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COMPLEXITY ANALYSIS OF A WEIGHTED-FULL-NEWTON STEP
INTERIOR-POINT ALGORITHM FOR P∗(κ)-LCP

Mohamed Achache
1

Abstract. In this paper, a weighted-path-following interior point algorithm for P∗(κ)-linear com-
plementarity problems (P∗(κ)-LCP) is presented. The algorithm uses at each weighted interior point
iteration only feasible full-Newton steps and the strategy of the central-path for getting a solution for
P∗(κ)-LCP. We prove that the proposed algorithm has quadratically convergent with polynomial time.
The complexity bound, namely, O((1 + κ)

√
n log n

ε
) of the algorithm is obtained. Few numerical tests

are reported to show the efficiency of the algorithm.
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1. Introduction

In this paper, we consider the following linear complementarity problem (LCP): find a pair of vectors (x, y) ∈
Rn × Rn such that

y = Mx + q, xT y = 0, (x, y) ≥ 0, (1.1)

where M ∈ Rn×n is a P∗(κ)-matrix, and q ∈ Rn.
The LCP contains several standard problems (e.g., linear and quadratic optimization) and finds many appli-

cations in engineering and economic [4].
Feasible path-following algorithms are the most attractive interior point methods (IPMs) for solving a large

wide of optimization problems. These algorithms achieved beautiful results such as polynomial complexity and
numerical efficiency [11, 16]. They start with a strictly feasible centered starting point and maintain feasibility
during the solution process. However, in practice these algorithms do not have always a strictly feasible centered
starting point. So it is worth while to attention to other cases when the starting points are not centered. Thus
leads to the concept of target-following IPMs introduced early by Jansen et al. [8]. These methods are based
on the observation that with every algorithm which follows the central-path, we associate a target sequence on
the central-path. Weighted path-following methods can be viewed as a particular case of target-following IPMs.
These methods were studied by Ding et al. [6] for monotone LCP and by Roos et al. [11] for LO. By using
a new technique for getting search directions Darvay [5] introduced a new weighted-path-following algorithm
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for LO. Achache [1] and Wang [13] extend it for monotone standard and horizontal LCP. As a result, the
best iteration bound is obtained by all of them for short-step algorithms. Later on, Wang et al. [13], presented
new complexity analysis with a full-newton step feasible IPMs for P∗(κ)-LCP. The best known iteration bound
for their algorithm is established. Also Wang et al. [12, 15], proposed polynomial interior point algorithms for
P∗(κ)-LCP and P∗(κ)-horizontal LCP. They also established their polynomial complexity. Mansouri et al. [9]
proposed a new short-step primal-dual path-following method for horizontal P∗(κ)-LCP. The complexity and
some numerical results are stated. However, Pólik [10], treated also this problem in his Msc thesis where a
class of primal-dual IPMs based on some self-regular functions is proposed. The complexity of this algorithm
is also established. Cho [3], based on a kernel function, he proposed a large-update interior point algorithm for
P∗-linear complementarity problem. The complexity of its algorithm is obtained.

Recently, Achache and Khebchache [2], proposed a new weighted short-step path-following method for mono-
tone LCP, i.e., P∗(0)-LCP, where the matrix M is assumed to be positive semidefinite. They proved that the
corresponding short-step algorithm has the best well-known iteration bound, namely O(

√
n log n

ε ).
The purpose of the paper is to generalize their results to P∗(κ)-LCP where the matrix M belongs to the

class of P∗(κ)-matrix. At each iteration, the algorithm uses only full-Newton steps which have the advantage
that no line searches are needed. We establish the currently best known iteration bound for P∗(κ)-LCP, namely,
O((1+κ)

√
n log n

ε ), which coincides with the bound derived for monotone LCP except that the iteration bound
in P∗(κ)-LCP case are multiplied with the factor (1 + κ). Finally, few numerical results are reported to show
the efficiency of the proposed algorithm.

The rest of the paper is built as follows. In Section 2, the basic ideas such as the weighted path, the Newton
search directions and the proximity of a weighted-full-Newton-step interior-point algorithm for P∗(κ)-LCP are
described. In Section 3, detailed proofs of complexity results are given. In Section 4, we give some numerical
tests for our algorithm. Finally, some conclusions and remarks follow in Section 5.

The notations used in this paper are as follows. Rn, Rn
+ and Rn

++ denote the set of vectors with n components
vectors, the set of nonnegative vectors, and the set of positive vectors, respectively. Given x, y ∈ Rn

++, their
Hadamard product is xy = (x1y1, . . . , xnyn)T . The expressions ‖u‖ =

√
uT u and ‖u‖∞ = maxi |ui| denote the

Euclidean and the maximum norm for a vector u, respectively. Let x, y ∈ Rn
++,

√
x = (

√
x1, . . . ,

√
xn)T , x−1 =

(x−1
1 , . . . , x−1

n )T and x
y = (x1

y1
, . . . , xn

yn
)T . If g(x) ≥ 0 is a real valued function of a real nonnegative variable, the

notation g(x) = O(x) means that g(x) ≤ cx for some positive constant c. For any w ∈ Rn, min(w) (or max(w))
denotes the smallest (or largest) component of w. Finally, D := Diag (d) is the diagonal matrix of a vector d
with Dii = di and the vector of all ones is denoted by e.

2. Weighted-full-Newton step interior-point algorithm for P∗(κ)-LCP

Throughout the paper, we make the following assumption on P∗(κ)-LCP.

Assumption 2.1. Without loss of generality we may assume that P∗(κ)-LCP satisfies the interior point con-
dition, i.e., there exists a pair of vectors (x0, y0) such that

y0 = Mx0 + q, x0 > 0, y0 > 0,

which implies that the solution set of P∗(κ)-LCP is not empty.
We recall that a matrix M is a P∗(κ)-matrix, if there exists a constant κ ≥ 0 such that

(1 + 4κ)
∑
i∈I+

xi(Mx)i +
∑

i∈I−
xi(Mx)i ≥ 0 for all x ∈ Rn

where

I+ = {i : xi(Mx)i > 0} and I− = {i : xi(Mx)i < 0}
are two index sets.
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It is worth pointing out that for κ = 0 the P∗(κ)-matrix is reduced to the positive semidefinite matrix and
so P∗(0)-LCP becomes the monotone LCP. The class of all P∗(κ)-matrices is denoted by P∗(κ), and the class
P∗ is defined by

P∗ =
⋃
κ≥0

P∗(κ),

i.e., M is a P∗-matrix if M belongs to P∗(κ) for some κ ≥ 0.

2.1. Weighted-path for P∗(κ)-LCP

Finding a solution of (1.1) is equivalent to solving the following system

Mx + q = y, x ≥ 0,
xy = 0, y ≥ 0.

(2.1)

The basic idea of the weighted-path-following IPMs is to replace the second equation in (2.1), the so-called
complementarity condition for P∗(κ)-LCP, by the parameterized equation xy = w with w > 0 is a positive
vector. Thus, one may consider

Mx + q = y, x ≥ 0,
xy = w, y ≥ 0.

(2.2)

For each w > 0, the system (2.2) has a unique solution x(w), y(w)) (under given assumption) [10], which called
the weighted-path of P∗(κ)-LCP. If w goes to zero then the limit of the weighted-path exists and since the limit
point satisfies the complementarity condition it yields a solution of P∗(κ)-LCP. Note that if w = μe with μ > 0,
then the weighted-path coincides with the classical central-path (e.g., see [11]).

2.2. Newton search direction and proximity

The natural way to define a search direction is to follow the Newton approach and to linearize the second
equation in (2.1) for the search directions Δx and Δy. This leads to the following system

MΔx = Δy
yΔx + xΔy = w − xy.

(2.3)

Note that under our assumptions, i.e., since M is a P∗(κ)-matrix and (1) is strictly feasible, the system (2.3)
has a unique solution (Δx, Δy). Hence, the new iterate is obtained by taking a full-Newton step according to

x+ = x + Δx and y+ = y + Δy.

For the analysis of the algorithm, we define a norm-based proximity measure as follows

δ := δ(x, y; w) =
1

2
√

min(w)

∥∥∥∥w − xy√
xy

∥∥∥∥
which vanishes if (x, y) = (x(w), y(w)) and positive otherwise. Hence, the value of δ can be considered as a
measure for the distance between a given pair (x, y) and (x(w), y(w)).
Now to simplify the matters, we define the vectors

v =
√

xy and d =
√

xy−1

where all the operations are understood to be componentwise. Note that

v2 = w ⇔ xy = w.



134 M. ACHACHE

The vector d is used to scale x and y to the same vector v as

d−1x = dy = v (2.4)

as well as for the original directions to the scaling directions

dx = d−1Δx and dy = dΔy.

It follows that
xΔy + yΔx = v(dx + dy)

and
dxdy = ΔxΔy = ΔyMΔx.

By using the above relations, the system (2.3) becomes

M̄dx = dy

dx + dy = pv,
(2.5)

where
pv = v−1(w − v2)

and M̄ = DMD with D :=Diag (d). Also our proximity becomes

δ(v; w) :=
‖pv‖

2
√

min(w)
=

∥∥v−1(w − v2)
∥∥

2
√

min(w)
· (2.6)

Let denote another measure as follows

σC(w) =
max(w)
min(w)

· (2.7)

Note that σC(w) ≥ 1 and σC(w) = 1 if w is on the central-path. This measure is an indicator of the closeness
of w to the central-path μe in the sense that if the σC(w) is close to one then w is near the central-path.

2.3. Generic weighted-full-Newton-step interior-point algorithm for P∗(k)-LCP

The generic weighted-full-Newton step interior-point algorithm for P∗(k)-LCP is presented in Figure 1.

3. Complexity analysis of the interior-point algorithm for P∗(k)-LCP

In this Section, we first give sufficient conditions for the strict feasibility of the full-Newton step. Then, we
prove the local quadratically convergence of the iterates. Finally, the complexity bound of the algorithm is
obtained.

3.1. Feasibility of the full-Newton step

It is well-known that the scaled search directions dx and dy are orthogonal in LO case since dT
x dy = 0

(see [11, 12]). Meanwhile, in P∗(k)-LCP case, this propriety failed, i.e., dT
x dy �= 0. This yields difficulties in

the analysis of the algorithm. To overcome these difficulties, we develop some new results on the scaled search
directions.
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Input:
An accuracy parameter ε;
an update parameter θ, 0 < θ < 1;
a proximity parameter τ, ( 0 < τ < 1);
a strictly feasible pair (x0, y0) and w0 > 0 such that
δ(x0, y0; w0) ≤ τ.
begin

x := x0; y := y0; w := w0;
while xT y > ε do
begin
compute (Δx, Δy) from (2.3);
update x := x + Δx; y := y + Δy;
w := (1 − θ)w;

end
end.

Figure 1.

Lemma 3.1. Let (dx, dy) be a solution of (2.5), and suppose w > 0. If δ := δ(v; w), then one has

−4κ min(w)δ2 ≤ dT
x dy ≤ δ2 min(w) (3.1)

and
‖dxdy‖ ≤

(√
2 + 4κ

)
min(w)δ2. (3.2)

Proof. Let (dx, dy) be a solution of (2.5), and consider the index sets

I+ = {i : (dx)i(dy)i > 0} , I− = {i : (dx)i(dy)i < 0} .

By the following inequality

0 < 4(dx)i(dy)i ≤ ((dx)i + (dy)i)2 = (pv)2i ∀i ∈ I+,

it follows on one hand that ∑
i∈I+

|(dx)i(dy)i| ≤ 1
4
‖pv‖2 = min(w) δ2

and on the other hand

dT
x dy =

∑
i∈I+

(dx)i(dy)i +
∑

i∈I−
(dx)i(dy)i

≤
∑
i∈I+

(dx)i(dy)i ≤ 1
4
‖pv‖2 = min(w) δ2.

Now since M is P∗(k)-matrix, we deduce that

dT
x dy =

∑
i∈I+

|(dx)i(dy)i| +
∑

i∈I−
(dx)i(dy)i

= (1 + 4κ)
∑
i∈I+

|(dx)i(dy)i| +
∑
i∈I−

(dx)i(dy)i − 4κ
∑
i∈I+

|(dx)i(dy)i|

≥ −4κ
∑
i∈I+

|(dx)i(dy)i| ≥ −κ ‖pv‖2 = −4κ min(w)δ2.
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This gives the proof of the first part of the lemma. For the second part, we have

‖dxdy‖2 =
∑
i∈I+

(dx)2i (dy)2i +
∑
i∈I−

(dx)2i (dy)2i

≤ 1
16

∑
i∈I+

(pv)4i +

(∑
i∈I−

(dx)i(dy)i

)2

≤ 1
16

‖pv‖4 +

(∑
i∈I−

(dx)i(dy)i

)2

.

Also because M is a P∗(k)-matrix, it is easy to see that∑
i∈I−

|(dx)i(dy)i| ≤ (1 + 4κ)
∑
i∈I+

|(dx)i(dy)i|

≤
(

1
4

+ κ

)
‖pv‖2

.

Hence, we get

‖dxdy‖2 ≤
((

1
4

+ κ

)2

+
1
16

)
‖pv‖4

≤
(

1√
8

+ κ

)2

‖pv‖4
.

Using (2.6), the result follows. This completes the proof. �

Lemma 3.2. The full-Newton step is strictly feasible if and only if w + dxdy > 0.

Proof. Assume that the full-Newton step is positive, we have

x+y+ = (x + Δx)(y + Δy)
= xy + xΔy + yΔx + ΔxΔy

= xy + (w − xy) + dxdy = w + dxdy.

The above equality makes clear that w+dxdy > 0. Now, proving “the only” part of the statement in the lemma,
we introduce a steplength α with α ∈ [0, 1] , and we define

xα = x + αΔx, yα = y + αΔy.

We then have x0 = x, x1 = x+ and similar relations for y, hence x0y0 = xy > 0. We may write

xαyα = (x + αΔx)(y + αΔy)
= xy + α(xΔy + yΔx) + α2ΔxΔy.

But w − xy = xΔy + yΔx substitution gives

xαyα = xy + α(w − xy) + α2ΔxΔy

= (1 − α)xy + α(w + αΔxΔy)
= (1 − α)xy + α(w + αdxdy).



COMPLEXITY ANALYSIS OF A WEIGHTED-FULL-NEWTON STEP INTERIOR-POINT ALGORITHM FOR P∗(κ)-LCP 137

We assume that w + dxdy > 0 which is equivalent to dxdy > −w. Substitution gives

xαyα > (1 − α)xy + α(1 − α)w.

Since (1 − α)xy + α(1 − α)w ≥ 0, it follows that xαyα > 0 for any 0 ≤ α ≤ 1. Since xα and yα are linear
functions of α and since x0 > 0 and y0 > 0, it follows that x1 and y1 must be positive. This completes the
proof. �

Lemma 3.3. If δ(v; w) < 1√√
2+4κ

. Then the full-Newton step is strictly feasible.

Proof. Lemma 3.2 implies that x+ and y+ are strictly feasible if and only if w + dxdy > 0. So w + dxdy > 0
holds if wi + (dx)i(dy)i > 0, for all i. Now since wi + (dx)i(dy)i ≥ wi − |(dx)i(dy)i| ≥ min(w) − ‖dxdy‖ for all i.
According to Lemma 3.1 (3.2), it follows that

min(w) − ‖dxdy‖ ≥ min(w)(1 − (
√

2 + 4κ)δ2).

Thus w + dxdy > 0 holds if δ(v; w) < 1√√
2+4κ

. �

3.2. Quadratic convergence of the iterates

For convenience, we may write
v+ :=

√
x+y+.

Lemma 3.4. If δ < 1√√
2+4κ

. Then

∥∥v−1
+

∥∥ ≤ 1√
min(w)

(
1 − (

√
2 + 4κ)δ2

) ·
Proof. Since v2

+ = w + dxdy, it follows that

v−1
+ =

e√
w + dxdy

·

Now, since ‖dxdy‖∞ ≤ ‖dxdy‖, we deduce that

∥∥v−1
+

∥∥ =

∥∥∥∥∥ e√
w + dxdy

∥∥∥∥∥ =
1∥∥√w + dxdy

∥∥
≤ 1√

min(w) − ‖dxdy‖∞
≤ 1√

min(w) − ‖dxdy‖
·

Finally, the result follows from Lemma 3.1 (3.2). This completes the proof. �

The next lemma shows the influence of a full-Newton step on the proximity measure.

Lemma 3.5. If δ < 1√√
2+4κ

. Then

δ+ := δ(v+; w) ≤ (
√

2 + 4κ)δ2

2
√

1 − (
√

2 + 4κ)δ2

·
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Proof. We have

δ+ =
1

2
√

min(w)

∥∥v−1
+ (w − v2

+)
∥∥ ,

but w − v2
+ = −dxdy then

δ+ ≤ 1
2
√

min(w)
‖v−1

+ ‖ ‖dxdy‖.

By Lemma 3.4 and (3.2), we get the required result. �

Corollary 3.6. If δ ≤ (2(
√

2 + 4κ)
)−1

, then δ+ ≤
(√√

2 + 4κδ
)2

, i.e., local quadratically convergence of the
full-Newton step is obtained.

In the next lemma, we discuss the influence on the proximity measure of the update parameter w+ = (1−θ)w
on the Newton process along the w-path.

Lemma 3.7. Suppose that δ ≤ 1
2(

√
2+4κ)

and w+ = (1 − θ)w where 0 < θ < 1. Then

δ(v+; w+) ≤ θ
√

nσc(w)

2
√

1 − θ
√

1 − (√2 + 4κ
)
δ2

+

(√
2 + 4κ

)
δ2

2
√

1 − θ
√

1 − (√2 + 4κ
)
δ2

·

In addition, if θ = 1
2(

√
2+4κ)

√
nσc(w)

and n ≥ 4, then we have

δ(v+; w+) ≤
(
2(
√

2 + 4κ)
)−1

.

Proof. We have

δ(v+; w+) =
1

2
√

min(w+)

∥∥v−1
+ (w+ − v2

+)
∥∥

=
1

2
√

(1 − θ)min(w)

∥∥v−1
+ (w+ − w + w − v2

+)
∥∥ .

By triangle inequality, it follows that

δ(v+; w+) ≤ 1
2
√

(1 − θ)min(w)

∥∥v−1
+

∥∥ (‖w − w+‖ +
∥∥w − v2

+

∥∥) .

Substitution w − v2
+ = −dxdy and ‖w − w+‖ = θ‖w‖ and with the fact that ‖w‖ ≤ √

n ‖w‖∞ ,we get

δ(v+; w+) ≤ ‖v−1
+ ‖(θ√n max(w) + ‖dxdy‖)

2
√

(1 − θ)min(w)
·

Finally, by (2.7) and (3.2) and Lemma 3.4, it follows that

δ(v+; w+) ≤ 1

2
√

1 − θ
√

1 − (
√

2 + 4κ)δ2

(
θ
√

nσC(w) +
(√

2 + 4κ
)

δ2
)

.

This gives the first part of the lemma.
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For the second part, if θ = 1
2
√

nσC(w)(
√

2+4κ)
observe that σC(w) ≥ 1 and for n ≥ 4, then θ ≤ 1

4(
√

2+4κ)
. It

follows that

δ(v+; w+) ≤ 1

2
√

1 − θ
√

1 − (
√

2 + 4κ)δ2

(
1

2(
√

2 + 4κ)
+ (

√
2 + 4κ)δ2

)
.

But since δ ≤ 1
2(

√
2+4κ)

, and the two expressions 1√
1−(

√
2+4κ)δ2

and δ2 are monotonic increasing functions with

respect to δ ≥ 0, so we get
δ(v+; w+) ≤ f(θ)

where

f(θ) =
1

2
√

1 − θ
√

1 − 1
4(

√
2+4κ)

(
3

4(
√

2 + 4κ)

)
·

The function f(θ) is continuous and monotonic increasing function on the interval
[
0, 1

4(
√

2+4κ)

]
, we have

f(θ) ≤ f

(
1

4
√

2 + 4κ

)
=

g(κ)√
2 + 4κ

,

where
g(κ) =

3

8
(
1 − 1

4(
√

2+4κ)

) ·
Since g(κ) is a monotonic decreasing function with respect to κ ≥ 0, it follows that g(κ) ≤ g(0) and so

f(θ) ≤ g(0)√
2 + 4κ

≤ 1
2(
√

2 + 4κ)

since g(0) = 3
8−√

2
= 0.45553. Hence δ(v+; w+) ≤ 1

2(
√

2+4κ)
. This completes the proof. �

Note that, in all the iterates produced by the algorithm, we have σC(w) = σC(w0). It follows from Lemma 3.6,
that for defaults θ = 1

2
√

nσC(w)(
√

2+4κ)
and τ = 1

2(
√

2+4κ)
, the conditions x, y > 0 and δ(v+; w+) ≤ τ are

maintained during the algorithm. Thus confirms that the algorithm is well defined.
In the next lemma, we study the effect of a full-Newton step on the duality gap.

Lemma 3.8. Let δ ≤ 1
2(

√
2+4κ)

. Then after a full-Newton step the duality gap satisfies

xT
+y+ ≤ 2n max(w).

Proof. By Lemma 3.1, (3.1) and as v2
+ = w + dxdy and eT w ≤ n max(w), one has

xT
+y+ = eT v2

+ = eT w + dT
x dy ≤ eT w + min(w)δ2 ≤ (n + 1)maxw ≤ 2n maxw,

since δ < 1 for all κ ≥ 0, and (n + 1) ≤ 2n for all n ≥ 1. This proves the lemma. �

3.3. Complexity bound

Lemma 3.9. Let xk and yk be the vectors obtained after k iterations by the algorithm with w := wk. Then the
inequality (xk)T yk ≤ ε is satisfied for

k ≥ 1
θ

log
2n max(w0)

ε
·
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Proof. Lemma 3.8 implies that

(xk)T yk ≤ 2n max(wk) = 2n(1 − θ)k maxw0.

Then, the inequality (xk)T yk ≤ ε holds if

(1 − θ)k2n max(w0) ≤ ε.

Taking logarithms, we get k log(1−θ) ≤ log ε− log 2n max(w0). Since − log(1−θ) ≥ θ, then the above inequality
holds if

kθ ≥ log 2n max(w0)
ε

·
This implies the lemma. �

Theorem 3.10. Let θ = 1
2
√

nσC(w0)(
√

2+4κ)
and suppose that w0 = x0y0

2max(x0y0) with x0 and y0 are strictly feasible

starting points for (1.) with δ(x0, y0; w0) ≤ τ . Then the algorithm requires at most

O
(
(1 + κ)σC(w0)

√
n log

n

ε

)
iterations to obtain an ε-approximate solution of P∗(κ)-LCP.

In particular, if w0 = e
2 then the algorithm requires at most

O
(
(1 + κ)

√
n log

n

ε

)
iterations which is the currently best known complexity for such short-step methods.

Proof. By taking θ and w0 in Lemma 3.9, the proof is straightforward. �

4. Numerical results

In this Section, we present numerical results for Algorithm 2.3 using ε = 10−6, θ = 1

2
√

nσC(w0)(
√

2+4k) and

τ = 1

2(
√

2+4k) . The algorithm has been applied to two P∗(0)-linear complementarity problems and to one

P∗(κ)-LCP, with κ �= 0.

Problem 1. The LCP is given by:

M =

⎛
⎜⎝

2 1 1 1
1 2 0 1
1 0 1 2
−1 −1 −2 0

⎞
⎟⎠ , q = (−8,−6,−4, 3)T .

The initial starting point is:
x0 = (1.5, 0.4, 0.2, 7)T .

An exact solution is:
xexact = (2.5, 0.5, 0, 2.5)T .

The numerical results for Problem 1 with the theoretical choice w0 = 0.5e, and with relaxed weights as wk
0 = ke

are summarized in Table 1. (in this case σC(w0) = 1)). Now, with the weights wk
0 = k x0y0

max(x0y0) and with the
same choice of θ, the numerical results are summarized in Table 2.
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Table 1.

wk
0\θ θ =

1

2
√

2n
θ =

1√
2n

w0.5
0 61 28

w0.05
0 49 23

w0.005
0 37 17

w0.0005
0 25 12

Table 2.

wk
0\θ θ =

1

2σC(w0)
√

2n
θ =

1

σC(w0)
√

2n

w0.5
0 230 113

w0.05
0 197 97

w0.005
0 150 74

w0.0005
0 103 51

Table 3.

wk
0\θ θ =

1

2
√

2n
θ =

1√
2n

w0.5
0 84 39

w0.05
0 68 32

w0.005
0 52 25

w0.0005
0 36 17

Problem 2.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 0 0 0 0
−1 4 −1 0 0 0 0
0 −1 4 −1 0 0 0
0 0 −1 4 −1 0 0
0 0 0 −1 4 −1 0
0 0 0 0 −1 4 −1
0 0 0 0 0 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, q =
(−1, . . . ,−1

)T
,

The initial starting point is:

x0 = (0.65, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65)T .

An exact solution is:

xexact = (0.3660, 0.4639, 0.4897, 0.4948, 0.4897, 0.4639, 0.3660)T .

The numerical results for Problem 2 with the theoretical choice w0 = 0.5e, and with relaxed weights as wk
0 = ke

are summarized in Table 3. (in this case σC(w0) = 1)). Now, with the weights wk
0 = k x0y0

max(x0y0) and with the
choice of θ, the numerical results are summarized in Table 4.
Problem 3. For c ≥ 0, the P∗(κ)-LCP is given by:

M =

⎛
⎝ 0 1 + 4κ 0

−1 0 0
0 0 c

⎞
⎠ , q = (0.01, 0.501, −0.49)T . (4.1)
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Table 4.

wk
0\θ θ =

1

2σC(w0)
√

2n
θ =

1

σC(w0)
√

2n

w0.5
0 263 129

w0.05
0 210 103

w0.005
0 156 77

w0.0005
0 103 51

Table 5.

wk
0\θ θ =

1

5
√

n
θ =

1√
n

w0.5
0 113 17

w0.05
0 94 15

w0.005
0 75 12

w0.0005
0 57 9

Table 6.

wk
0\θ θ =

1

5σC(w0)
√

n
θ =

1

σC(w0)
√

n

w0.5
0 187 34

w0.05
0 149 27

w0.005
0 110 20

w0.0005
0 71 14

The matrix M is a P∗(κ)-matrix for all κ ≥ 0 (see [3]). For example if κ = 1
4 and c = 1, then the P∗(1

4 )-LCP
(a non monotone LCP) is given by:

M =

⎛
⎝ 0 2 0

−1 0 0
0 0 1

⎞
⎠ , q = (0.01, 0.501, −0.49)T .

Also the defaults θ and τ in the algorithm become

θ =
1

2
√

nσC(w0)(
√

2 + 1)

 1

5
√

nσC(w0)
and τ =

1
2(
√

2 + 1)

 1

5
·

The initial starting point is:

x0 = (0.2, 0.02, 0.5)T .

An exact solution is:

xexact = (0, 0, 0.49)T .

The numerical results for the Problem 3 with the theoretical choice w0 = 0.5e and with relaxed weights as
wk

0 = ke are summarized in Table 5 (in this case σC(w0) = 1)). For the choice w0 = k x0y0

max(x0y0) and with the
choice of θ, the numerical results are summarized in Table 6.
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5. Conclusions and remarks

In this paper, we have presented a feasible weighted full-Newton-step interior point algorithm for solving
P∗(κ)-LCP.The currently best known iteration bound for P∗(κ)-LCP is derived, namely O((1 + κ)

√
n log n

ε ),
which almost coincides with bound derived for monotone LCP except that the iteration bound in P∗(κ)-LCP case
are multiplied with the factor (1+κ). Preliminary numerical results obtained by the algorithm are encouraging.
An interesting topic remains for further research is the generalization of the analysis of this algorithm for
symmetric cone P∗(κ)-LCP.
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