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EQUILIBRIUM JOINING STRATEGIES IN M/M/1 QUEUES
WITH WORKING VACATION AND VACATION INTERRUPTIONS ∗

Kaili Li1, Jinting Wang†,1, Yanjia Ren1 and Jingwei Chang1

Abstract. We study the equilibrium joining strategies for customers in an M/M/1 queue with work-
ing vacations and vacation interruptions. The service rate switches between a low and a high value
depending on system dynamics. The server will take a multiple working vacation when the system is
empty, during which a low service rate is provided to the arriving customers if any. Upon completion
of the first customer’s service, given that the system is not empty, the working vacation will be termi-
nated which means the server comes back and serves the following customers with a higher service rate.
Otherwise, if the system is found empty upon completion of the first service, the server will continue
his working vacation. Arriving customers may or may not know the state of the server and/or the
number of the customers upon arrival, but they have to decide whether to enter the system or balk
based on a linear reward-cost structure. We investigate customer behavior according to different levels
of information regarding the system state. The equilibrium strategies for the customers are derived and
the stationary behavior of the system under these strategies are analyzed. Finally, the effect of different
levels of information on equilibrium thresholds and equilibrium entrance probabilities is illustrated by
several numerical examples.
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1. Introduction

In many practical queueing scenarios, servers may become unavailable for a random amount of time when
there are no jobs in the waiting line at a service completion instant. This period of absence time called server
vacation time and generally for some economic reasons or routine system maintenance, queueing systems with
vacation are frequently used in telecommunication and manufacturing fields and extensively studied in the
queueing literature. Detailed surveys about classical vacation queueing systems are contained in the monographs
of Takagi [17] and Tian and Zhang [18], among others.

During the last decade, considerable attentions have been devoted to the economic analysis of queueing sys-
tems with strategic customers’ behavior. For the general theory on this topic, interested readers are referred
to Hassin and Haviv [9] and Stidham [13] for extensive surveys. In particular for the game-theoretic analysis
of vacation queueing systems, Burnetas and Economou [2] first presented a Markovian queue with setup times
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and customer strategic behavior under four different levels of system information, i.e., fully observable, almost
observable, almost unobservable and fully unobservable were studied. Economou and Kanta [4] discussed an
observable M/M/1 queue with server breakdowns and repairs. For the fully and partially observable queues, Liu
et al. [10] introduced classical single vacation policy, whereas Wang and Zhang [19] focused on server breakdowns
and delayed repairs. Sun et al. [15, 16] considered fully observable and unobservable queues with several types
of setup/closedown policies: interruptible, skippable and insusceptible policies, respectively. Moreover, Guo and
Hassin [7, 8] elaborately studied fully observable and unobservable queues with homogeneous and heteroge-
neous customers under N-policy, respectively. Recently, Economou et al. [5] further discussed the unobservable
and partially observable queues with general service and vacation times. On the other hand, for discrete-time
queueing systems, Ma et al. [11] investigated some Geo/Geo/1 queues with multiple vacations.

All the previous literature above considers customers’ behavior in queueing systems with various classical
vacation policies. That is, the server stops serving customers during a vacation period. Motivated by the analysis
of a WDM optical access network using multiple wavelengths which can be reconfigured, Servi and Finn [12]
introduced a half-vacation policy called working vacation (WV) in which the server serves customers at a low
rate rather than stop working during the vacation time. This vacation policy is different from the classical
vacation queueing models. They studied the M/M/1/WV system and obtained the total numbers and expected
mean sojourn time of the customers in the queue. Wu and Takagi [20] generalized their study to an M/G/1 queue
with working vacation. Baba [1] discussed a GI/M/1 queue with multiple working vacations. Do [3] studied an
M/M/1 retrial queue with working vacations which is motivated by the performance analysis of a Media Access
Control function in wireless systems. However, studies on customers’ equilibrium balking strategies in queues
with working vacation appeared very few. Sun and Li [14] and Zhang et al. [21] both studied the single-server
Markovian queues with multiple working vacations in which customers maximize their benefit, and they derived
the customers’ equilibrium and socially optimal behavior under different levels of the system information.

In some practical situations, it is noted that the server may terminate his working vacation to improve the
quality of service and provide more flexible service scheme. A practical example of the proposed model arises
from health care scenario. We consider a telephone consultation service system staffed with a chief physician
(called main server) and a physician assistant (called substitute server). The physician assistant only provides
service to the patients when the chief physician is on vacation (called working vacation) and the service rate
of the physician assistant is usually lower than that of the chief physician. When the chief physician finds no
patient call, he will need to rest from his work, i.e., go on a vacation. During the chief physician is on vacation,
the physician assistant will serve the patients, if any, and after his service completion if there are patients in the
system, the chief physician will come back from his vacation no matter his vacation ends or not, i.e., vacation
interruption happens. Meanwhile, if there is no patient when a vacation ends, the chief physician begins another
vacation, otherwise, the chief physician takes over the physician assistant. To understand the patient’s condition,
the chief physician will restart his service no matter how long the physician assistant has served the patient.

To the best of authors’ knowledge, there is no work concerning customers’ equilibrium balking strategies
in queue with working vacation and vacation interruptions. The main objective of our work is to study the
customers’ equilibrium balking strategies in this queueing system. When customers arrive at the system, in
the light of their acquired different precision levels of system information, they need to make decisions of
whether to join the queue or not. Here we study four types of queueing systems: the observable queues, the
almost observable queues, the almost unobservable queues and the unobservable queues. Customer equilibrium
strategies are obtained in each case, along with the stationary behavior of the corresponding system and the
social benefit for all customers. The effect of the information level on the equilibrium behavior and the social
benefit are investigated via analytical and numerical comparisons.

This paper is organized as follows. In Section 2 we describe the model and the reward-cost structure. In
Section 3, the equilibrium threshold strategies are derived in fully observable and almost observable queues. In
Section 4, we study the almost unobservable and fully unobservable queues and the equilibrium mixed joining
probabilities are derived. In Section 5, some numerical examples are presented to investigate the effects of various
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Figure 1. Transition rate diagram of the original model.

values of parameters on customers’ behavior in the considered cases. Finally, in Section 6, some conclusions are
given.

2. Description of the model

We consider a single server Markovian queue with infinite waiting room under the FCFS discipline, where
potential customers arrive according to a Poisson’s process with rate λ. The server works with service rate μ1 and
it goes to a vacation period once there is no customer upon completion of a service. If customers arrive during
the vacation time, the system provides a low service rate μ0 (μ0 < μ1). We assume that the working vacation
time is exponentially distributed with of mean 1/θ. When a working vacation ends, if there is no customer in
the queue, the server takes another working vacation. That is, the server adopts a multiple working vacation
policy. However, the server will terminates its vacation if there are more follow-up customers waiting in the
queue when the first customer completes the service. The service rate switches from μ0 to μ1 after the vacation
interruption. It is assumed that arrival times, service times, working vacation times are mutually independent.

The state of the system can be represented by a pair (N (t) , I (t)) at time t, where N(t) denotes the number
of customers in the system and I(t) stands for the state of the server (0: on working vacation; 1: normal working
state) respectively. It is easy to see that the process {N(t), I(t), t ≥ 0} is a two-dimensional continuous time
Markov chain with state space S = {(n, i)|n = 0, 1, 2, . . . ; i = 0, 1} and non-zero transition rates: q(n,i)(n+1,i) =
λ, n = i, i + 1, i + 2, . . . ; i = 0, 1; q(1,1)(0,0) = μ1; q(1,0)(0,0) = μ0; q(n+1,1)(n,1) = μ1; n = 1, 2, 3 . . . q(n+1,0)(n,1) =
μ0; n = 1, 2, 3 . . . q(n,0)(n,1) = θ; n = 1, 2, 3 . . . The corresponding transition rate diagram is illustrated in Figure 1.
We are interested in customer strategic behavior when they can decide whether to join the system or balk based
on available information upon their arrival. More specifically, we assume that every customer gets a reward of
R units for completing service, but there exists a waiting cost of C units per time unit when they are waiting
in the queue or in service. Customers are risk neutral and they want to maximize their expected net benefit.
Throughout the paper, it is assumed that

R > C

(
1

μ0 + θ
+

θ

μ0 + θ
· 1
μ1

)
,

which enables that when a customer finds the system empty then he will join in the queue because the profit for
service absolutely surpasses the expected cost. Finally, the decisions are irrevocable, that is, reneging of entering
customers and retrials of balking customers are not allowed.

In the next sections we investigate equilibrium threshold strategies for joining or balking the queueing system.
Depending on the information available to customers at their arrival epoch, there are four different levels of
information, before their decisions are made (see, for example Burnetas and Economou [2]).

(1) Fully observable case: Customers are informed about the queue length and the server state.
(2) Almost observable case: Customers are informed only about the queue length.
(3) Almost unobservable case: Customers are informed only about the server state.
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Figure 2. Transition rate diagram for the (ne(0), ne(1)) threshold strategy in the fully observ-
able model.

(4) Fully unobservable case: Customers are not informed about the queue length nor the server state.

For the terminology, we adopt throughout this paper that Sfo stands for the individual benefit per time unit
in fully observable case, and Sfu the individual benefit per time unit in fully unobservable case.

3. Equilibrium threshold strategies for the observable cases

In this section, we consider equilibrium customer strategies of threshold type in the fully observable and
almost observable cases. In the fully observable case where customers can observe both the state of the server
I(t) and the number of waiting customers N(t) at the arrival time t, a pure threshold strategy is given by a pair
(ne(0), ne(1)), and the balking strategy is ‘While arriving at time t, observe (N(t), I(t)); enter if N(t) ≤ ne(I(t))
and balk otherwise’. In the almost observable case where customers can observe only the number of waiting
customers N(t) at arrival time t, a pure threshold strategy is specified by a single number ne and the strategy
is ‘While arriving at time t, observe N(t); enter if N(t) ≤ ne and balk otherwise’.

3.1. Fully observable case

In the dynamics of the queueing system showed in Figure 2, where customers can observe both the state of
the server I(t) and the number of waiting customers N(t) at arrival time t in the fully observable case. And we
have the following results.

Theorem 3.1. In the fully observable M/M/1 queue with working vacations and vacation interruptions there
exist thresholds which are given by

ne(0) = �xe�, (3.1)

ne(1) =
⌊

Rμ1

C

⌋
− 1, (3.2)

where

xe =
Rμ1(μ0 + θ) − C(μ1 + θ)

C(μ0 + θ)
·

That is, when a customer arrives and finds the state of the system is (N(t), I(t)), if N(t) ≤ ne(I(t)), he will
join in the system, otherwise he will balk.

Proof. Based on the reward-cost structure which is defined on the system. For an arriving customer, his expected
profit is

Sfo(n, i) = R − CT (n, i), (3.3)
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where T (n, i) represents his expected mean sojourn time when the system is at state (N(t), I(t)) upon his
arrival. Then we can get balance equations as follows:

T (0, 0) =
1

μ0 + θ
+

θ

μ0 + θ
· 1
μ1

, (3.4)

T (n, 0) =
1

μ0 + θ
+

θ

μ0 + θ
T (n, 1) +

μ0

μ0 + θ
T (n − 1, 1), n = 1, 2, . . . , (3.5)

T (n, 1) =
n + 1
μ1

, n = 1, 2, . . . (3.6)

By iterating (3.5) and taking (3.6) into account , we obtain

T (n, 0) =
(u1 + θ) + (μ0 + θ)n

μ1(μ0 + θ)
, n = 1, 2, . . . (3.7)

It is obvious that T (n, 0) is strictly increasing for n form (3.7). A customer decides to enter if the reward for
service surpasses the spend of waiting. We can solve Sfo(n, i) = 0 to find thresholds, i.e.,

T (n, 0) =
(μ1 + θ) + (μ0 + θ)n

μ1(μ0 + θ)
=

R

C
,

T (n, 1) =
n + 1
μ1

=
R

C
·

By solving these two equations, we can get results (3.1) and (3.2).
As mentioned above, R > CT (0, 0), that is R > C( 1

μ0+θ + θ
μ0+θ · 1

μ1
), enables that when a customer finds

the system empty then he will join in the queue because the profit for service absolutely surpasses the expected
cost. By solving Sfo(n, i) ≥ 0 for n, using (3.3), (3.6) and (3.7), we obtain that the customer arriving at time
t decides to enter if and only if n ≤ ne(I(t)) where (ne(0), ne(1)) are given by (3.1) and (3.2). This strategy
is preferable, independent of what the other customers do, i.e. balks or join in. Furthermore, it is a weakly
dominant strategy. �

Remark 3.2. The individual optimal strategies are irrelevant to arrival rate λ. This is because when an arriving
customer decides to join a first-come first-served queue, future customers are not influenced by his decision. And
we consider the limiting case. When μ0 → 0, we can check that (ne (0) , ne (1)) is consistent with the thresholds
derived by Burnetas and Economou [2] for the M/M/1 queue with setup times.

Remark 3.3. By simple computation, one can concludes that the threshold ne(1) of our model is greater than
that in the model studied in [2]. It is quite intuitive that in our model when an arriving customer finds the
server is in working vacation, due to the fact of interruption policy, the waiting time should be shorter than
the model without vacation interruption. It is also noted that the expression of ne(0) keeps the same in both
models.

3.2. Almost observable case

In this section we study the almost observable case. In this case, the arriving customers can observe the
number of the present customers in the system, but can not observe the state of the server. Figure 3 depicts
the transition diagram of the dynamic of this model. We seek equilibrium strategies within the class of pure
threshold strategies. To this end, it is imperative to obtain the stationary distribution of the system when the
customers follow a given pure threshold strategy. We have the following results.

Lemma 3.4. In the almost observable M/M/1 queue with working vacations and vacation interruptions where
the customers enter the system according to a threshold strategy ‘While arriving at time t, observe N(t); enter
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Figure 3. Transition rate diagram for the ne threshold strategy in the almost observable model.

if N(t) ≤ ne and balk otherwise’, the stationary distribution is given as follows:

pao(n, 0) = σnp(0, 0), n = 0, 1, 2, . . . , ne, (3.8)

pao(ne + 1, 0) =
σne+1

1 − σ
p(0, 0), (3.9)

pao(n, 1) =
zσ − ρ

σ − ρ
(ρn − σn)p(0, 0), n = 1, 2, . . . , ne, (3.10)

pao(ne + 1, 1) = (
zσ − ρ

σ − ρ
ρne+1 +

ρ(1 − σ) − zσ(1 − ρ)
(σ − ρ)(1 − σ)

σne+1)p(0, 0), (3.11)

p (0, 0) =

[
zσ − ρ

σ − ρ

(
ρ

1 − ρ
− σ

1 − σ

)
− 1

σ − ρ

(
zσ − ρ

1 − ρ
ρne+2 − ρ (1 − z)

1 − σ
σne+2

)
+

σ

1 − σ

]−1

,

(3.12)

where

ρ =
λ

μ1
, (3.13)

σ =
λ

λ + μ0 + θ
, (3.14)

z =
μ0

μ1
· (3.15)

Proof. By routine procedure, we get the system balance equations as follows:

λp (0, 0) = μ1p (1, 1) + μ0p (1, 0) , (3.16)
(λ + μ0 + θ) p (n, 0) = λp (n − 1, 0) , n = 1, . . . , ne, (3.17)
(μ0 + θ) p (ne + 1, 0) = λp (ne, 0) , (3.18)
(λ + μ1) p (1, 1) = θp (1, 0) + μ0p (2, 0) + μ1p (2, 1) , (3.19)
(λ + μ1) p (n, 1) = λp (n − 1, 1) + μ1p (n + 1, 1) + θp (n, 0) + μ0p (n + 1, 0) ,

n = 2, . . . , ne, (3.20)
μ1p (ne + 1, 1) = λp (ne, 1) + θp (ne + 1, 0). (3.21)

By iterating (3.17), we can get

p(n, 0) =
(

λ0

λ0 + μ0 + θ

)n

p(0, 0), n = 0, 1, 2, . . . , ne. (3.22)
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By (3.18) and (3.22) we can get p(ne + 1, 0) as follow,

p(ne + 1, 0) =
(

λ

λ + μ0 + θ

)ne
(

λ

λ + θ

)
p(0, 0).

Letting σ = λ
λ+μ0+θ , ρ = λ

u1
, we can get (3.8) and (3.9).

On the other hand, by (3.20), we can get

μ1p(n + 1, 1) − (λ + μ1)p(n, 1) + λp(n − 1, 1) = −
(

θ(λ + μ0 + θ) + μ0λ

λ + μ0 + θ

)
σnp(0, 0). (3.23)

In the following, we use a rather standard method to solve this type of equation by solving a linear difference
equation with constant coefficients as μ1x

2 − (λ + μ1)x + λ = 0, see e.g. Elaydi [6] and Burnetas et al. [2].
It is readily seen that the above equation has two roots 1 and ρ and the common root of the homogeneous

transformation equation (3.23) is {
xhom

n = A1n + Bρn, ρ �= 1;

xhom
n = A1n + Bn1n, ρ = 1.

(3.24)

So the general solution of equation (3.23) is xgen
n = xhom

n + xspec
n , where xspec

n is a special root of the equa-
tion (3.23).

Next we want to find a special root of equation (3.23) to replace xspec
n , and find the special root is like Dσn

(when σ �= 1 and σ �= ρ), or like Dnσn(when σ = 1 or σ = ρ), or like Dn2σn(when σ = 1 = ρ). According to
the discussion on the root solution given by [2], we need only consider the common situation. That is, find the
special root is like Dσn for the regular case σ �= 1 and σ �= ρ. Therefore, by simple computation, the solution
of the equation (3.23) is given by

xgen
n = A1n + Bρn + Dσn, n = 1, 2, 3, . . . , ne − 1. (3.25)

Letting xn = Dσn and take (3.23) into account, we can get the value of D as follows.

D =
λ + θ

μ1 − μ0 − θ − λ
p (0, 0) = −zσ − ρ

σ − ρ
p(0, 0).

Now, we need to know the values of A and B for the purpose of getting the expression of xgen
n . Letting n = 1

and n = 2, using (3.25), we can get {
A + Bρ + Cσ = p(1, 1);

A + Bρ2 + Cσ2 = p(2, 1). (3.26)

We get p(1, 1) and p(2, 1) from (3.16) and (3.19)⎧⎨
⎩

p(1, 1) = λ(λ+θ)
μ1(λ+μ0+θ)p(0, 0);

p(2, 1) = λ(λ+μ1)(λ+θ)(λ+μ0+θ)−θλμ1(λ+μ0+θ)−μ0μ1λ2

μ2
1(λ+μ0+θ)2

p(0, 0).
(3.27)

Solving the equation (3.26), we can get A and B.{
A = p(2,1)−ρp(1,1)−Dσ2+Dσρ

1−ρ p(0, 0);
B = p(1,1)−Dσ

ρ = zσ−ρ
σ−ρ p(0, 0).

(3.28)
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With the help of known values of A, B, D and equation (3.25) we can obtain (3.10). Consequently, we can get the
expression of p(ne +1, 1) by taking (3.9) (3.10) into (3.21). Based on the above results, we can conclude that all
probabilities involved can be expressed via p(0, 0). Finally, we can get the expression of p(0, 0) by normalization
equation

ne+1∑
n=0

p(n, 0) +
ne+1∑
n=1

p(n, 1) = 1,

which reaches the result (3.22). This completes the proof of this theorem. �

Next, we will proceed to study the profit net of the almost observable case. In this case, the arriving customers
can only observe the number of customers. For an arriving customer, if he finds n customers in front of him and
decided to enter in this system, the sojourn time of an arriving customer is n+1

u1
+ μ1−μ0

μ1(μ0+θ) Pr (I− = 0|N− = n),

where Pr (I− = 0|N− = n) is the probability that the server is off when the system have n customers waiting.
So the profit for this customer is

R − C

[
n + 1
μ1

+
μ1 − μ0

μ1 (μ0 + θ)
Pr
(
I− = 0|N− = n

)]
. (3.29)

To find the equilibrium strategies of threshold type, we should compute Pr (I− = 0|N− = n) as follow.

Pr(I− = 0
∣∣N− = n ) =

λpao (n, 0)
λpau (n, 1) + λpau (n, 0) I {n ≥ 1} , n = 1, 2, . . . , ne + 1. (3.30)

where

I {n ≥ 1} =
{

0, n = 0;
1, n ≥ 1.

Taking (3.8)−(3.10) into (3.30), we can get

Pr(I− = 0
∣∣N− = n ) =

[
1 +

λ + θ

μ1 − μ0 − λ − θ

(
1 −

( ρ

σ

)n)]−1

, (3.31)

Pr(I− = 0
∣∣N− = n

e
+ 1) =

[
1 +

λ + θ

μ1 − μ0 − λ − θ

(
θ + μ0

ν1
λ

λ + θ
− μ0 + θ

λ + μ0 + θ
(
ρ

σ
)ne+1

)]−1

. (3.32)

Following the method used in Burnetas et al. [2], and according to (3.29), (3.31)and (3.32), we can define a
function as

f(x, n) = R − C(n+1)
μ1

− C(μ1−μ0)
(μ0+θ)μ1

{
1 + 1

μ1−μ0−λ−θ

[
(λ + θ − μ1−μ0

μ1
λx) − (λ + θ − λ(λ+θ)

λ+μ0+θx)( ρ
σ )n
]}−1

,

x ∈ [0, 1], n = 0, 1, 2, . . .

(3.33)

Next we will prove the existence of equilibrium threshold strategies and give the corresponding thresholds by
using f(x, n). Define

fL (n) = f(1, n) = R − C(n+1)
μ1

− C(μ1−μ0)
(μ0+θ)μ1

{
1 + 1

μ1−μ0−λ−θ [(λ+θ − μ1−μ0
μ1

λ)−(λ + θ − λ(λ+θ)
λ+μ0+θ )( ρ

σ )n]
}−1

,

x ∈ [0, 1], n = 0, 1, 2, . . . ,

(3.34)

fU (n) = f(0, n) = R − C(n+1)
μ1

− C(μ1−μ0)
(μ0+θ)μ1

{
1 + 1

μ1−μ0−λ−θ [(λ + θ) − (λ + θ)( ρ
σ )n]

}−1

,

x ∈ [0, 1], n = 0, 1, 2, . . . ,

(3.35)

we can obtain the following results.
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Theorem 3.5. For fL(n) and fU (n) defined by (3.34) and (3.35), there are finite non-negative integers
nL ≤ nU , such as

fU (0), fU (1), . . . fU (nU ) ≥ 0, fU (nU + 1) ≤ 0, (3.36)

and

fL(nU + 1), fL(nU ) . . . , fL(nL + 1) ≤ 0, fL(nL) ≥ 0, (3.37)

or

fL(nU + 1), . . . , fL(2), fL(1), fL(0) ≤ 0. (3.38)

In the almost observable M/M/1 queue with working vacations and vacation interruptions, equilibrium strategies
are ‘While arriving at time t, observe: enter if n ≤ ne and balk otherwise’ for ne ∈ {nL, nL + 1, . . . nU}.
Proof. Firstly, we prove that ne ∈ {nL, nL + 1, . . . nU}.
(1) It is readily seen that fU (0) > 0 as S(0) = R−CT (0, 0) > 0, and lim

n→∞ fU (n) = −∞, so there exist integers

nU that satisfy fU (nU ) ≥ 0, fU (nU + 1) ≤ 0.
(2) It can be easily proved that fU (n) > fL(n) for n = 1, 2, . . . So we can get that fL(nU +1) ≤ fU (nU +1) ≤ 0.

Then we have the conclusion above.
Next, we will prove that ne is the threshold. On one hand, for an arriving customer, and he decides to
enter the system, in which there are n(n ≤ ne) customers ahead of him, then his expected benefit is
S(n) = fU (n) > 0 by virtue of equation (3.36). So he prefers to enter the system.
On the other hand, for an arriving customer, and he decides to enter the system, in which there are n = ne+1
customers ahead of him, then his expected benefit is S(ne+1) = fL(ne+1) < 0 by equations (3.37) or (3.38).
So the customer prefers to balk the system.
So, we can conclude that any ne ∈ {nL, nL + 1, . . . , nU} is the threshold. �

Remark 3.6. In the present model, there is a “Follow-The-Crowd” (FTC) situation, in which ones optimal
response to a strategy x adopted by all others is increasing for x. Suppose a customer, there are n customers
ahead of him and he decides to enter while others follow the threshold ne, so we define his net benefit is Sne (n).
Next, we suppose that others follow the threshold ne + 1. In this case, for an arriving customer, his expected
benefit is Sne+1 (ne + 1) = fU (ne + 1) ≥ fL (ne + 1) = Sne (ne + 1) when there are ne + 1 customers ahead
of him and he decides to enter. So we can easily know that a threshold best response of the tagged customer
while others follow the threshold ne + 1 is greater than his best threshold response while others follow the
threshold ne. This means an arriving customer prefers to enter the system while others have a higher threshold.
In conclusion, we have an FTC situation.

4. Equilibrium threshold strategies for the unobservable cases

In this section we will focus on almost unobservable case and fully unobservable case in which equilibrium
mixed strategies exist.

4.1. Almost unobservable case

In this case, customers can observe the state of server I(t) only. Since all customers are assumed indistin-
guishable, we can consider the situation as a symmetric game among them. In this model, the arriving customers
have two pure strategies, to join or to balk. A mixed strategy is studied by the entrance probability of an arriv-
ing customer who informed the state of server. Our main point is to find the Nash equilibrium mixed balking
strategies.
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Figure 4. Transition rate diagram for the (q (0) , q (1)) mixed strategy in the almost unobserv-
able model.

Assume that all customers follow a mixed strategy (q (0) , q (1)) where q (i) is the probability of joining in
queue when sever is in state i. In this case, the system is similar to that described in Figure 1, the only difference
is the arrival rate λi = λq (i) for states where sever is in state i. The transition diagram is showed in Figure 4.

The system is stable if and only if λ1 < μ1. Let (pau (n, i) : (n, i) ∈ {(0, 0)} ∪ {1, 2, . . .} × {0, 1}) be the
stationary distribution of the corresponding system. We have following results.

Lemma 4.1. In the almost unobservable queue with working vacations and vacation interruptions in which all
customers follow a mixed balking strategy (q (0) , q (1)), where q (i) is the entrance probability when the server is
in state i, the stationary distribution is given as follows:

pau(n, 0) =
z (1 − σ (0)) (1 − ρ (1))

z (1 − ρ (1)) + ρ (0) − σ (0)
× σn (0) , n = 0, 1, 2 . . . , (4.1)

pau(n, 1) =
z (1 − σ (0)) (ρ (0) − σ (0)) (1 − ρ (1))

z (ρ (1) − σ (0)) [z (1 − ρ (1)) + (ρ (0) − σ (0))]
× [ρn (1) − σn (0)] ,

n = 0, 1, 2, . . . , (4.2)

where

σ (0) =
λ0

λ0 + μ0 + θ
, (4.3)

ρ(1) =
λ1

μ1
, (4.4)

ρ (0) =
λ0

μ0
, (4.5)

z =
μ1

μ0
· (4.6)

Proof. The balance equations are given as follows.

λ0p(0, 0) = μ1p(1, 1) + μ0p(1, 0), (4.7)
(λ0 + μ0 + θ)p(n, 0) = λ0p(n − 1, 0), n ≥ 1, (4.8)
(λ1 + μ1)p(1, 1) = θp(1, 0) + μ0p(2, 0) + μ1p(2, 1), (4.9)
(λ1 + μ1)p(n, 1) = λp(n − 1, 1) + μ1p(n + 1, 1) + θp(n, 0) + μ0p(n + 1, 0), n ≥ 2. (4.10)

By iterating (4.8) we can obtain

p(n, 0) =
(

λ0

λ0 + μ0 + θ

)n

p(0, 0).
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From (4.10) it follows that p (n, 1) (n = 1, 2, . . .) is a solution of the nonhomogeneous linear difference equation
with constant coefficients.

μ1xn+1 − (λ1 + μ1)xn + λ1xn−1 = −
(

θ +
λ0μ0

μ0 + λ0 + θ

)(
λ0

μ0 + λ0 + θ

)n

p (0, 0) .

Letting σ (0) = λ0
λ0+μ0+θ , ρ(1) = λ1

μ1
. By using the same approach as used in the proof of Lemma 1, we can

get (4.2).
Next, we consider an arriving customer who finds the server is at state i and we will give the expected sojourn

time of a customer that decides to enter given that the others follow the same mixed strategy (q (0) , q (1)).

Case 1. When the server is at state 1, the expected sojourn time is

Tau (1) =
E [N |1] + 1

μ1
· (4.11)

Case 2. When the server is at state 0, the expected sojourn time is

Tau (0) =
1

μ0 + θ
+

μ0

μ0 + θ

E [N |0]
μ1

+
θ

μ0 + θ

E [N |0] + 1
μ1

, (4.12)

where

E [N |i] =
∞∑

n=i

np (n, i)
∞∑

k=i

p (k, i)
· (4.13)

Computing E [N |i] by taking (4.1) and (4.2) into (4.13), we can get

E [N |0] =
∞∑

n=0

np (n, 0)
∞∑

k=0

p (k, 0)
=

σ (0)
1 − σ (0)

, (4.14)

E [N |1] =
∞∑

n=1

np (n, 1)
∞∑

k=1

p (k, 1)
=

1
1 − σ (0)

+
ρ (1)

1 − ρ (1)
· (4.15)

Taking (4.14), (4.15), (4.3) and (4.4) into (4.11), (4.12), we can deprive the Tau (0) and Tau (1) as follows:

Tau (0) =
μ0 + λ0 + θ

μ1 (μ0 + θ)
,

Tau (1) =
μ0 + λ0 + θ

μ1 (μ0 + θ)
+

μ1

μ1 − λ
·

Based on the reward-cost structure, the expected benefit for an arriving customer who is informed the server is
at state i is given as follows.

Sau (0) = R − C
μ1 + λ0 + θ

μ1 (μ0 + θ)
, (4.16)

Sau (1) = R − C

μ1 − λ1
− C

μ1

λ0 + μ0 + θ

μ0 + θ
· (4.17)

Now we will give the mixed equilibrium strategies of an arriving customer in the almost unobservable case.
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Theorem 4.2. In the almost unobservable model of the M/M/1 queue with working vacations and vacation
interruptions and λ < μ1, we can get a unique Nash equilibrium mixed strategy (q (0) , q (1)), ‘observe I(t) and
enter with probability qe (I (t))’, where the (q (0) , q (1)) is given as follows:

Case 1. C(μ1+θ)
μ1(μ0+θ) < R < C(μ1+λ+θ)

μ1(μ0+θ) .

Case 1a. C(μ1−μ0)
μ1(μ0+θ) < C

μ1
.

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
, 0
)

.

Case 1b. C
μ1

≤ C(μ1−μ0)
μ1(μ0+θ) ≤ C

μ1−λ .

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
,
μ1 (μ1 − θ − 2μ0)

λ (μ1 − μ0)

)
·

Case 1c. C(μ1−μ0)
μ1(μ0+θ) > C

μ1−λ .

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
, 1
)

,

Case 2. R ≥ C(μ1+λ+θ)
μ1(μ0+θ) .

Case 2a. R < C
μ1

+ C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) = (1, 0) ·
Case 2b. C

μ1
+ C

μ1

λ+θ+μ0
μ0+θ ≤ R ≤ C

μ1−λ + C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) =

⎛
⎝1,

1
λ

⎛
⎝μ1 − C

R − C(λ+μ0+θ)
μ1(μ0+θ)

⎞
⎠
⎞
⎠ ·

Case 2c. R > C
μ1−λ + C

μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) = (1, 1) .

Proof. Now we consider a customer’s expected net benefit when the server is at state 0, and he decides to enter.

Firstly, we consider qe (0). There are two cases:

Case 1. C(μ1+θ)
μ1(μ0+θ) < R < C(μ1+λ+θ)

μ1(μ0+θ) . In this case, we can get Sau (0) = R − C u1+λ0+θ
u1(u0+θ) < 0. When the system

is empty, and all customers decide to enter with probability 1, then the tagged customer will get a negative
benefit if he decides to enter. And if all customers decide to enter with probability 0, then the tagged customer
will get a positive benefit if he decides to enter. So there is a mixed equilibrium strategy. We can get this mixed
equilibrium strategy by solving the following equation.

Sau (0) = R − C
μ1 + λqe (0) + θ

μ1 (μ0 + θ)
= 0, (4.18)

which gives the the solution of qe(0) as

qe (0) =
1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
·

Case 2. R ≥ C(μ1+λ+θ)
μ1(μ0+θ) . In this case, we can get Sau (0) = R − C μ1+λ0+θ

μ1(μ0+θ) ≥ 0, and no matter what strategy
the other customers adopt, the tagged customer will get a positive benefit if he decides to enter. Therefore
qe (0) = 1.
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Next we consider qe (1). We tag an arriving customer when the server is at state 1. His expected benefit is as
follows:

Sau (1) = R − C

μ1 − λ1
− C

μ1

λ0 + μ0 + θ

μ0 + θ
=

{
C(μ1−μ0)
μ1(μ0+θ) − C

μ1−λqe(1) , case1;
R − C

μ1−λqe(1) − C
μ1

λ+μ0+θ
μ0+θ , case2.

To find qe (1) we must examine Cases 1 and 2, and consider some possible subcases. By using a similar way, we
can get the mixed equilibrium strategy as follows:

Case 1. C(μ1+θ)
μ1(μ0+θ) < R < C(μ1+λ+θ)

μ1(μ0+θ) .

Case 1a. C(μ1−μ0)
μ1(μ0+θ) < C

μ1
.

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
, 0
)

.

Case 1b. C
μ1

≤ C(μ1−μ0)
μ1(μ0+θ) ≤ C

μ1−λ .

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
,
μ1 (μ1 − θ − 2μ0)

λ (μ1 − μ0)

)
.

Case 1c. C(μ1−μ0)
μ1(μ0+θ) > C

μ1−λ .

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
, 1
)

.

Case 2. R ≥ C(μ1+λ+θ)
μ1(μ0+θ) .

Case 2a. R < C
μ1

+ C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) = (1, 0) .

Case 2b. C
μ1

+ C
μ1

λ+θ+μ0
μ0+θ ≤ R ≤ C

μ1−λ + C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) =

⎛
⎝1,

1
λ

⎛
⎝μ1 − C

R − C(λ+μ0+θ)
μ1(μ0+θ)

⎞
⎠
⎞
⎠ ·

Case 2c. R > C
μ1−λ + C

μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) = (1, 1) .

This completes the proof. �
Remark 4.3. In Theorem 3, we assumed that λ < μ1, now we consider the opposite case. Similarly, we can
get the mixed strategy. In the almost unobservable model of the M/M/1 queue with working vacations and
vacation interruptions and λ ≥ μ1, we can get a unique Nash equilibrium mixed strategy (q (0) , q (1)) ‘observe
I(t) and enter with probability qe(I(t))’ where (q (0) , q (1)) is given as follows:

Case 1. C(μ1+θ)
μ1(μ0+θ) < R < C(μ1+λ+θ)

μ1(μ0+θ) .

Case 1a: C(μ1−μ0)
μ1(μ0+θ) < C

μ1
.

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
, 0
)
·

Case 1b: C(μ1−μ0)
μ1(μ0+θ) ≥ C

μ1
.

(qe (0) , q (1)) =
(

1
λ

(
Rμ1

C
(μ0 + θ) − μ1 − θ

)
,
μ1 (μ1 − θ − 2μ0)

λ (μ1 − μ0)

)
·
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Figure 5. Transition rate diagram for the qe mixed strategy in the fully unobservable model.

Case 2. R ≥ C(μ1+λ+θ)
μ1(μ0+θ) .

Case 2a: R < C
μ1

+ C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) = (1, 0) .

Case 2b: R ≥ C
μ1

+ C
μ1

λ+θ+μ0
μ0+θ .

(qe (0) , q (1)) =

⎛
⎝1,

1
λ

⎛
⎝μ1 − C

R − C(λ+μ0+θ)
μ1(μ0+θ)

⎞
⎠
⎞
⎠ ·

4.2. Fully unobservable case

Finally, we consider the fully unobservable case. In this case, the customer do not observe the server state
at all. In this model, there are also two strategies, to join or to balk. Here is a mixed strategy for an arriving
customer is specified by the probability q of entering and the actual arrival rate is λq (1) = λq (0) = λq. Figure 5
gives the corresponding transition diagram.

Using known expressions of p (n, 0) and p (n, 1) in Lemma 3, letting λq (1) = λq (0) = λq, the mean number
of the customers in the system is

E [N ] =
∞∑

n=1

n (p (n, 0) + p (n, 1)) =
zσ (0) (1 − p (1))2 + (p (0) − σ (0)) (1 − σ (0) p (1))

(1 − p (1)) (1 − σ (0)) (z − σ (0))
· (4.19)

By using the Little’s Law, we can get the sojourn time of a customer who decides to enter,

E [T (N)] =
E [N ]

λq
=

zσ (0) (1 − p (1))2 + (p (0) − σ (0)) (1 − σ (0) p (1))
λq (1 − p (1)) (1 − σ (0)) (z − σ (0))

· (4.20)

Theorem 4.4. In the fully unobservable model of the M/M/1 queue with working vacations and vacation in-
terruptions and λ < μ1, we can get a unique Nash equilibrium mixed strategy ‘enter with probability qe’, where
qe is given by

qe =

⎧⎨
⎩

q∗e , if R ∈
(

C
μ0+θ + Cθ

μ1(μ0+θ) ,
C

μ0+θ + Cμ1(λ+θ)
[λ(μ1+μ0)+μ1(μ0+θ)](μ1−λ)

)
;

1, if R ∈
(

C
μ0+θ + Cμ1(λ+θ)

[λ(μ1+μ0)+μ1(μ0+θ)](μ1−λ) ,∞
)
,

where q∗e is the unique root of equation

R − C

(
1

μ0 + θ
+

μ1 (λq + θ)
[λq (μ1 − μ0) + μ1 (μ0 + θ)] (μ1 − λq)

)
= 0.
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Proof. The expected benefit of an arriving customer is

Sfu (q) = R − CE[T (N)] = R − C

(
1

μ0 + θ
+

μ1 (λq + θ)
[λq (μ1 − μ0) + μ1 (μ0 + θ)] (μ1 − λq)

)
·

Firstly, we investigate the monotonicity of Sfu. Define

g (q) =
μ1 (λq + θ)

[λq (μ1 − μ0) + μ1 (μ0 + θ)] (u1 − λq)
,

dg (q)
dq

=
μ1λ (μ1 − μ0) (λq + θ)2 + μ1λμ0(μ1 + θ)2

{[λq (μ1 − μ0) + μ1 (μ0 + θ)] (μ1 − λq)}2 ·

Since μ1 > μ0,
dg(q)

dq = u1λ(μ1−μ0)(λq+θ)2+μ1λμ0(μ1+θ)2

{[λq(μ1−μ0)+μ1(μ0+θ)](μ1−λq)}2 > 0, q ∈ [0, 1], we can conclude that g (q) is strictly
increasing, and therefore Sfu (q) = R − Cg (q) is strictly decreasing. So, there exists a unique solution of
equation Sfu (q) = 0, denoted by q∗e .

When R ∈
(

C
μ0+θ + Cθ

μ1(μ0+θ) ,
C

μ0+θ + Cμ1(λ+θ)
[λ(μ1+μ0)+μ1(μ0+θ)](μ1−λ)

)
, we find a unique root q∗e in (0,1). On the

other hand, for the case of R ∈
(

C
μ0+θ + Cμ1(λ+θ)

[λ(μ1+μ0)+μ1(μ0+θ)](μ1−λ) ,∞
)
, for an arriving customer the expected

benefit is positive for every q. In this case qe = 1. �

5. Numerical examples

In this section, we give some numerical examples to study the sensitivity with varies of parameters. Specif-
ically, we discuss the equilibrium thresholds in observable cases and the equilibrium entrance probability in
unobservable cases.

In Figures 6−10, we investigate the varies of equilibrium thresholds in observable cases with the varies of
setup rate θ, arrival rate λ, service reward R, normal service rate μ1, and vacation service rate μ0, along with
the assumption that C = 1. In Figures 6−10, we can observe that the equilibrium thresholds for the almost
observable cases ne ∈ {nL, nL + 1, . . . , nU} is contained in the range from ne (0) to ne (1) for the fully observable
cases. This situation shows that when the customers do not know the server state, their entrance probability is
always in the middle of the two separated thresholds.

Next, we study the Figures 6−10 one by one. In Figure 6, we observe that thresholds are increasing functions
to the parameter θ except for ne (1) which is fixed. The reason is that the customers will reduce their sojourn
time when the server is more faster to change state from working vacation to the normal working level. The
customers are willing to enter. And ne (1) is always fixed since θ is irrelevant to customers decision, which is
concluded in Theorem 3.1. Under different arrival rate λ, which can be studied in Figure 7. We can know ne (0)
and ne (1) are fixed, since λ is irrelevant to customers decision when the customers know the fully information
from Theorem 3.1. And the thresholds for the almost observable case are increasing with the λ, which indicates
that an arriving customer prefers to enter the queue, when he only knows the number of waiting customers upon
arrival. Figure 8 shows that the equilibrium thresholds are increasing with the increase of reward R. Finally, in
Figures 9−10, with the increasing of normal service rate μ1 and vacation service rate μ0, we can conclude that
customers are willing to enter the system.

Similarly, in Figures 11−15, the equilibrium entrance probability qe is always between qe (0) and qe (1). At
the same time, one can see that there are some differences among the Figures 11−15, such as the order of
qe (0) and qe (1). So we can conclude that an arriving customer enters when they have no information about the
system with a probability between those in almost unobservable cases that they are informed the server state.

Finally, we study the sensitivity to the setup rate θ, arrival rate λ, server reward R, work service rate μ1, and
vacation service rate μ0. The entrance probabilities are increasing with the reward R. The reason is customer will
get more reward, they prefer to enter. With the increasing of θ, qe (0) and qe are increasing, qe (1) is decreasing
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Figure 6. Equilibrium thresholds for observable models vs. θ for λ = 0.8, μ1 = 1, R = 25, C =
1, μ0 = 0.01.
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Figure 7. Equilibrium thresholds for observable models vs. λ for θ = 0.05, μ1 = 1, R = 25, C =
1, μ0 = 0.01.
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Figure 8. Equilibrium thresholds for observable models vs. R for λ = 0.4, μ1 = 1, θ = 0.05, C =
1, μ0 = 0.01.
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Figure 9. Equilibrium thresholds for observable models vs. μ1. for λ = 0.5, R = 20, θ =
0.1, C = 1, μ0 = 0.05.

first to a certain level, and then increasing. That is, qe (1) has a minimum. To the arrival rate λ, the entrance
probability is decreasing in the almost unobservable case. The reason is that customers expect that the system
is more loaded and prefer to balk with the increasing of λ. This is different from the observable cases, since
the customer is not informed the number of waiting customers. So, for an arriving customer, he will think the
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Figure 10. Equilibrium thresholds for observable models vs. μ0. for λ = 0.5, R = 30, θ =
0.1, C = 1, μ1 = 1.
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Figure 11. Equilibrium entrance probabilities for unobservable models vs. θ for λ = 0.9, μ1 =
1, R = 10, C = 1, μ0 = 0.1.

system is crowded and decides to balk with the high arrival rate. With respect to μ1, entrance probability is
increasing with the increasing of normal service rate μ1, since the customers expected waiting time will decrease
no matter what state the server is. So the customers prefer to enter. For vacation service rate μ0, similarly to θ,
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Figure 12. Equilibrium entrance probabilities for unobservable models vs. λ for μ1 = 1, R =
20, C = 1, θ = 0.05, μ0 = 0.05.
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Figure 13. Equilibrium entrance probabilities for unobservable models vs. R for λ = 0.9, μ1 =
1, θ = 0.15, C = 1, μ0 = 0.1.

qe (0) and qe are increasing, and qe (1) is decreasing to a certain level, and then increasing. The reason is that
the customers who observe that the server is on working vacations or do not have any information about the
state of the server tend to enter the queue when more customers are served during working vacations. And when
the vacation service rate μ0 starts to increase, the customers who observe that the system is on the working
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Figure 14. Equilibrium entrance probabilities for unobservable models vs. μ1. for λ = 0.9, θ =
0.15, R = 10, C = 1, μ0 = 0.1.
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Figure 15. Equilibrium entrance probabilities for unobservable models vs. μ0 for λ = 0.9, μ1 =
1, R = 10, C = 1, θ = 0.15.

vacation are less incline to enter the system. However, as μ0 continues to increase, the customers who observe
that the server is not on working vacations expect the system may be not much loaded and is more likely to
enter.
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6. Conclusions

In this paper, we studied customers’ strategies behavior in an M/M/1 queue with working vacation and
vacation interruptions. We considered four cases under different levels of information. For each case, we gave the
corresponding equilibrium strategies for the customer. Specifically, we gave the equilibrium threshold strategies
in the observable cases and the equilibrium mixed joining probabilities for arriving customers in the unobservable
cases. Furthermore, we also investigated the effects of various values of parameters on the equilibrium threshold
and equilibrium entrance probabilities through numerical examples. This is the first time that queueing systems
with working vacations and vacation interruptions are studied from an economic viewpoint with game-theoretic
method. For further research, one can further consider the corresponding social optimization problems arising
from each information level studied in this paper.
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[5] A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and
vacation times. Perform. Eval. 68 (2011) 967–982.

[6] S.N. Elaydi, An Introduction to Difference Equations. Mathematics. Springer, New York (1999).

[7] P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues. Oper. Res. 59 (2011) 986–997.

[8] P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous
customers. Eur. J. Oper. Res. 222 (2012) 278–286.

[9] R. Hassin and M. Haviv, To queue or not to queue: Equilibrium behavior in queueing systems. Kluwer Academic Publishers,
Boston, Dordrecht, London (2003).

[10] W.Q. Liu, Y. Ma and J.H. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy,
Appl. Math. Model. 36 (2012) 6186–6202.

[11] Y. Ma, W.Q. Liu and J.H. Li, Equilibrium balking behavior in the Geo/Geo/1 queueing system with multiple vacations.
Appl. Math. Model. 37 (2013) 3861–3878.

[12] L. Servi and S. Finn, M/M/1 queue with working vocations (M/M/1/WV). Perform. Eval. 50 (2002) 41–52.

[13] S. Stidham Jr., Optimal Design of Queueing Systems. CRC Press, Taylor and Francis, Boca Raton (2009).

[14] W. Sun, S.Y. Li, Equilibrium and optimal behavior of customers in Markovian queues with multiple working vacation. Top
22 (2013) 694–715.

[15] W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times.
Central Europ. J. Oper. Res. 18 (2010) 241–268.

[16] W. Sun, Y. Wang and N. Tian, Pricing and setup/closedown policies in unobservable queues with strategic customers. 4OR:
A Quart. J. Oper. Res. 10 (2012) 287–311.

[17] H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Vacation and Priority Systems. In vol. 1. North-
Holland, Amsterdam (1991).

[18] N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications. Springer, New York (2006).

[19] J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs. Appl. Math. Comput.
218 (2011) 2716–2729.

[20] D. Wu and H. Takagi, M/G/1 queue with multiple working vacations. Perform. Eval. 63 (2006) 654–681.

[21] F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations. Appl. Math.
Model. 37 (2013) 8264–8282.


	Introduction
	Description of the model
	Equilibrium threshold strategies for the observable cases
	Fully observable case
	Almost observable case

	Equilibrium threshold strategies for the unobservable cases
	Almost unobservable case
	Fully unobservable case

	Numerical examples
	Conclusions
	References

