
RAIRO-Oper. Res. 50 (2016) 223–232 RAIRO Operations Research
DOI: 10.1051/ro/2015015 www.rairo-ro.org

TWO MACHINES FLOW SHOP WITH REENTRANCE
AND EXACT TIME LAG

Karim Amrouche
1,2

and Mourad Boudhar
2

Abstract. This paper considers a reentrant flow shop with two machines and exact time lag L, in which
each task may be processed in this order M1, M2, M1 and there is an identical time lag between the
completion time of the first operation and the start time of the second operation on the first machine.
The objective is to minimize the total completion time. We prove the NP-hardness of a special case
and we give some special subproblems that can be solved in polynomial time.

Mathematics Subject Classification. 90B35.

Received September 6, 2013. Accepted June 1, 2015.

1. Introduction

In the classical flow shop scheduling problems, it is assumed that each task visits each machine only once. But
this is often violated in practice. For example, in semiconductor manufacturing, each wafer revisits the same
machine for multiple processing steps [17]. This reentrant characteristic can also be found in signal processing,
printing circuit boards [18]. However, there are some real world situations where two operations are connected
by a temporal gap constraint. This means that there is a waiting time between the end of the operation on
the upstream machine and the beginning of the operation on the downstream machine, this constraint is called
time lag. Note that there exist three types of time lag: minimal time lag, maximal time lag and exact time lag.
The third case obeys to strong constraints, where the minimal time lag is equal to the maximal time lag. In
the literature this situation is known as the coupled-task scheduling problem. The latter has been studied by
Shapiro [16], Orman and Potts [15] and is motivated by radar scheduling applications where tasks corresponding
to transmitting radio waves and listening to potential echoes are coupled.

We propose a study of two machines flow shop with reentrance and exact time lag L denoted F2|chain −
reentrant, lj = L|Cmax. Each task may be processed in this order M1, M2, M1 and there is an exact time lag
L between the completion time of the first operation and the start time of the second operation on the first
machine (called also primary machine). The objective is to minimize the makespan. Note that the problem
F2|chain− reentrant|Cmax is equivalent to the problem V 2||Cmax [13].

Keywords. Flow shop, reentrance, time lag, makespan, complexity.

1 University of Algiers 3, Faculty of Economics and Management sciences, 2 street Ahmed Waked, Dely Brahim, Algiers, Algeria.
amrouche-karim@hotmail.com
2 RECITS laboratory, Faculty of Mathematics, USTHB University, BP 32 Bab-Ezzouar, 16111 El-Alia, Algiers, Algeria.
mboudhar@usthb.dz

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015015
http://www.rairo-ro.org
http://www.edpsciences.org

224 A. KARIM AND M. BOUDHAR

For the two machines flow shop without reentrance, the makespan criterion is the most studied in the
literature. The simplest case occurs when all jobs have the same time lag L i.e. the task j cannot be started on
the second machine before lj = L units of time of its completion time on the first machine. One can easily show
that this problem is equivalent to the case without time lags by shifting all operations of the second machine
with L units of time. Therefore Johnson’s algorithm [11] gives the optimal solution. Now consider the case
where all time lags are different. The problem F2|lj|Cmax was studied by Mitten in [14]. He proved that if we
restrict to permutation schedules, the optimal solution is given by Johnson’s algorithm with modifications of
processing times: for each task the new processing time is obtained by adding the time lag to the processing time
on both machines. But in the general case (without restriction to permutation schedules), minimization of the
makespan is NP-Hard, Dell’Amico [7], Yu et al. [20] and Lawler et al. [12] proved that this problem is NP-Hard
even with unit processing times jobs, or if the processing times depend only on the tasks but not machines,
or in case the time-lag cannot take only two values. Yu [19] proposed a condition for which the permutation
scheduling becomes dominant, i.e.: ∀i, j li ≤ lj + max{p1j , p2j}. Other researchers are interested in coupled-
tasks scheduling problems denoted (CT). A coupled task is composed of two distinct operations, separated
by an exact time lag. In [16], Shapiro discussed practical cases of (CT) and gave heuristics with numerical
experiments. Orman and Potts studied the same problem in one machine [15], whose objective is to minimise
the makespan. They identified several problems and hierarchies according to their complexity. Ahr et al. [3]
proposed an exact algorithm using dynamic programming to solve the problem of (CT) in a machine for small
instances; when L is fixed, this problem is denoted 1|coupled− task, ai = a, li = L, bi = b|Cmax. This algorithm
has been adapted by Brauner et al. in [6] to solve a (CT) problem motivated by time management problems of
cyclic production with robots. Other researchers were concerned with the approximation of these problems. Thus
Ageev and Baburin [1] proposed a 7/4 and 3/2-approximation to solve problem 1|coupled−task, ai = bi = 1, li =
L|Cmax and F2|ai = bi = 1, li = L|Cmax, Ageev and Kononov [2] gave several approximation results and non-
approximability terminals according to the values of ai and bi. Few works were performed by adding constraints
to coupled tasks. Blazewicz et al. [4] showed that the polynomial problem 1|coupled− task, ai = bi = 1, li|Cmax

is NP-Hard by adding a precedence constraint between coupled tasks. In [5], Boudhar and Meziani studied the
two stages hybrid flow shop with recirculation of tasks at the second stage.

Fondrevelle et al. [9] minimized a non-classical criterion based on the weighted sum of machine completion
times, They showed that this criterion generalizes the makespan and they derived several complexity results
for two and three machines problems. Zhang et al. [21] considered the on-line two-machine scheduling problem
with time lags. They proved, for the two machines flow shop problem with time lags that no on-line delay
algorithm has a competitive ratio better than (

√
5 + 1)/2 ≈ 1.618, and that a greedy algorithm is still the

best on-line non-delay algorithm. Emna et al. [8] studied the permutation flowshop scheduling problem with
sequence dependent set up times and time lags. Their aim was to minimize the number of tardy jobs. They
proposed two mathematical programming formulations and developed a simulated annealing algorithm.

The remainder of this paper is as follows: in Section 2, we examine the problem and define the notations
used. In Section 3, a study of complexity is presented. The problem is NP-hard. Polynomial cases are presented
in Section 4. The conclusion ends the paper.

2. Problem notations and definitions

Let T = {T1, T2, . . . , Tn} be the set of n independent tasks to schedule on a set of two machines M =
{M1, M2}. The workshop is of type flow shop. Each task must be executed according to this order M1 → M2 →
M1 with a time lag li = L between the completion time of the first operation on the first machine and the start
time of its second operation on the same machine (see Fig. 1).

For scheduling tasks denote:

• a[i]: The first operation of the task Ti on the first machine.
• b[i]: The operation of the task Ti on the second machine.
• c[i]: The second operation of the task Ti on the first machine.

TWO MACHINES FLOW SHOP WITH REENTRANCE AND EXACT TIME LAG 225

M1

M2

a[i]

�ai�

b[i]

�
bi

�

c[i]

� ci �
� L �

Figure 1. The tasks processing pattern.

Table 1. Processing times of the 5 tasks.

Ti T1 T2 T3 T4 T5

ai 2 3 2 1 1
bi 2 1 3 1 3
ci 1 2 1 2 3

�

�

M1

M2

0 2 5 6 8 11 13 16 19 time

machines

a[1] a[2] c[1] a[3] c[2] a[4] c[3] a[5] c[4] c[5]

b[1] b[2] b[3] b[4] b[5]
�

�
���

�
�� �

���
�� �

�
���

�
�� 	

		

	
		

����������

Figure 2. 5 tasks schedule instance on the two machines.

• ai: The processing time of the first operation of the task Ti on the first machine.
• bi: The processing time of the task Ti on the second machine, bi ≤ L.
• ci: The processing time of the second operation of the task Ti on the first machine.

Illustrative example
To illustrate the problem, consider the following instance: we have to schedule 5 independent tasks T1, T2, T3, T4

and T5. Processing times of the tasks on both machines are given in Table 1 and the time lag L = 3.
A schedule is given in Figure 2.

Definition 2.1. We say that we have formed a batch of n iterlaced tasks or a batch of n tasks, if for any task
of this batch, there are exactly n − 1 other operations between their two operations of the first machine (see
Fig. 3). The processing time of a batch is its length.

3. NP-hardness

In this section, we focus our study on the complexity of the problem in case aj = cj = const. The problem
is NP-hard in the strong sense by a reduction from the 3-partition problem.

Theorem 3.1. The problem F2|chain− reentrant, lj = L|Cmax is NP-Hard in the strong sense.

226 A. KARIM AND M. BOUDHAR

M1

M2

a[i] a[j] a[k]

b[i] b[j] b[k]

c[i] c[k]c[j]

� L �
� L �

�� Batch processing time

Figure 3. Three interlaced tasks.

�

�
a[11]a[12]a[13]c[11] c[12] c[13]

...

...a[22]a[23]a[21] c[22] c[23]c[21]

3B
2 3B 3mB

2
� �B � �B � �B0

�
���
�� b[11] b[12] b[13] b[21] b[22] b[23] b[m1] b[m2] b[m3]�

���
���

���
�� �

���
��

�
��

�
��

a[m1] a[m2]a[m3]c[m1]c[m2]c[m3]

M1

M2

time

machines

Figure 4. m batches composed by 3 interlaced tasks.

Proof. Consider the following decision problem known as 3-partition: given a set Ā = {ā1, ā2, . . . , ān} of positive
integers strictly between B/4 and B/2 such that

∑
āi∈Āāi = mB, are there m disjoint subsets S1, S2, . . . , Sm

of weight B? The 3-partition problem is NP-hard in the strong sense [10]. We show that this problem is
polynomially reduced to the following decision problem: given 3m independent tasks {T1, T2, . . . , Tn} (n = 3m)
with the followings processing times: ai = B/4, bi = āi, ci = B/4 and a time lag L = B/2, is there a schedule
of the 3m tasks on the two machines M1 and M2 with a completion time less than or equal to 3mB/2?

Our problem belongs to the NP class because we can verify in polynomial time if a permutation of tasks
satisfies all the constraints of the problem.

We prove that the scheduling problem has a solution if and only if the 3-partition problem has a solution.
If the 3-partition problem has a solution, then there exists a partition of Ā into m disjoint subsets of

cardinality 3 and weight equal to B to which we associate a set of tasks T = {T[11], T[12], T[13]} ∪ . . .∪
{T[m1], T[m2], T[m3]}; (T[i,j] is the task numbered j, j = 1, 3 of the batch i, i = 1, m)

We construct a solution to the scheduling problem as shown in Figure 4 with Cmax = m(3B/2) = 3mB/2.
this solution is feasible because:

• b[i1]: Finishes before the start of c[i1] because its processing time is strictly less than B/2 = L.
• b[i2]: Finishes before the start of c[i2] because the processing time of b[i3] is greater than B/4.
• b[i2]: Starts after the end of a[i2] because the processing time of b[i1] is greater than B/4.
• b[i3]: Starts after the end of a[i3] because the processing time of b[i1] +b[i2] is greater than B/2 = L.

If the scheduling problem has a solution less or equal to 3mB/2 then the solution is as shown in Figure 4. We have
m batches of tasks where each batch is composed by 3 interlaced tasks, the processing time of each batch is equal
to 3B/2. No task is processed alone because its processing time is equal to B. Two tasks cannot be processed
together because their processing times are equal to 5B/4. In this case, we have B + 5B/4 = 9B/4 > 3B/2.
Also, if three tasks are processed alone, the total processing time is equal to 3B > 3B/2 (see Fig. 5).

Also, we have b[i1]+b[i2]+b[i3] = B (∀i = 1, m) because we cannot find a batch i for which b[i1]+b[i2]+b[i3] > B,
the solution in this case is not feasible (the time lag is not respected for this batch). In addition, we cannot find

TWO MACHINES FLOW SHOP WITH REENTRANCE AND EXACT TIME LAG 227

�

�

a[i1] a[j1]

b[i1] b[j1]

c[i1] c[j1] a[k1]

b[k1]

c[k1]

0 5B
4

9B
4

M1

M2

time

machines

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

������

������

Figure 5. Batches composed by two interlaced tasks and one task.

a batch i for which b[i1] + b[i2] + b[i3] < B, due to the reason that if this batch exists, there is another batch
j for which b[j1] + b[j2] + b[j3] > B (because b[ij] = āi and

∑
āi∈Āāi = mB); the solution in this case is not

feasible (the time lag is not respected for the batch j). So, the formed batch gives a solution for the problem of
3-partition. �

The problem F2|chain−reentrant, lj = L|Cmax is thus NP-hard, we give in the next section some polynomial
subproblems that solve using a transformation of our problem into a maximum weight matching problem.

4. Polynomial subproblems

We show in this section that when processing times aj and cj are greater or equal to L/2, the problem is
solved by a polynomial algorithm based on the maximum weight matching.

Remark 4.1. If all processing times on the first machine (i.e. aj and cj) are greater than L/2, then the
maximum batch size is equal to two and the formed batches can not be interlaced.

Proof. As we have aj , cj > L/2 for all tasks, then the sum of processing times of any two operations on the first
machine is greater than L, since we have lj = L ∀j then we can not interlace more than two tasks in the same
batch. �

Theorem 4.2. The problem F2|chain − reentrant, aj > L/2, cj > L/2, lj = L|Cmax reduces to the maximum
weight matching.

Proof. We construct a graph G = (V, E) such that:

V : the Set of vertices is the set of tasks.
E: Set of edges such that(Tl, Tl′) ∈ E if and only if al′ ≤ L and cl ≤ L.

Let λ be the vertex-edge incidence matrix of the graph G = (V, E) where

λlk =
{

1, if the edge k is incident to the vertex l;
0, if not.

For k = 1, n, l = 1, q (q the number of edges).
Let ρk= min{dsktk

, dtksk
} be the cost of edge k, if edge k is incident to the vertices sk and tk.

where:

dsktk
: The processing time of the two interlaced tasks sk and tk in this order.

dtksk
: The processing time of the two interlaced tasks tk and sk in this order.

228 A. KARIM AND M. BOUDHAR

We have
{

dsktk
= ask

+ ctk
+ (2 ∗ L − ȳ1)

dtksk
= atk

+ csk
+ (2 ∗ L − ȳ2)

where ȳ1 = L − max{atk
, csk

, bsk
+ btk

− L} and ȳ2 = L − max{ask
, ctk

, bsk
+ btk

− L} are idle times.

Then
{

dsktk
= ask

+ ctk
+ L + max{atk

, csk
, bsk

+ btk
− L}

dtksk
= atk

+ csk
+ L + max{ask

, ctk
, bsk

+ btk
− L}

The linear model of the problem is

min Cmax =
(

q∑
k=1

ρkxk

)
+

n∑
l=1

(1 −
q∑

k=1

λlkxk)δl.

s.c.

⎧⎨
⎩

q∑
k=1

λlkxk ≤ 1 for l = 1, n

xk ∈ {0, 1} for k = 1, q
where:

- xk=

⎧⎨
⎩

1, if the two tasks joined by edge k are interlaced in the same
batch;

0, if not.

-
q∑

k=1

ρkxk: the sum of processing times of batches that contain interlaced tasks.

-
n∑

l=1

(1 −
q∑

k=1

λlkxk)δl: the sum of processing times of batches that contain one task.

- δl = al + cl + L: processing time of batch which contain, the task l.

-
q∑

k=1

λlkxk ≤ 1 indicates that each task, is at most, in one batch.

We have:(
q∑

k=1

ρkxk

)
+

n∑
l=1

(
1 −

q∑
k=1

λlkxk

)
δl =

(
n∑

l=1

δl

)
−

(
n∑

l=1

q∑
k=1

λlkxkδl −
q∑

k=1

ρkxk

)

=
(

n∑
l=1

δl

)
−

(
q∑

k=1

n∑
l=1

λlkδlxk −
q∑

k=1

ρkxk

)

=
(

n∑
l=1

δl

)
−

q∑
k=1

(
n∑

l=1

λlkδl − ρk

)
xk.

=
(

n∑
l=1

al + cl + L

)
−

q∑
k=1

(
n∑

l=1

λlk(al + cl + L)− min {dsktk
, dtksk

})xk.

=
(

n∑
l=1

al + cl + L

)
−

q∑
k=1

(
n∑

l=1

λlk(al + cl + L)

−min
{

ask
+ ctk

+ L + max{atk
, csk

, bsk
+ btk

− L},
atk

+ csk
+ L + max{ask

, ctk
, bsk

+ btk
− L}

})
xk.

= nL +
n∑

l=1

al +
n∑

l=1

cl −
q∑

k=1

(ask
+ csk

+ L + atk
+ ctk

+ L

−min
{

ask
+ ctk

+ L + max{atk
, csk

, bsk
+ btk

− L},
atk

+ csk
+ L + max{ask

, ctk
, bsk

+ btk
− L}

}
)xk.

= nL +
n∑

l=1

al +
n∑

l=1

cl −
q∑

k=1

max
{

2L + ask
+ csk

+ atk
+ ctk

− ask
− ctk

2L + ask
+ csk

+ atk
+ ctk

− atk
− csk

−L − max{atk
, csk

, bsk
+ btk

− L},
−L − max{ask

, ctk
, bsk

+ btk
− L}

}
xk.

TWO MACHINES FLOW SHOP WITH REENTRANCE AND EXACT TIME LAG 229

= nL +
n∑

l=1

al +
n∑

l=1

cl −
q∑

k=1

max
{

L + csk
+ atk

− max{atk
, csk

, bsk
+ btk

− L},
L + ask

+ ctk
− max{ask

, ctk
, bsk

+ btk
− L}

}
xk.

= nL +
n∑

l=1

al +
n∑

l=1

cl −
q∑

k=1

max
{

min{L + csk
, L + atk

, 2L + csk
+ atk

− bsk
− btk

},
min{L + ctk

, L + ask
, 2L + ask

+ ctk
− bsk

− btk
}

}
xk.

nL +
n∑

l=1

al +
n∑

l=1

clis a constant greater than

q∑
k=1

max
{

min{L + csk
, L + atk

, 2L + csk
+ atk

− bsk
− btk

},
min{L + ctk

, L + ask
, 2L + ask

+ ctk
− bsk

− btk
}

}
xk.

Then, minimizing Cmax is equivalent to maximizing

q∑
k=1

max
{

min{L + csk
, L + atk

, 2L + csk
+ atk

− bsk
− btk

},
min{L + ctk

, L + ask
, 2L + ask

+ ctk
− bsk

− btk
}

}
xk.

Hence, the linear model reduces to the maximum weight matching problem. �

The following algorithm solves the problem F2|chain-reentrant, aj > L/2, cj > L/2, lj = L|Cmax.

Algorithm A1

begin
(1) From the graph G = (V, E) construct a new valued graph H = (V, E) where each edge in E is valued by

max
{

min{L + csk
, L + atk

, 2L + csk
+ atk

− bsk
− btk

},
min{L + ctk

, L + ask
, 2L + ask

+ ctk
− bsk

− btk
}

}

if the edge is incident to the vertices sk and tk.
(2) Find the maximum weight matching M in the graph H .
(3) Construct the solution as follows:

• For each pair of M , interlace the two corresponding tasks in the same batch.
• Put each of the remaining tasks in one batch.

(4) Schedule the batches in arbitrary order (without idle time).
end.

The maximum number of possible edges in G is n(n−1)
2 and the best known algorithm for the maximum weight

matching is in O(n2.5). Hence, also the algorithm A1 runs in O(n2.5).

Example 4.3. Let us process 5 tasks T1, . . . T5. The processing times on the two machines are given in Table 2
and the time lag L = 4.

Table 2. Processing times of the 5 tasks.

Ti T1 T2 T3 T4 T5

ai 2 3 5 2 5
bi 2 4 3 4 3
ci 5 2 2 5 3

230 A. KARIM AND M. BOUDHAR

1- The pairwise tasks (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 3), can not be
interlaced in the same batch. So, the corresponding edges are not formed (the conditions are not satisfied).
Hence, the graph G = (V, E) contains 5 vertices (number of tasks) and 8 edges: {(2, 1), (2, 4), (3, 1), (3, 2),
(3, 4), (5, 1), (5, 2), (5, 4)}.

2- Construction of the valued graph H (see Fig. 6):
d(2, 1) = min{4 + 2, 4 + 2, 8 + 4 − 6} = 6.
d(2, 4) = min{4 + 2, 4 + 2, 8 + 4 − 8} = 4.
d(3, 1) = min{4 + 2, 4 + 2, 8 + 4 − 6} = 6.
d(3, 2) = min{4 + 2, 4 + 3, 8 + 5 − 7} = 6.
d(3, 4) = min{4 + 2, 4 + 2, 8 + 4 − 7} = 5.
d(5, 1) = min{4 + 3, 4 + 2, 8 + 5 − 5} = 6.
d(5, 2) = min{4 + 3, 4 + 3, 8 + 6 − 7} = 7.
d(5, 4) = min{4 + 3, 4 + 2, 8 + 5 − 7} = 6.

3- The maximum weight matching M = {(5, 2), (3, 1)}.
4- The optimal sequence is given by: (5, 2), (3, 1), 4 and the completion time is equal to 41 (see Fig. 7).

��
��

��
��

��
��

��
��

��
��

1

2

3

5

4

6

5

6

6

46

76

�
�

��

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�

Figure 6. The valued graph H.

�

�

5 8 12 14 19 24 32 36 41

a[1]a[2] a[3] a[4]a[5]

b[1]b[2] b[3] b[4]b[5]

c[1]c[2] c[3] c[4]c[5]M1

M2

t

machines

Figure 7. The solution obtained using Algorithm A1.

Theorem 4.4. The problem F2|chain − reentrant, bj = lj = L, ai + cj ≤ L|Cmax is polynomially solved by
Algorithm A2.

The following algorithm solves the problem F2|chain− reentrant, bj = lj = L, ai + cj ≤ L|Cmax.

TWO MACHINES FLOW SHOP WITH REENTRANCE AND EXACT TIME LAG 231

M1

M2

· · · a[i] a[i+1] a[i+2] · · ·

b[i−1] b[i] b[i+1] b[i+2]

c[i−1] c[i] c[i+1]

� L �
� L �

Figure 8. Two interlaced tasks.

Algorithm A2

begin
Construct the solution as follows:

• Find two different tasks k and l such as: ak + cl = mini�=j{ai + cj}.
• Form a list Tk, . . . , Ti, Ti+1, . . . , Tl where the task Tk is scheduled at the beginning and Tl at the end.
• Schedule any two tasks Ti, Ti+1 as is shown in Figure 8.

end.

Proof. As we have bj = L, then the maximum cardinality of the formed batches is equal to two, but the formed
batches in this case can be interlaced as it’s shown in Figure 8 (the batches are 〈Ti−1, Ti〉 and 〈Ti+1, Ti+2〉). As
we have also the condition that the sum of any two operations on the first machine is less or equal to L, then all
batches can be interlaced. So, to minimize makespan, it is sufficient to put the two tasks that have the smallest
sum min

i�=j
{ai + cj} at the beginning and the end of schedule and put the other tasks in the middle. The value of

makespan is equal to Cmax = min
i�=j

{ai + cj} + nL. �

Proposition 4.5. The problem F2|chain − reentrant, aj = bj = cj = lj = L|Cmax is polynomially solved by
choosing any order of tasks.

Proof. the proof is obvious and the Cmax is equal to 2nL if n is even and it is equal to (2n + 1)L if not. �
Proposition 4.6. The problem F2|chain− reentrant, aj = bj = cj = c, lj = L|Cmax is polynomially solved.

Proof. Cmax = 2nc + the idle times in the first machine. For minimizing the idle times, we form batches of
cardinality

⌊
L
c

⌋
+ 1, each batch processing time is equal to c(2 +

⌊
L
c

⌋
) + L (the idle time in each bath is lower

than c) except the last batch which is formed by the (n − � n

{�L
c �+1}�) remaining tasks with processing time

equal to c(2 + (n− � n

{�L
c �+1}�)) + L. Therefore, the makespan value is equal to the sum of all batch processing

times, that is minimized. �
Proposition 4.7. The problem F2|chain − reentrant, aj = a > L, lj = L|Cmax is polynomially solved by
choosing any order of tasks.

Proof. The maximum batch cardinality is equal to one and the solution is obtained by scheduling all tasks one

after one in arbitrary order without idle time. The value of makespan is Cmax =
n∑

j=1

cj + n ∗ (L + a). �

Note that the symetric case (i.e. cj = c > L) is also polynomial and Cmax =
n∑

j=1

aj + n ∗ (L + c).

Remark 4.8. If bj = 0, our problem is equivalent to the problem 1|coupled − task, li = L|Cmax (see
introduction).

232 A. KARIM AND M. BOUDHAR

5. Conclusion

Research in scheduling has yielded in-depth results in the last few years. Constraints taken into account in
recent work are becoming increasingly complex.

We studied the problem F2|chain − reentrant, lj = L|Cmax with the goal to minimize the total completion
time. This problem is flow shop on two machines with duplication of tasks on the first machine and an exact
time lag li = L between the completion time of the first operation of task Ti on the first machine and the start
time of its second operation on the same machine.

The problem in its general form is NP-hard in the strong sense because the case without time lags is already
NP-hard in the strong sense. We showed that one of the particular problems is also NP-hard in the strong sense
by a reduction from the 3-partitions problem. We have also proposed some polynomial cases for which we have
developed algorithms for their resolution based on the maximum weight matching.

As a future prospect for our work, methods of resolution may be used, such as some exact methods (dynamic
programming, branch and bound procedure, etc.) or using approch methods like heuristics or meta-heuristics.

Acknowledgements. The authors gratefully wish to thank the anonymous reviewers for their careful reading of the paper
and for their valuable and useful comments. Their contributions greatly helped to improve this paper.

References

[1] A.A. Ageev and A.E. Barburin, Approximation algorithms for UET scheduling problems with exact delays. Oper. Res. Lett.
35 (2007) 533–540.

[2] A.A. Ageev and A.V. Kononov, Approximation Algorithms for Scheduling Problems with Exact Delays. In WAOA, vol. 4368
of Lect. Notes Comput. Sci. (2006) 1–14.

[3] D. Ahr, J. Békési, G. Galambos, M. Oswald and G. Reinelt, An exact algorithm for scheduling identical coupled tasks. Math.
Methods Oper. Res. 59 (2004) 193–203.

[4] J. Blazewicz, K. Ecker, T. Kis, CN. Potts, M. Tanas and J. Whitehead, Scheduling of coupled tasks with unit processing times.
J. Sched. 13 (2010) 453–461.

[5] M. Boudhar and N. Meziani, Two-stage hybrid flow shop with recirculation. Int. Trans. Oper. Res. 17 (2010) 239–255.

[6] N. Brauner, G. Finke, V. Lehoux-Lebacque, C. Potts and J. Whithead, Scheduling of coupled tasks and one-machine no-wait
robotic cells. Comput. Oper. Res. 36 (2009) 301–307.

[7] M. Dell’Amico, Shop problems with two machines and time lags. Oper. Res. 44 (1996) 777–787.

[8] E. Dhouib, J. Teghem and T. Loukir, Minimizing the Number of Tardy Jobs in a Permutation Flowshop Scheduling Problem
with Setup Times and Time Lags Constraints. J. Math. Model. Algorithms 12 (2013) 85–99.

[9] J. Fondrevelle, A. Oulamara, M.C. Portmann, Permutation flowshop scheduling problems with time lags to minimize the
weighted sum of machine completion times. Int. J. Prod. Econ. 33 (2007) 168–176.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability. W.H. Freeman and Company, New York (1979).

[11] S.M. Johnson, Optimal two and three-stage production schedules with setup times included. Nav. Res. Logist. Quarterly 1
(1954) 61–68.

[12] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, Sequencing and scheduling theory: algorithms and com-
plexity. In Handb. Oper. Res. Manag. Sci. Edited by S.C. Graves, P.H. Zipkin and A.H.G. Rinnooy Kan. North Holland,
Amesterdam (1993).

[13] V. Lev and I. Adiri, V-shop scheduling. Eur. J. Oper. Res. 18 (1984) 51–56.

[14] L.G. Mitten, Sequencing n jobs on two machines with arbitrary time lags. Manage. Sci. 5 (1959) 293–298.

[15] A.J. Orman and C.N. Potts, On the Complexity of Coupled-task Scheduling. Discrete Appl. Math. 72 (1997) 141–54.

[16] R.D. Shapiro, Scheduling coupled tasks. Nav. Res. Logist. Quarterly 27 (1980) 489–97.

[17] F.D. Vargas-Villamil and D.E. Rivera, A model predictive control approach for real-time optimization of reentrant manufac-
turing lines. Comput. Ind. 45 (2001) 45–57.

[18] M.Y. Wang, S.P. Sethi and S.L. Van De Velde, Minimizing makespan in a class of reentrant shops. Oper. Res. 45 (1997)
702–712.

[19] W. Yu, The two-machine flowshop problem with delays and the one-machine total tardiness problem. Ph. D. thesis, Technische
Universiteit Eindhoven (1996).

[20] W. Yu, H. Hoogeveen and J.K. Lenstra, Minimizing makespan in a two-machine flow shop with delays and unit-time operations
is np-hard. J. Sched. 7 (2004) const3–348.

[21] X. Zhang and S. Van de Velde, On-line two-machine open shop scheduling with time lags. Eur. J. Oper. Res. 204 (2010)
14–19.

	Introduction
	Problem notations and definitions
	NP-hardness
	Polynomial subproblems
	Conclusion
	References

