive rank, as defined by [E. Balas, S. Ceria and G. Cornuéjols, Math.
Program. 58 (1993) 295-324]. We also propose to study a dual concept, which we call the disjunctive
anti-rank of a valid inequality.
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1. INTRODUCTION

A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive
distinct colors whenever they are adjacent. An acyclic coloring of a graph G is a coloring such that no cycle
of G receives exactly two colors, i.e., such that the subgraph of G induced by any two color classes is acyclic.
The acyclic chromatic number x a(G) of a graph G is the minimum number of colors in any such coloring of G.
Given a graph G, the acyclic coloring problem consists in finding x 4(G), and this problem has been shown to
be NP-hard [12].

The acyclic coloring problem arises in the context of matrix partitioning for the estimation of the Hessian
matrix associated to numerical optimization problems [13,15], although it was introduced by Griinbaum in [18]
in a different context. Many previous research efforts on this problem consisted in finding bounds on x4 (G) for
particular classes of graphs [2,6-8,11, 14]. Efficient heuristic algorithms for the acyclic coloring problem were
developed in [16,17]. However, not too many approaches in order to solve this problem in practice exist.

These considerations and the interest of this problem as a combinatorial model, motivate us to approach
this problem from the perspective of integer linear programming. We presented in a previous work [10] an
integer programming model for the acyclic coloring problem, based on existing formulations for the classical
vertex coloring problem. We studied the structure of the polyhedron associated with this formulation with the
objective of finding valid inequalities that can contribute to an algorithm based on cutting-plane methods. In
particular, we introduced six families of facet-inducing inequalities.

Lift-and-project methods provide a systematic way to generate a sequence of convex relaxations of a polytope,
converging to the convex hull of the feasible solutions. These methods usually start with a linear relaxation, and
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construct a sequence of polytopes — each included in the previous one — that ends with the convex hull. Many of
these methods use higher dimensional formulations during the construction of this sequence of polytopes, because
these formulations sometimes allow compact representations of exponentially many facets. Many lift-and-project
operators have been proposed, the most prominent being the Balas—Ceria—Cornuéjols operator [5], the Sherali-
Adams operator [27], the Lovédsz—Schriver operator [23], and the Lasserre operator [19]. For a thorough analysis
of these procedures, we refer the reader to [4].

A concept derived from the existence of such operators is the rank of a valid inequality, defined as the
minimum number of applications of the operator needed to get a polytope for which the inequality is valid
(this concept is well defined since the last polytope in the sequence is the convex hull of feasible solutions, so
it satisfies the valid inequality). This value has been proposed as a measure of theoretical interest of a valid
inequality, in contrast to computational measurements assesing the contribution of the inequality within cutting
plane environments.

In this work we are interested in the rank of the families of valid inequalities presented in [10]. In particular,
we study the rank associated to the Balas—Ceria—Cornuéjols (BCC) operator, usually called the disjunctive
rank. We propose to also study a dual concept, which we call the disjunctive anti-rank of a valid inequality,
defined as the maximum number of applications of the BCC operator ensuring a polytope that satisfies the
inequality. In [10] a preliminary branch-and-cut procedure was implemented, experimentally showing that two
of the families of valid inequalities considered in this work allowed to achieve the best perfomance. An additional
motivation for the present work is to verify whether these computational results correlate with the theoretical
strength of these inequalities, as measured by their disjunctive rank and anti-rank. Previous analyses of the
disjunctive rank of valid inequalities for particular problems can be found in [1,22,25], and further studies of
lift-and-project applications to particular problems are carried out in [3,20,21,24,26], among others.

This paper is organized as follows. In Section 2 we recall the definition of the BCC operator and the disjunctive
rank of a valid inequality, and introduce the definition of the anti-rank of a valid inequality. In Section 3 we
introduce the integer linear programming model for the acyclic coloring problem and give some definitions. In
Section 4 we study the disjunctive rank and anti-rank of six families of facet-inducing inequalities. Finally, in
Section 5 we provide some concluding remarks and directions for future work. A preliminary version of these
results appeared without proofs in the conference paper [9].

2. THE BCC OPERATOR

We now formally define the BCC operator introduced by Balas et al. [5]. Let P = conv{z € {0,1}" : Az < b}
be the convex hull of the integer points within L = {z € [0,1]™ : Az < b}. The BCC operator takes the polytope
L and a variable x; for i € {1,...,n} and generates a new polytope P,,(L) C L, in the following way:

(1) Multiply the system Az < b by x; and 1 — z;, getting the systems z;(b — Az) > 0 and (1 —z;)(b— Az) > 0.
(2) Identify x; := 2? and yi, := ;2 for k # i, thus getting a lifted polytope L? C R?"~1,
(3) Project L back to the space of the original z-variables, and call P,,(L) the resulting polytope.

We refer to the procedure applied to the variable x; as BCC,,. We can now repeat the procedure with some other
variable x;, for j # 4, thus getting the polytope Py, (Py,(L)). It can be seen that the order of the lifted variables
does not change the resulting polytope [5], i.e., Py, (Py, (L)) = Py, (P,,(L)), so we simply denote this polytope
by Pa(L), where A = {x;,x;}. If A C A’ then Py/(L) C Py(L) and, crucially, Py(L) = P for V= {z1,...,x,}.

Figure 1 provides an example for the linear relaxation L = {z € R} : 2y + 22+ 23 < 1+¢} for € € (0,1),
hence the convex hull of the integer solutions is P = {z € Ri : 21 + x2 + x3 < 1}. Starting from L, each path
generates a sequence of polytopes ending at P after 3 steps. Consider the inequality ;1 < 1, which is valid for
P (although not for L). The polytopes marked with (*) in the figure are those satisfying x; < 1. For every path
from L to P, at some point the inequality 1 < 1 is satisfied, and the disjunctive rank is the minimum height

k such that some polytope at height k satisfies the inequality.
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FiGURE 1. The sketch shows the polyhedra obtained after successively applying the BCC
operator from the linear relaxation L = {x € R‘i : 21 + a9+ 23 < 1+¢}. The polytopes marked
with (*) satisfy the valid inequality z; < 1. One polytope in the first level (i.e., obtained
by exactly one application of the BCC operator) safisfies the inequality x; < 1, hence this
inequality has disjunctive rank 1. All polytopes in the third level satisfy x; < 1 whereas there
is a polytope in the second level not satisfying this inequality, hence x; < 1 has disjunctive
anti-rank 2.

Definition 2.1. [5] Let 7z < 7y be a valid inequality for P. The inequality 7o < 7o has disjunctive rank k if
and only if there exists a set A of variables such that |A| = k and nz < 7 is valid for Py(L), and 7wz < mp is
not valid for Pg(L) for any set B of variables with |B| =k — 1.

The disjunctive rank is a theoretical measure associated with a valid inequality, given by the minimum number
of applications of the BC'C operator [5] needed to obtain the inequality. Note that if the disjunctive rank of a
valid inequality for P is O then it is also valid for the linear relaxation L. In this work we propose to also study
the mazimum number of such applications, which we call the disjunctive anti-rank of a valid inequality and is,
in some sense, the dual concept of the disjunctive rank. In Figure 1, the disjunctive rank corresponds to the
maximum height ¢ such that there exists some polytope at height ¢ not satisfying the valid inequality.

Definition 2.2. Let 7z < 7y be a valid inequality for P with nonzero disjunctive rank. The inequality 7z < g
has disjunctive anti-rank t if and only if there exists a set B of variables with [B| = ¢ such that 7a < 7 is not
valid for Pg(L), and ma < mg is valid for Py (L) for any set A of variables with |A| =t + 1.

The disjunctive rank of a valid inequality is less than or equal to the anti-rank. Therefore if the disjunctive
anti-rank of a valid inequality is 0 then the rank is also 0. Moreover, if the disjunctive rank is 0, then the linear
relaxation satisfies the inequality and the anti-rank is 0 too. The disjunctive anti-rank is a natural measure
associated with a valid inequality, in this case providing a lower bound on the number of BCC iterations needed
to obtain a polytope Py (L) satisfying the valid inequality without regard of the choice of the set A of variables,
see Figure 1.

The following result provides a useful property of the BCC operator.
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Theorem 2.3. [5] If A is a subset of variables, then Py(L) = conv{z € L : z; € {0,1} for every x; € A}.

This theorem is the basis for the analysis of the disjunctive rank of valid inequalities, since it provides a
straightforward way of checking whether a (possibly fractional) solution in L belongs to Py(L) or not, for a
given subset A of variables. This direct check enables the approaches followed in the proofs in Section 4.

To the best of our knowledge, the other lift-and-project operators mentioned in the introduction do not admit
a similar result characterizing feasible solutions of the resulting convex bodies, and this makes the exploration of
the corresponding disjunctive ranks a more difficult issue. Lacking such a simple characterization, the strategy
for finding bounds on the disjunctive rank followed in this work might not be applied for these other operators
in a direct way. Due to these facts, we concentrate in this work on the BCC operator as a first approach on the
lift-and-project rank of the known inequalities for the standard formulation of the acyclic coloring problem.

3. INTEGER PROGRAMMING FORMULATION FOR ACYCLIC COLORING

Let G = (V, E) be a simple connected graph, and denote by 7 the set of available colors. For v € V and
c € T, we define the assignment variable x,. to be x,. = 1 if the vertex v is assigned the color ¢, and x,. = 0
otherwise. For every ¢ € 7 we define the color variable w,. to be w, = 1 if some vertex uses the color ¢, and
w, = 0 otherwise.

Denote by C(G) C 2" the set of all cycles of G. The acyclic coloring problem can be formulated in terms of
the assignment variables and the color variables in the following way:

min E We

ceT
s.t. Z Type =1 Yo eV, (3.1)
ceT
Tye + Tpe < We Vuve E VeeT, (3.2)
> e+ e <|A[—1 VAEC(G), Ve, d €T, (3.3)
vEA
ZTye € {0,1} YveV,eceT, (3.4)
we € {0,1} VeeT. (3.5)

Let p = |V||T| +|7|. We define P(G,7T) C R? to be the convex hull of the vectors (z,w) € {0, 1} satistying
constraints (1)—(5). Let L(G,7) C [0,1]? be the linear relaxation of P(G,T), i.e., the points (z,w) € [0,1]P
satisfying the constraints (1)-(3). When the graph G and the color set 7 are clear from the context, we
denote the linear relaxation L(G,7) by L. Finally, let V be the set of variables from models (1)-(5), i.e.,
V=A{z,:veV,eeTtU{wc:ceT}.

In the following lemma we collect some straightforward facts that will arise frequently in Section 4.

Lemma 3.1. Let (v,w) € L(G,T), let CC V be an even cycle, and let c € T .

(i) The point (r,w) satisfies the inequality ), . Tve < %wc.

(i1) If at most |C| — 1 variables from {xyq}tvec.deT are allowed to take fractional values, then there exist at
most |C|/2 — 1 variables from {xyc}vec at fractional values.

Proof. For part (i), since (z,w) € L(G,T) then (3.2) implies zyc + Ty < w, for every edge uv in the cycle
(considered as an edge set). By summing these inequalities over all the edges from the cycle, part (i) follows.
Now for part (ii). If at least |C|/2 variables in {x,.}yec were fractional then by (3.1), there would exist at
least |C|/2 variables in {%y4}vec,deT\{c} that are fractional. This would therefore lead to a number of fractional
variables in {Zyq}vec,deT being at least |T]. O
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v V2 U3 U4 Vic| | We
© |3 3 3 3 3 |1
aa |2 0 % 0 0 | 3
c2 0 % 0 % % 1
es |0 0 0 0 0 |0

¢gr;) |0 0 0 0 .. 0 |0

F1GURE 2. Construction for the proof of Theorem 4.2. The values in boldface correspond to
the variables in V\B.

4. DISJUNCTIVE RANK AND ANTI-RANK OF KNOWN INEQUALITIES

In this section we study the disjunctive rank and anti-rank of the families of facet-inducing inequalities
presented in [10] for the case where the graph G is a cycle. We assume throughout this section that G = C is
an even cycle, and all the inequalities presented in this section involve such a cycle. Under technical hypotheses,
these inequalities are facet-defining for P(G,T) for any graph G [10]. For v € C, we define C, C C to be the
set of all vertices at even distance in C to the vertex v. We define C = {v1,v2,...,v|c|} to be the set of vertices
where viv;11 € E for 1 <i <|C|—1 and v|gjv; € E.

4.1. The two-color inequalities

We first study the so-called two-color inequalities, which was the best-performing familiy of valid inequalities
in the branch-and-cut procedure reported in [10].

Definition 4.1. Let cg,c; € 7 with ¢y # ¢1. The two-color inequality associated with C, ¢y, and ¢y is

D (@oco + Tue,) <1+ (%—1) wWe, + (%— )w (4.1)

veC

In order to efficiently describe the constructions of feasible solutions given in this section, we introduce the
graphical representation depicted in Figure 2. This graphical representation specifies the value that each variable
takes in a solution. For example, the value 0 in column vy and row ¢; in Figure 2 asserts that the variable x,.,
takes value 0. The last column represents the values of the w-variables.

Theorem 4.2. The disjunctive rank of the two-color inequality (4.1) is 2.

Proof. We shall first prove that the disjunctive rank of (4.1) is less than or equal to 2. Let A C V be the set
{We,, We, }. We must prove that (4.1) is valid for Py(L). Let z = (x,w) be a (possibly fractional) solution such
that we,,we, € {0,1} (so Thm. 2.3 implies z € Py(L)) and consider the following cases:

(1) If the variables in A take value 1 in z, i.e., we, = we, = 1, then the left-hand side (LHS) of (4.1) is less
than or equal to |C| — 1, as z satisfies (3.3), with A = C, ¢ = ¢y and ¢’ = ¢;. Note that the right-hand side
(RHS) of inequality (4.1) equals [C| — 1 in this case.

(2) If exactly one variable in A takes value 1 in z, say, w., = 1 and w,, = 0, then the LHS of (4.1) is less than
or equal to @ by Lemma 3.1(i). Since the RHS of inequality (4.1) equals %, then z satisfies (4.1).

(3) If both variables in A take value 0 in z, i.e., we, = we, = 0, then by (3.2), the LHS of (4.1) takes value 0.
The RHS of inequality (4.1) equals value 1 hence it is satisfied by z.
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Since in the three cases the two-color inequality is satisfied and z is an arbitrary solution of Py(L), we
conclude that (4.1) is valid for Py (L). Then, the disjunctive rank of (4.1) is less than or equal to 2.

We now prove that the disjunctive rank of (4.1) is greater than or equal to 2. Let B C V be an arbitrary
set of variables with cardinality 1. In order to prove that the two-color inequality is not valid for Pg(L), we
show a solution z € Pg(L) that violates (4.1). To this end, consider the solution depicted in Figure 2, which
violates (4.1) but satisfies (3.1)-(3.3), and consider the following cases:

o If B = {w,} for some i # 1, then the solution in Figure 2 belongs to Pg(L) by Theorem 2.3 and violates (4.1).

e If B = {w, }, then the solution obtained from Figure 2 by swapping the colors ¢g and c¢; violates (4.1) and
belongs to Pg(L) by Theorem 2.3.

e If B = {x,, }, then assume w.l.o.g. that v = vo. Again, the solution specified by Figure 2 violates (4.1).

o If B = {wy,}, again assume w.l.o.g. that v = va. The solution obtained from Figure 2 by swapping the
colors ¢p and ¢; violates (4.1).

o If B = {a,.} with ¢ ¢ {co,c1}, then assume w.l.o.g. that v = v;. The solution obtained from Figure 2 by
swapping the colors ¢ and ¢y violates (4.1).

We conclude that for any singleton B the inequality (4.1) is not valid for Pg(L), hence the disjunctive rank
of (4.1) equals 2. O

In order to establish the disjunctive anti-rank of (4.1) we first prove the following lemma.

Lemma 4.3. If z = (x,w) € L violates the two-color inequality, then 1 < we, + we, < 2.

Proof. Let z = (x,w) € L be a solution violating (4.1). Then,

C
bt (T - 1) (wco +wc1) < Z (1'vc0 +$U01)'

veC

[Cl IC]

By Lemma 3.1(i), we have ) Ty, < FWe and Y - Tye, < 5 we,. Therefore, Y7 - (Tuey + Tue,) <

|£2|(ch + we, ) and
IC| C|

1+ (7 - 1) (wco +U)C1) < 7('“}00 +w01)’

So we conclude 1 < we, + we, .
On the other hand, the constraint (3.3) asserts Y, - (v, + Tve;) < |C| — 1. Then,

C
1+ (7—1> (Wey +we,) < |C| — 1.

So we conclude we, + we, < 2. O
We can now prove the following result. Recall that p = |V||T| + |T]|.
Theorem 4.4. The disjunctive anti-rank of the two-color inequality (4.1) is p — (|C| + 1).

Proof. We first prove that for any set A C 'V with p — |C| variables, the inequality (4.1) is valid for Py(L). Let
(x,w) € Py(L). If wey +we; <1 01 wey + we, = 2 then Lemma 4.3 implies that (4.1) is satisfied, so assume
1 < Wey +we, < 2 (hence we, > 0 and we, > 0) and consider the following cases:

(1) If we, = 1 then 0 < w,, < 1, hence none of the variables in {xy, }vec can take value 1. Since |V '\
(AU {we, })| = |C|] — 1, by Lemma 3.1(ii) at most % — 1 variables from {xy., }vev can take fractional

values and the remaining ones take value 0. The model constraint (3.2) implies zyc, < we,, 80 Y o Toe, <
(% - 1) Wey- AS D e Ty < |2£|, the LHS of (4.1) is less than or equal to (% - 1) We, + @ Note that

the RHS of inequality (4.1) equals this value, so (4.1) is satisfied. A symmetrical argument settles the case
W, = 1.
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V1 V2 V3 V4 Cile] We

co 0 1 0 1 1 1
aa |2 0 % 0 0 | 3
cc |2 0 %2 0 0 | 1
c3 0 0 0 0 0 0
C|T| 0 0 0 0 0 0

FIGURE 3. The values in boldface correspond to the variables in V\B.

(2) If 0 < we, < 1, then we are left with the case 0 < w., < 1. Therefore, at most |C| — 2 variables

different from w,, and w,, can take fractional values. Again, by Lemma 3.1(ii) at most % — 1 variables

from {@yc, Jvec (respectively {Z,¢, }vec) can take fractional values and the remaining ones take value 0,
implying that the LHS of (4.1) is less than or equal to (@ - 1) (wey + we, ). Note that the RHS is greater
than this value, so (4.1) is satisfied.

We conclude that the disjunctive anti-rank of (4.1) is less than or equal to p — (|C| + 1).

In order to prove the opposite inequality, let B C V be the set {z,.: v € C,c € T,c # c1,c2} U{xpe 1 v €
Cyyyc=cr,cat U{we : ¢ € T,c # c1}. The cardinality of B is p — (|C| + 1). Let z = (x,w) € Pg(L) be the
feasible solution depicted in Figure 3. This solution satisfies the model constraints, violates the inequality (4.1),
and the variables in B take 0-1 values. Then, the anti-rank of (4.1) is greater than or equal to p — (|C| +1), and
the theorem follows. O

4.2. The distinguished colors inequalities

We now introduce the distinguished colors inequalities, which include in their definition an arbitrary subset
of colors, and study their disjunctive rank and anti-rank.

Definition 4.5. Let D C 7 with D # (). The distinguished colors inequality associated with C and D is
SN we <ICI=3+> we (4.2)
veC ceD ceD

Note that we need not consider D = (), since (4.2) becomes 0 < 1 in this case.

Theorem 4.6. The disjunctive rank of the distinguished colors inequality is

(1) [D] if [D] = 2;

(2) 04f|D| < 1.

Proof. Consider the following cases.

Case I: |D| = 1. Let D = {d}. The LHS of (4.2) equals ), . Zva and by Lemma 3.1(1) >, ¢
Since |C| > 4 then 2!8!:;’ > 1, hence ‘%‘wd < |C| = 34 wq. The inequality (4.2) is, therefore, satisfied and has
disjunctive rank 0.

Case II: |D| > 2. We first prove that the disjunctive rank of (4.2) is less than or equal to |D|.

Let A C V be the set {w, : ¢ € D}. We shall prove that (4.2) is valid for Py(L). Let z = (x,w) € Py(L) be
an arbitrary solution, so by Theorem 2.3 we have w. € {0, 1}, and consider the following cases:

c
Tyd < %w(r

(1) If the number of w-variables in A that take value 1 is greater than or equal to 3, then the RHS of inequal-
ity (4.2) is no less than |C|, hence (4.2) is satisfied.
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V4 Vi+1 Vi+2 Vi+3 Vi+4 Vj Vj+1 Vj42 Vj43 Vj44 Cifel We

dy 0 1 0 1 0 0 1 0 1 0 .. 1 1
da : 0 1 0 1 1 0 1 0 1 0 | 1
ds |3 O 0 0 0 3 0 0 0 0 0 | 3
da 0 0 0 0 0 0 0 0 0 0 0 |0
dp, |0 0 0 0 0 .. 0 0 0 0 0 .. 0|0
1 0 0 0 0 0 .. 0 0 0 0 0 .. 0 ]0
crvp | 00 0 0 0 .. 0 0 0 0 0 .. 0 ]0

FIGURE 4. Solution for the proof of Theorem 4.6. The values in boldface specify some variables
guaranteed not to belong to B.

(2) If exactly two variables in A take value 1, say wg and wgs, then the model constraints (3.2) imply that the
LHS of (4.2) is equal to ) o (2vd + Zvar ), and the RHS of (4.2) equals |C| — 1. Since z satisfies (3.3), the
inequality (4.2) is satisfied.

(3) If exactly one variable in A takes value 1, then by Lemma 3.1(i) the LHS of (4.2) is less than or equal to
@. As % < |C| — 2 if and only if |C| > 4, the inequality (4.2) is satisfied.

(4) If all the variables in A take value 0, then the LHS is equal to 0 and the inequality (4.2) is satisfied.

Since in the four cases the distinguished colors inequality is satisfied and z is an arbitrary solution of Py (L), we
conclude that (4.2) is a valid inequality for Py (L). Then, the disjunctive rank of (4.2) is less than or equal to |D|.

We now prove that the disjunctive rank of (4.2) is greater than or equal to |D|. Let B C V be an arbitrary
set of |D| — 1 variables. We must prove that the distinguished colors inequality is not valid for Pg(L).

Let D = {di,...,djp} and T \ D = {c1,...,cj7\p|}. Since |B| = [D| — 1, there exists some color in D, say
ds, such that wg, ¢ B and x,4, & B for every v € C (if every d € D had wy € B or x,q € B for some v € C
then we would have at least one variable in B for each color in D, implying |B| > |D|, a contradiction). The
set D = {Zyc}vec,cep\{d;} contains [C|(|D| — 1) variables. Since B contains just |D| — 1 variables, then there
exists a color in D\{ds}, say d2, and two vertices in C located at even distance in C, say v; and v;, such that
Tu,dys To,dy & B. The solution depicted in Figure 4 satisfies (3.1)—(3.3), belongs to Pg(L) by Theorem 2.3, but
violates the inequality (4.2).

We, therefore, conclude that the disjunctive rank of (4.2) is less than or equal to |D|. O

Theorem 4.7. The disjunctive anti-rank of the distinguished colors inequality is
(1) 0, if D] < 1;

(2) p—(IC[+1), if [D| = 2;
(3) p—5, if |D| > 3.

Proof. Consider the following cases.

Case I: |D| < 1. The disjunctive rank is 0, which implies that the linear relaxation satisfies inequality (4.2).
Hence, the disjunctive anti-rank of (4.2) is also 0.
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Case II: |D| = 2. We first verify that for any set A C V with p — |C| variables, the inequality (4.2) is valid for
Py (L). Let (x,w) € Py(L) be an arbitrary point, and consider the following cases:

(1) If wq,,wq, € Z then we split the analysis into the following cases:

(a) If wg, = wq, = 1, then the inequality (4.2) states that ) _«(%va, + Zvd,) < |C| — 1. This inequality is
satisfied as it is one of the model constraints (3.3).

(b) If wa, # wa,, say wq, = 1 and wg, = 0, then the inequality (4.2) states that ) o 2vq, < |C|—2. This
inequality is satisfied as ) - Tva, < @ by Lemma 3.1(i).

(¢) If wg, = wg, = 0, then (4.2) is trivially satisfied.

(2) If wg, = 0 and 0 < wg, < 1, then x,4, = 0 for v € C. Constraints (3.2) imply @yd, + Tya, < wq, for
every edge uv in the cycle, and summing over all such edges yields } . Tva, < wg,|C|/2. The RHS of
inequality (4.2) equals |C| 4+ wq, — 2 and, since wgq,|C|/2 < |C| + wa, — 2, the inequality (4.2) is satisfied.

(3) fwg, =1 and 0 < wg, < 1, then the inequality (4.2) states that } _(2vq;, + Zud,) < [C| — 2 + wq,.
By contradiction, suppose that > _c(%va, + Tva,) > |C| — 2 + wg, for a solution (z,w) € Py(L). Since
[V \ (AU {wg,})| = |C|] — 1, Lemma 3.1(ii) implies that at most % — 1 variables from {zyq4, }vec take
fractional values and the remaining ones are 0. As wq, = 1, then > _(Tvd, +Tva,) < % + (% — 1) W, -
Hence,

C C

|2—|+<7—1) Way, > |C| — 2 4 wq,. (4.3)
From (4.3) we obtain that wg, > 1if |C| # 4, and 0 > 0 if |C| = 4; a contradiction, hence (4.2) is satisfied.

(4) If 0 < wg,,wq, < 1 (hence wg,,wq, ¢ A), Lemma 3.1(ii) ensures that at most €]

5 — 1 variables from
{Zvd, }vec (respectively {x,4, }vec) can take fractional values. Therefore,

> (od, + Toay) < (g - 1) (wa, +way)-

veC

We now prove that

C
(7 - 1) (wa, +wa,) < [C| =3+ wa, + wa,. (4.4)

If (4.4) does not hold and |C| # 4, then wq, + wq, > 2 }g}:i > 1, implying wq, + wq, > 2, a contradiction.

If (4.4) does not hold and |C| =4, we get 0 > 1. Thus, (4.4) holds and the inequality (4.2) is satisfied.

We conclude that the disjunctive anti-rank of (4.2) is less than or equal to p — (|C| + 1).

For the converse direction, note that |7 \ D| > 1, since otherwise the polytope is empty. Let B C V be the
set {ye 1 v € C,c € T,c # co,do} U{xye : v € Cyy,c = ¢o,do} U{we : ¢ € T,c # da}. The cardinality
of Bis p— (|C| 4+ 1). Let z = (z,w) € Pg(L) be the solution depicted in Figure 5, where D = {d;,d2} and
T\D={c1,...,cn}.

This solution satisfies the model constraints, violates the inequality (4.2) and the variables in B take values
in {0,1}. Therefore, the disjunctive anti-rank is greater than or equal to p — (|C| 4 1).

Case III: |D| > 3. In order to prove that the disjunctive anti-rank is less than or equal to p — 5, we shall verify
that for any set A CV of p — 4 variables, the inequality (4.2) is valid for Py (L). Consider the following cases:

(1) If 3" cpwa > 3, then the inequality (4.2) is trivially satisfied.

(2) If {wa}aep C A and at most two variables from this set take value 1, say wgy, and wg,, then the inequal-
ity (4.2) states that ) o (2vd, + Tva,) < |C| — 1, which is equivalent to the model constraint (3.3) and is
therefore satisfied.
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U1 V2 V3 V4 ’U‘C\ We

dy 0 1 0 1 1 1
ds 1-% 0 1-& 0 0 | 1-1&

o % 0 % 0 0 1

a1 0 0 0 0 0 0

CiT|—2 0 0 0 0o ... 0 0

FIGURE 5. The values in boldface correspond to variables guaranteed to belong to V\B.

U1 V2 U3 V4 Vs Ve U7 v|c| We

d 0 1 0 1 0 1 0 |1

da i 0 & 0 1 0 1 0 | 1

ds |3 0 3 0 0 0 O 0 | 3

ds 00 0 0 0 0 0 0 |0

dip|

1

C|’T\D| 0 0 0 0 0 0 0 0 0

FIGURE 6. Solution for the proof of Theorem 4.7. The values in boldface correspond to variables
guaranteed not to belong to B.

(3) If at least one variable from {wq}qep is not in A, and adding the facts that at most four variables take
fractional values, that ), ,wgs < 3 and that the model constraint (3.1) must be satisfied, then at most
one vertex has the corresponding z,4-variable with a fractional value and the rest of them take value 0. Let
v be such a vertex. Furthermore, at most two w-variables in A take value 1. Consider the following cases.
(a) Two variables from {wq}qep in A, say wg, and wg,, take value 1. The LHS is less than or equal to

ICl =1+ 4ep ZTwd- AS D deD Twd < D gep Wa — 2, the inequality (4.2) is satisfied.
d#dl,dQ d¢d17d2
(b) Exactly one variable from {wq}aep in A, say wy,, takes value 1. The LHS is less than or equal to

@ + Zéfiﬁ Tpd- As Zﬁig Tpg < @ — 3+ 4ep Wa, the inequality (4.2) is satisfied.
(c) None of the variables from {wq}qep in A take value 1. The LHS is equal to ), Tyq and this is less
than or equal to the RHS of (4.2). Then the inequality (4.2) is satisfied.

For the converse direction, let B = V \ {Zy,dy, Tvidss Tvgda» Lvgdss Wes |, Which has p — 5 elements. Let z =
(z,w) € Pg(L) be the feasible solution depicted in Figure 6. This solution satisfies the model constraints, violates
the inequality (4.2) and the variables in B take values in {0, 1}. Therefore, the disjunctive anti-rank is greater
than or equal to p — 5. We conclude that the disjunctive anti-rank of (4.2) is p — 5 when |D| > 3. O
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4.3. The prominent vertex inequalities

We now turn to the so-called prominent vertex inequalities, whose rank we, unfortunately, were not able to
fully characterize. We first present the (partial) characterization and then discuss the open case. Recall that C
is an even cycle.

Definition 4.8. Let cp,c1 € 7 and let D C 7 \ {co,c1}. The prominent vertex inequality associated with the
cycle C, the colors ¢g, c1, and the color set D is

Z Tuey + Z Z Tue < %wco + ch + Z Z Tye + (%—2). (4.5)

u€C\{v2} u€Cy, ceDU{co} ceD c€T\DU{co,c1} u€Cy,

We first study the disjunctive rank of the prominent vertex inequalities. In the following result, the hypothesis
states that the set of colors D is not empty and excludes the case in which |C| =4 and |D| = 1.

Theorem 4.9. The disjunctive rank of (4.5) is |D| + 1 + L%j whenever (I) D # 0 and (II) |C| > 6 or
|D| > 1.
[Cl

Proof. We shall first prove that the disjunctive rank of (4.5) is less than or equal to |D| + 1 + [ ] whenever

D # 0. Let A CV be the set {we,} U{wyg :d € Dy U{zyy_1co 1 k=1,..., L%J} We must prove that (4.5)
is valid for Py(L). Let z = (x,w) € Py(L) be a (possibly fractional) solution (so Thm. 2.3 implies that all the
variables in A take values in {0,1}) and consider the following cases:

(1) If the number of w-variables in A that take value 1 in z is greater than or equal to 2, then Lemma 3.1(i) and
constraint (3.1) imply that the LHS of (4.5) is less or equal than @wm + % Note that the RHS of (4.5)

is greater than or equal to @wcc + lzﬂ, as Y .ep We > 2.

(2) If the number of w-variables in A that take value 1 in z is less than or equal to 1, then consider the following
cases:
(a) If all the variables in A associated with the color ¢y take value 1 in z, then x,., = 0 for all v € C,,, as
z satisfies (3.2) and w¢, = 1.
(i) If there exists d € D such that wy = 1, then the assumption of Case 2 implies that wy = 0 for

every d’ € D. Then, the LHS of (4.5) is equal to Zvecvl Tyep + Zvec,,2 Tyd, implying

Z Toeq + Z Toyd S Z(wvco +1'vd) S |C| - 17

vE€Cy, vEC,, veC

as z represents an acyclic coloring. As the right-hand-side of (4.5) is greater than or equal to
|C| — 1, the inequality is satisfied.
(ii) Ifwg = 0 for all d € D, then the LHS of (4.5) is equal to Zvecvl Zyey, Which is less than or equal to
|2£|. On the other side, the RHS of (4.5) is greater than or equal to |C| — 2, so the inequality (4.5)
is satisfied.
(b) If there exist y,cq, Tv,e, € A such that 2,,., = 0 and x,,¢, = 1, then we, = 1. Let C" = C\{vz,v;}.
Since xy, ¢, = 0, Lemma 3.1(i) implies that

D Teg =Y ey < (g - 1> Wey = (g — 1) . (4.6)

veC\{v2} veC’

Consider the following cases:
(i) If there exists d € D such that wg = 1, then the RHS of (4.5) is greater then or equal to |C| — 1.

By combining (4.6) and the fact that Zvecw (Tody + Voey) < %, we get that the LHS of (4.5) is

less than or equal to |C| — 1. Then, the inequality (4.5) is satisfied.
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Vi V2 VU3 V4 VUs Vs U7 Vic| | We

co 0 1 0 1 0 1 0 1 1

a 1 0 3 0 £ 0 1 0 | 1

dy o 0o 2 o %+ 0 o0 0o | %

da 0O 0 0 0 0 0 0 0 | o0
dip|

t1
trvpl—2 | 0 0 0 O 0 O 0 .. 0 |0

F1GURE 7. Solution for the proof of Theorem 4.9, for i« = 3. The variables in boldface do not
belong to B.

(i) If wg =0 for all d € D, then the LHS of inequality (4.5) is equal t0 3, c o\ 14y} Tvco +Zvec,,2 Vyeg -
Since Ty, = 1, then 2, ¢y = Ty, 1, = 0, where the subindices are taken modulo n. This implies
ZueCUQ Vyey < % — 2. So, the LHS of (4.5) is less then or equal to |C| — 3. As the RHS of (4.5)
is greater than or equal to this value, the inequality (4.5) is satisfied.
(¢) If 2y,e, = 0 for all x,,., € A, then consider the following cases:
(i) If wg =1 for some d € D and w,, = 1, then a similar argument as in Case 2(b)(i) shows that (4.5)
is satisfied.

(i) If wyq = 1 for some d € D and w,, = 0, then wg = 0 for every d’ € D, d’ # d. This, together with

. L c
the constraints (3.1), implies Zvecul > ceT\DU{co,er} Tve = % — Zvecvl (Tye, + Tod), hence we

can rewrite the inequality (4.5) in the following way:

Z Tyd + Z (l'vcl +Uvd) < ‘C‘ -1,

vE€Cy, vECy,

and this inequality is satisfied since z represents an acyclic coloring.
(iii) If wg = 0 for every d € D, then (4.5) is trivially satisfied.

Since in all the cases the prominent vertex inequality is satisfied and z is an arbitrary solution of Py (L), we

conclude that (4.5) is valid for Py (L). Then the disjunctive rank of (4.5) is less than or equal to |D|+1+ Ll%lj

We now prove that the disjunctive rank of (4.5) is greater than or equal to |D| 4+ 1+ L%j Let B C V be an
arbitrary set of variables with cardinality |D| + L%J In order to prove that the prominent vertex inequality is

not valid for Pg(L), we show a solution z € Pg(L) that violates (4.5). To this end, consider the following cases:

(1) If wqg ¢ B for some d € D, since |C| > 6 or |D| > 1, a straightforward counting argument shows that

|B| = |D| + L%J, implying that

(a) there exists dy € D and i € {1,...,n} such that wg, B and 2,4, Tv, 0dy> Tvsers To e, € B (see Fig. 7
for an example with i = 3), or

(b) there exist di,d2 € D and i € {1,...,n} such that wg, € B and zy,a,, Tv,,0d1s Toido» T, 0dy E B (€€
Fig. 8 for an example with ¢ = 4).

If (a) holds then the solution depicted in Figure 7 settles this case, and if (b) holds then the solution depicted

in Figure 8 settles this case.
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U1 V2 U3 V4 Vs Ve U7 1)|C| We

o 0 0 0O O 0O 0 o0 0 0

el 1 0 1 0 1 o0 1 0 1

dy o £ o £ o0 1 o0 1 1

da 0o 3 0 £ 0 0 O 0o | %

ds 0 0 0 0 0 0 O 0 0

dip

t1

trvpl2| 0 0 0 0 0 0 0 .. 0 0

F1GURE 8. Solution for the proof of Theorem 4.9, for i = 2. The variables in boldface do not

belong to B.
U1 V2 U3 V4 Vs Ve U7 1)|C| We
co 1 0 3 3 3 0 1 0 [ 1
c 0o 0o 2 o %+ 0 o0 0 | 1
dy 0o 1 0 £ 0 1 0 1 1
do 0 0 0 0 0 0 O 0 0
dp|

t1

trnvpj2| 0 0 0 0O 0 0 0 .. 0 0

FIGURE 9. Solution for the proof of Theorem 4.9. The variables in boldface do not belong to B.

(2) If wqg € B for every d € D, then there must exist some d; € D and i € {l,...,n} such that
Toieos Togsicos Toigacos Tvicrs Topocrs Togpndy & B. If such a structure is not present, then B contains at least
|C|/3 variables from {Zyey, Tve; foec. The solution specified by Figure 9 only has fractional values for these
variables and violates (4.5), thus establishing this case.

Therefore, for any set B we can construct a solution that violates the inequality (4.5) and satisfies (3.1)—(3.3).
Then, we conclude that for any set B the inequality (4.5) is not valid for Pg(L). O

Note that the disjunctive rank of (4.5) is not fully characterized by Theorem 4.9. If the hypothesis (b) does not
hold, i.e., if |C| =4 and |D| = 1, then the disjuctive rank depends on the existence of colors in 7\ DU {co, ¢1 },

as the following proposition shows. We ommit the proof since it is based on similar arguments as the proof of
Theorem 4.9.

Proposition 4.10. Assume |C| =4 and |D| = 1. If T\ DU{co,c1} # O then the disjunctive rank of (4.5) is 3,
and the disjunctive rank of (4.5) is 2 otherwise.
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V1 V2 U3 V4 Vs Ve U7 'U\C\ We
(SiE= (SiE= [C=2 [Cz | [C2
« |0 S 0 S 0 S 0 CT <]
o 1 0 1 0 1 0 1 0 1
2 2 2 2
t 0 & 0 Z 0 Z 0 Z 1
ts |0 0 0 0 0 0 0 0 0

o
o
o
o
o

tri 2| 0 0 0

FIGURE 10. A solution violating (4.5).

Theorem 4.9 and Proposition 4.10 leave the case D = () open. We conjecture the rank to be 1 in this case.
The solution depicted in Figure 10 violates the inequality (4.5) but satisfies (3.1)—(3.3). In order to prove that
the rank of (4.5) is at most 1, we must take a singleton A and show that (4.5) holds for Py (L). Unfortunately,
we were not able to settle this case. We conjecture that A = {2y, } may allow to complete such a proof,
but showing that a solution (x,w) € Py(L) with x,,,, = 0 satisfies the inequality does not seem to be a
straightforward task.

Theorem 4.11. The disjunctive anti-rank of (4.5) is p —5 if D # (.

Proof. We first prove that for any set A C V with p — 4 variables, the inequality (4.5) is valid for Py(L). Let
(z,w) be an arbitrary extreme point in Py (L), which has, by Theorem 2.3, at most four variables with fractional
values.

If > gepWa > 2, then the RHS of (4.5) is greater than or equal to (1 + wCO)%. Constraint (3.1) ensures
D_ueC,, 2uceDU{eo} Tue < % which, together with Lemma 3.1(i), implies that (4.5) is satisfied. We, therefore,

vy
restrict ourselves to the case > depWa < 1. Assume that this holds and consider the following cases:

(1) 1f Zvecvz Typey = |2£|, then >, co\ o} Tvee = % — 1. Also, the second term in the LHS of (4.5)
is less than or equal to |C|/2. Since (v,w) satisfies the model constraint (3.3), then > __,w. +
> ceT\DU{eo,e1} Zuecvl Zye > 1. Thus, the inequality (4.5) is satisfied.

2 b
value, and x,, # 0 for all v € C,,. Since at most four variables can take fractional values, then at
most two variables from {y¢, }vec,, can take fractional values, and this implies that x,., = 0 for every

v
v € Cy,. Therefore, 3 o\ (4,} Tveo < I°l _1 and the LHS of (4.5) is less than or equal to |C| — 1. As

(2) If |2£| —1< > vec,, Toeo < L€l then we, = 1, at least one variable from {%veo buec,, takes a fractional

2
> vec (Tueo + Tue,) < |C[ — 1 by constraint (3.3), then Y- .o\ (¢ o1} Zuecvl ZTye > 1. If wg, < 1 for some

di € D, then @yq, = 0 for every v € Cy,. S0, 3 e\ pufeo.er} Zuecvl Zye > 1 and the inequality (4.5) is
satisfied. If wg, = 1 for some dy € D (hence wq = 0 for every d € D,d # dy since ) 4. Wa < 1), then the
inequality (4.5) is trivially satisfied.

(3) Ifo < Zvecvz Typcy < % — 1 and we, = 1, we claim that Zvec\{vz} Tyey < @ —1. To this end, consider
the following cases:

(a) If 2ye, € Z for all v € C,, or for all v € C,,, then ZueC\{uz} Ty < @ —1.

(b) If there exist xy,c, € Cy, and ¢, € Cyp, With 0 < Zy,cq, T, ¢, < 1 and such that vivy ¢ E, then there
exist colors cz,c3 € T\{co} such that x,,c, and z,,,., take fractional values. Since (x,w) has at most
four variables with fractional values, then @y, _,co = T, 1o = T, _,co = Tu,,, ,co = 0, where indices are
taken modulo n. This implies that at least three variables from {xyc, }vec\ fv,} take null values, hence

c
e oz} Toeo < 5 1
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(c) If there exist zy,c, € Cu, and x,,,¢, € Cy, With 0 < 24,¢q, Ty, ¢, < 1 and such that v;vp € E, then a
.. C
similar argument shows that z,, ., = Loy, ico = 0. Therefore, Zvec\{w} Tyey < % — 1.

In all three cases the claim holds, hence the LHS of (4.5) is less than or equal to |C|—2. As the RHS of (4.5)
is greater than or equal to this value, the inequality (4.5) is satisfied.

(4) It Zvecw Tye, = 0 and we, =1, then 3- o\ (4, Tvey < @ On the one hand, if wy, = 1 for some
di € D, the assumption ), wg < 1 implies wg = 0 for every d € D,d # d;. Then, the LHS of (4.5) is
equal t0 3, o {y,} Tveo + Zvecvz Zpd, which, by the model constraint (3.3), is less than or equal to |C|— 1.
We conclude that the inequality (4.5) is satisfied. On the other hand, if ), ,wq < 1, then at most one
variable from {xvd}vecwdep can take a fractional value, since at most four variables take fractional values
in (z,w). This implies Zvec,,2 Y odep Tvd < D gep Wd, and the inequality (4.5) is satisfied.

(5) If 0 < we, < 1, then at most three variables from {zyc}vec,cer are allowed to take fractional values.
Therefore, at most one variable from {Z,¢, }vec can take a fractional value. Furthermore, if z,,., takes a
fractional value, then at most one variable from {wg}q4ep can take a value different from 0 (since otherwise
we would have more than four variables with fractional values). Let wg, be such variable, and consider the
following cases:

(a) If wg, = 1 and @ -1< Zvecw Tod, < %, then, as > cc(Tve, +Tvq;) < |C| — 1, the sum
ZceT\Du{co,cl} Zuecvl Zye 1s greater than or equal to 1. Then the inequality (4.5) is satisfied.

(b) If wg, = 1 and Zvecw Tod, < % — 1, then the LHS of (4.5) is less than or equal to 2w, + % - L

Therefore, the inequality (4.5) is satisfied.

(¢) If wg, < 1, then x,,4, is the only variable in {4, }vec allowed to take a non-null value (if z,q, > 0 for
some u # vy, then x,4, < wg, < 1, thus generating at least five variables with fractional values). So,
the LHS of the inequality is less than or equal to 22,,¢, + Zv,d,- As this value is less than or equal to
2w, + wq, , the inequality (4.5) is satisfied.

(6) If we, = 0, then the LHS of (4.5) is equal to Zvecw > dep Twoa- Consider the following cases:

(a) If > cpwa < 1, then a similar argument as in Case 4 shows that (4.5) holds.

(b) If wg, =1 for some dy € D, then the LHS of (4.5) is equal to Zvecw Tod, - If Zvecw Tod, < % -1,

then the inequality (4.5) is satisfied. If % -1< Zvec,,2 Tod, < %, then Zvecvl Zyd, = 0. Therefore,

> ceT\DU{co,e1} Zuecvl Zye > 1 and again the inequality (4.5) is satisfied.

We conclude that the disjunctive anti-rank of (4.5) is less than or equal to p — 5.

We now prove that the disjunctive anti-rank is greater than or equal to p — 5. Let dy € D and define B CV
to be the set V\ {Zy,c1, Tordss Tuger s Tosdy » Wd, §, which has |B| = p — 5. Let z = (v, w) € Pg(L) be the feasible
solution depicted in Figure 11. This solution satisfies the model constraints, violates the inequality (4.5) and
the variables in B take 0-1 values. Hence, the disjunctive anti-rank is greater than or equal to p — 5 and the
theorem follows. O

4.4. Further families of valid inequalities

We now present results for the rest of the families presented in [10]. We do not include the proofs of the
following theorems as they involve similar arguments to the previous ones.

Definition 4.12. Let v; € C and let ¢g,c1 € T, ¢ # ¢1. The reinforced two-color inequality associated with

C, vy, cg and ¢ is
C C
Z Ty + Z (l'uco + l'ucl) < % + (T - 1) Wey, - (47)
ueC\{v1} u€Cyy

Theorem 4.13. The disjunctive rank of (4.7) is L‘%‘j and the disjunctive anti-rank of (4.7) is p — (|C| + 1).
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Vi V2 VU3 V4 VUs Vs U7 Vic| | We

co 0 1 0 1 0 1 0 1|1

a : 0 3 0 1 0 1 0 | 1

dy : 0 2 0 0 0 O 0o |

da 0O 0 0 0 0 0 0 0|0

dip|

t1

trwp-2 |0 0 0 0O 0 0 0 .. 0 |0

F1GURE 11. Solution for the proof of Theorem 4.11. The values in boldface correspond to the
variables in V\B

Definition 4.14. Let vy, vs,v3 € C be three consecutive vertices and let ¢y € 7. Let D,D" C 7 \ {co} such
that DND’' = (). The three-consecutive vertices inequality associated with C, vy, vs, v3, cg, D, and D’ is

Z wuco"_z :L.’U3C+Z Tyt Z Loyye < (g - 1) We,+ Z Wet Z Z Tyc-

ueC\{v2} ceD ceD’ ceDUD’ ceDUD’ u€ECy, \{va} c€T\({co}UDUD’)
(4.8)

Theorem 4.15. If 7\ (DUD' U{co}) =0, then the disjunctive rank of (4.8) is
1) D+ D]+ 1, if D#0, D' #0 and |C| > BEZ122;
)
) 2, if1C| =4, D #0, D' £0 and |D| +|D'| = 3;
4) [D'|, if D =0;
) D], if D = 0.
If [T\ (DUD' U{co})| > 1, then the disjunctive rank of (4.8) is
1) D]+ D'+ ) i puD| > 2
2) [I§]irpup|=1;
3) 0, i | DUD|=0.
The disjunctive anti-rank of (4.8) is
(2) p—6,if [DUD'|=1;
(3) 0, if DUD = 0.
Definition 4.16. Let vy, v9,v3,v4 € C be four consecutive vertices and let ¢y, c1,co € 7. The four-consecutive
vertices inequality associated with C, vy, va, v3, v4, Cg, ¢1, and co is

C
Z Tuco + Z Tucy + Ty co +Toger < <|2—| = 1> (Wey + we, )+ Z Typet Z Tyyet1.

u€C\{v3} u€C\{v2} c€T\{co,c2} ceT\{c1,c2}

(
(
(

(4.9)
Theorem 4.17. The disjunctive rank of (4.9) is 4. The disjunctive anti-rank of (4.9) is p — (|C| + 1).



DISJUNCTIVE RANKS AND THE ACYCLIC COLORING POLYTOPE 643

5. CONCLUSIONS AND OPEN PROBLEMS

In this work we studied the disjunctive rank of six families of valid inequalities presented in a previous work.
We introduced a dual concept, the disjunctive anti-rank of a valid inequality, which gives the number of BCC
iterations needed in order to always obtain a polytope that satisfies the inequality. It is interesting to note that
the disjunctive rank of the families of inequalities studied in this work does not seem to be correlated with
the practical contribution of each family to a branch-and-cut procedure for acyclic coloring. In the preliminary
branch-and-cut procedure implemented in [10], the two-color inequalities (4.1) and the distinguished colors
inequalities (4.2) allowed to achieve the best performances. This observation does not seem to correlate to the
disjunctive ranks presented in Section 4.

This work leaves open many issues, among which we can mention the following ones.

e The rank and anti-rank for the prominent vertex inequalities is not fully characterized by the results in this
paper. It would be interesting to further explore this issue.

e In this work we settled ourselves to exploring the rank of the known valid inequalities for the standard
formulation of acyclic coloring associated with the BCC operator, since this operator provides a neat envi-
ronment for such study. Anyway, it would be interesting to study the rank of these inequalities under the
other known lift-and-project operators. In particular, it would be interesting to assess whether the ranks are
similar across the different operators.

e Finally, exploring the Chvéatal rank of these inequalities may also be an interesting task. This could not be
an easy task for some of the more involved valid inequalities.

Acknowledgements. We are indebted to the annonymous reviewer for his/her detailed comments and suggestions, which
greatly helped to improve this paper.
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