
RAIRO-Oper. Res. 49 (2015) 589–600 RAIRO Operations Research

DOI: 10.1051/ro/2014058 www.rairo-ro.org

A CONVEX HULL ALGORITHM FOR SOLVING
A LOCATION PROBLEM ∗

Nguyen Kieu Linh
1

and Le Dung Muu
2

Abstract. An important problem in distance geometry is of determin-
ing the position of an unknown point in a given convex set such that its
longest distance to a set of finite number of points is shortest. In this
paper we present an algorithm based on subgradient method and con-
vex hull computation for solving this problem. A recent improvement
of Quickhull algorithm for computing the convex hull of a finite set of
planar points is applied to fasten up the computations in our numerical
experiments.

Keywords. Location problem, distance geometry, convex hull, Quick-
hull algorithm, subgradient method.

Mathematics Subject Classification. 52A20, 90C27.

1. Introduction

The problem being considered in this paper is to find a point x in a given closed
convex set D ⊂ R

d (most often d ∈ {2, 3}) such that the farthest distance from x
to the points of a finite set C ⊂ R

d is shortest.
This single facility location problem appears in some issues encountered in eco-

nomics, logistics, infrastructure construction, computer science, and other fields.
Often the point x represents the location of a facility (manufacturing plant, hospi-
tal, school, wireless station, etc.) to be constructed to serve the users (warehouses,
patients, pupils, internet users, etc.) located at the points of the set C, and D
represents the restricted region for constructing the facility. We wish to locate the
facility for serving the farthest user as well as possible. The objective function in

Received February 23, 2014. Accepted November 12, 2014.

∗ This paper is supported in part by the NAFOSTED, Vietnam.

1 Thai Nguyen University, Tan Thinh, Thai Nguyen, Vietnam. nguyenkieulinhk4@gmail.com
2 Institute of Mathematics VAST, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam.
ldmuu@math.ac.vn

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2015

http://dx.doi.org/10.1051/ro/2014058
http://www.rairo-ro.org
http://www.edpsciences.org


590 N.K. LINH AND D.M. LE

the problem is then the farthest distance, which needs to be minimized, from the
facility to the users.

Some variants of the location problem have been studied throughout the exist-
ing literature. For the same input sets C and D, there may be different objective
functions corresponding to different goals of the problems. Hansen et al. [7] and
Plastria [11] first proposed Branch and Bound methods, such as Big Square Small
Square for certain constrained location problems with minisum and minimax ob-
jective functions. Some kinds of single and multi-facility location problems with
nonconvex objective functions can be found in Kon et al. [8], Tuy [14] and in the
references cited therein.

The single facility location problem considered in this paper can be modeled
as a nonsmooth convex optimization problem with a strongly convex objective
function. We propose a subgradient algorithm for solving the resulting nonsmooth
optimization problem. Often in practice the cardinality of the set C is a large
number. Fortunately, by convexity property of the distance function, in the location
problem in question we can replace C by the set VC consisting of vertices of
convex hull of C. In many usual cases, the cardinality of VC is much less than
that of C. For example, when the set C consists of n i.i.d. (independent and
identically distributed) random points in R

d for some general distributions (e.g.
Gaussian distribution, uniform distribution), Bentley et al. [3] showed that the
cardinality of VC is O(lnd−1 n). Thus, finding the vertices of convex hull of C is an
important pre-processing step when solving our location problem. To do this step,
in our numerical experiments for this problem, we apply a recent improvement of
Quickhull algorithm described in Dung and Linh [6].

The paper is organized as follows. After the introduction, Section 2 reviews some
concepts and results will be used in the paper. In the next section we model the
location problem as a convex optimization problem and investigate its properties.
The fourth section is devoted to present the algorithm for solving the problem and
to prove its convergence. Numerical experiments are reported in the last section.

2. Preliminaries

For convenience of the readers, in this section we review some concepts and
essential results that will be used in the next sections.

Definition 2.1 ([9], p. 60). A function f : X → R is said to be strongly convex
with modulus ρ > 0 on the convex set X ⊂ R

d, shortly ρ-strongly convex, if for
every x, y ∈ X and λ ∈ [0, 1] one has

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) − ρ

2
λ(1 − λ)‖x − y‖2.

It is easy to verify the following lemma.

Lemma 2.2.

(i) For any fixed vector a ∈ R
d, the function f(x) := ‖x− a‖2 is strongly convex

with modulus ρ = 2 on the whole space R
d.



A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM 591

(ii) Let J be a nonempty finite index set and gj be strongly convex function on
the convex set X with modulus ρj for every j ∈ J . Then the function g =
maxj∈J gj is strongly convex on X with modulus ρ = minj∈J ρj.

Definition 2.3 ([12], p. 214). Let f : R
d → R ∪ {+∞} be a convex function. A

vector v is called a subgradient of f at x if for all y ∈ R
d one has

〈v, y − x〉 ≤ f(y) − f(x).

The set of subgradients of f at x is called the subdifferential of f at x, and is
denoted by ∂f(x). The function f is called subdifferentiable at x if ∂f(x) �= ∅. f
is called subdifferentiable if it is subdifferentiable at every x ∈ domf , where

domf = {x ∈ R
d : f(x) < +∞}.

Definition 2.4 ([12], p. 10). Let P be a set of k points in R
d. The convex hull of

P , denoted conv(P ), is defined as follows

convP :=

{
k∑

i=1

θixi | xi ∈ P, θi ≥ 0, i = 1, . . . , k,

k∑
i=1

θi = 1

}
.

Definition 2.5 ([12], p. 162)). Let X be a convex set in R
d. A point x ∈ X

is called an extreme point of X if there do not exist y, z ∈ X, y �= z such that
x = (1 − λ)y + λz with 0 < λ < 1.

When X is a polyhedral convex set, its extreme points are also called vertices.
For a finite set of points P , we will refer to the convex hull problem as the problem
of finding all vertices of the convex hull of P .

Lemma 2.6 ([12], p. 215). Let fi : R
d → R (i ∈ I := {1, . . . , m}) be convex

functions on R
d and f(x) := max{fi(x)|i ∈ I}. Then f is a subdifferentiable

convex function on R
n and

∂f(x) = conv
(∪i∈I(x)∂fi(x)

)
,

where I(x) := {i ∈ I|f(x) = fi(x)}.
Definition 2.7 ([4], p. 397). Let A be a nonempty closed convex subset of R

d

and x be any point in R
d. A point x̄ ∈ A is called the Euclidean (or metric)

projection of x onto A if

‖x − x̄‖ ≤ ‖x − y‖ ∀y ∈ A.

We will denote the projection of x onto A by PA(x). It is well-known (see e.g. [4])
that for every x the Euclidean projection PA(x) uniquely exists. It holds that

x̄ = PA(x) ⇔ x̄ ∈ A and 〈x − x̄, y − x̄〉 ≤ 0 ∀y ∈ A. (2.1)

We need the following lemma for proving the convergence of the algorithm
described in the next section.



592 N.K. LINH AND D.M. LE

Lemma 2.8 ([15]). Suppose that {ξk} is a sequence of positive numbers satisfying
the condition

ξk+1 ≤ ξk + βk ∀k ∈ N,

where βk ≥ 0 and
∑∞

k=0 βk < +∞. Then the sequence {ξk} is convergent.

3. Mathematical form and its properties

As we have mentioned in the introduction, to solve the problem we need to find
a point x in a given closed convex set D such that the longest Euclidean distance
from x to the points in a given finite set C is shortest.

The distance from a point x to a point y is defined by ‖x − y‖. Let d(x, C) :=
maxy∈C ‖x− y‖2, then the problem to be solved takes the following mathematical
form

min
x∈D

d(x, C). (P )

Lemma 3.1. Let VC denote the set of vertices of conv(C). Then one has

(i) VC ⊆ C;
(ii) d(x, C) = max{‖x − y‖2 | y ∈ VC}.

Proof. The assertion (i) follows directly from the definition of the set VC . To see
(ii) we observe that

d(x, C) = max
y∈C

‖x − y‖2 = max
y∈conv(C)

‖x − y‖2 = max
y∈VC

‖x − y‖2, (3.1)

where the last equality comes from the fact that the maximum of a convex function
over a convex set attains at some of its extreme points ([12], Thm. 32.2). �

Lemma 3.2. Let v1, . . . , vm be the elements of VC and dj(x, C) := ‖x − vj‖2 for
each j ∈ J := {1, . . . , m}. Then one has

(i) d(x, C) is strongly convex with modulus 2;
(ii) ∂d(·, C)(x) = conv

(∪j∈J(x)∂dj(·, C)(x)
)
, where ∂dj(·, C)(x) is the subdiffer-

ential of the convex function dj(·, C) at x and J(x) = {j ∈ J | d(x, C) =
dj(x, C)}.

Proof. It follows from Lemma 2.2(i) that

d(x, C) = max
j∈J

‖x − vj‖2 = max
j∈J

dj(x, C). (3.2)

By Lemma 2.2(i), for each j ∈ J the function dj(x, C) = ‖x − vj‖2 is strongly
convex with modulus 2. Hence the assertion (i) follows from Lemma 2.2(ii), while
the assertion (ii) follows from (3.2) and Lemma 2.6. �

From computational point of view, evaluating the objective function d(x, C) at
every point of C will be very costly if the number of the points in C is too large.
Fortunately, thanks to Lemma 3.2(i), for minimizing the function d(x, C) one needs
to consider only the vertices of the convex hull of C.



A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM 593

4. The Algorithm and Its Convergence Analysis

By Lemma 3.1(ii) the problem being solved can take the form

min
x∈D

d(x, C) = min
x∈D

max
v∈VC

‖x − v‖2. (P )

Suppose that D is a closed convex (not necessarily bounded) set. Since d(x, C)
is strongly convex on D, problem (P ) always admits a unique optimal solution
([9], Thm. 2.2.6). The following algorithm can be considered as a modification of
the subgradient algorithm presented in [13] for unconstrained nonsmooth convex
optimization problem.

Algorithm 4.1. Initialization. Select x0 ∈ D, fix a parameter ρ > 0 and choose
a sequence {βk} of positive numbers satisfying the condition

∞∑
k=0

βk = +∞,
∞∑

k=0

β2
k < ∞. (4.1)

Let k := 0.
Step 1. Find vk ∈ VC such that

vk ∈ arg max{‖xk − v‖2 : v ∈ VC}.
Step 2. Take gk := 2(vk − xk), i.e. the gradient of ‖xk − v‖2 at vk.

Case (2a): If gk = 0, then terminate: xk is the optimal solution to (P ).
Case (2b): If gk �= 0, compute

αk :=
βk

max{ρ, ‖gk‖} ,

and
xk+1 := PD(xk − αkgk),

where PD stands for the Euclidean projection operator onto D.
Step 3. If xk+1 = xk, then terminate: xk is the optimal solution to (P ). Otherwise,
set k := k + 1 and go back to Step 1.

Theorem 4.2.

(i) If the algorithm 4.1 terminates at some iteration k, then xk is the optimal
solution to problem (P).

(ii) If the algorithm 4.1 does not terminate, then the sequence {xk} converges to
the solution x∗ to problem (P).

Proof.

(i) If the algorithm 4.1 terminates at iteration k, then either gk = 0 or xk =
PD(xk − αkgk).
In the first case, gk = 0 ∈ ∂d(xk, C), by the definition of subgradient, it
implies that

〈0, x − xk〉 + d
(
xk, C

) ≤ d(x, C) ∀x ∈ D.



594 N.K. LINH AND D.M. LE

Hence
d

(
xk, C

) ≤ d(x, C) ∀x ∈ D, (4.2)

which means that xk minimizes the function d(x, C) over D.
In the second case, xk = xk+1 = PD(xk − αkgk). Then using property (2.1)
of the metric projection we obtain〈(

xk − αkgk
) − xk, x − xk

〉 ≤ 0 ⇔ −αk

〈
gk, x − xk

〉 ≤ 0

⇔ 〈gk, x − xk〉 ≥ 0. (4.3)

Since gk ∈ ∂d(xk, C), one has〈
gk, x − xk

〉
+ d(xk, C) ≤ d(x, C).

Combining this inequality with (4.3) yields d(xk, C) ≤ d(x, C) for every
x ∈ D. Hence xk is the optimal solution to (P ).

(ii) Now suppose that the algorithm does not terminate. Let x∗ be the solution
of problem (P ). We prove the assertion (ii) throughout several claims. �

Claim 4.3. One has ∥∥xk+1 − xk
∥∥ ≤ βk ∀k ∈ N.

Proof. According to the definition of αk we have

αk

∥∥gk
∥∥ =

βk

∥∥gk
∥∥

max{ρ, ‖gk‖} ≤ βk.

Since xk+1 = PD(xk − αkgk), using again the property (2.1) of the metric projec-
tion, we have 〈

xk − αkgk − xk+1, x − xk+1
〉 ≤ 0 ∀x ∈ D. (4.4)

Replacing x by xk yields∥∥xk − xk+1
∥∥2 ≤ 〈

αkgk, xk − xk+1
〉

≤ αk

∥∥gk
∥∥ ∥∥xk − xk+1

∥∥
≤ βk

∥∥xk − xk+1
∥∥ , (4.5)

which implies ‖xk+1 − xk‖ ≤ βk.

Claim 4.4. For every k, the sequence {‖xk − x∗‖2} converges.

Proof. Using the definition of the Euclidean norm we can write∥∥xk − x∗∥∥2
=

∥∥xk+1 − xk
∥∥2 − 2

〈
xk − xk+1, x∗ − xk+1

〉
+

∥∥xk+1 − x∗∥∥2
.

Thus∥∥xk+1 − x∗∥∥2
=

∥∥xk − x∗∥∥2 − ∥∥xk+1 − xk
∥∥2

+ 2
〈
xk − xk+1, x∗ − xk+1

〉
. (4.6)



A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM 595

Note that from (4.5) we have〈
αkgk, xk − xk+1

〉 ≤ βk

∥∥xk − xk+1
∥∥ ≤ β2

k. (4.7)

Then from (4.6) and (4.7), it follows that

∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk+1 − xk
∥∥2

+ 2
〈
αkgk, x∗ − xk+1

〉
≤ ∥∥xk − x∗∥∥2

+ 2
〈
αkgk, x∗ − xk+1

〉
=

∥∥xk − x∗∥∥2
+ 2

〈
αkgk, x∗ − xk

〉
+ 2

〈
αkgk, xk − xk+1

〉
≤ ∥∥xk − x∗∥∥2

+ 2αk

〈
gk, x∗ − xk

〉
+ 2β2

k. (4.8)

Since gk ∈ ∂d(xk, C), we have〈
gk, x∗ − xk

〉 ≤ d(x∗, C) − d(xk, C). (4.9)

Substituting (4.9) into (4.8) to obtain

∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2
+ 2αk

(
d (x∗, C) − d

(
xk, C

))
+ 2β2

k. (4.10)

Since x∗ is an optimal solution, d(xk, C) ≥ d(x∗, C), and therefore from (4.10) we
have ∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2

+ 2β2
k,

from which, by the assumption
∑∞

k=0 β2
k < +∞, it follows from Lemma 2.8 that

the sequence {‖xk − x∗‖2} is convergent. �

Claim 4.5. One has

lim sup
k→+∞

(d(xk, C) − d(x∗, C)) = 0. (4.11)

Proof. From 4.10, we can write

0 ≤ 2αk

(
d

(
xk, C

) − d (x∗, C)
) ≤ ∥∥xk − x∗∥∥2 − ∥∥xk+1 − x∗∥∥2

+ 2β2
k. (4.12)

Summing up both sides of the inequality above, we obtain

0 ≤ 2
m∑

k=0

αk

(
d

(
xk, C

) − d (x∗, C)
) ≤ ∥∥x0 − x∗∥∥2 − ∥∥xm+1 − x∗∥∥2

+ 2
m∑

k=0

β2
k

≤ ∥∥x0 − x∗∥∥2
+ 2

m∑
k=0

β2
k.

Letting m → +∞ we get

0 ≤ 2
+∞∑
k=0

αk

(
d

(
xk, C

) − d (x∗, C)
) ≤ ∥∥x0 − x∗∥∥2

+ 2
+∞∑
k=0

β2
k. (4.13)



596 N.K. LINH AND D.M. LE

Since
∑+∞

k=0 β2
k < +∞, we have

+∞∑
k=0

αk

(
d

(
xk, C

) − d (x∗, C)
)

< +∞. (4.14)

On the other hand, since the sequence {xk} is bounded, the sequence {gk} is
bounded too ([12], Thm. 24.7, p. 237). Thus, there exists L > 0 such that ‖gk‖ ≤
L < ∞ for every k ∈ N. Let L0 := max{ρ, L}, then, by definition of αk, we have

αk =
βk

max{ρ, ‖gk‖} ≥ βk

L0
, (4.15)

which together with (4.14) implies

1
L0

+∞∑
k=0

βk

(
d

(
xk, C

) − d (x∗, C)
) ≤

+∞∑
k=0

αk

(
d

(
xk, C

) − d (x∗, C)
)

< +∞. (4.16)

Since
∑+∞

k=0 βk = +∞, we can deduce that

lim sup
k→+∞

(
d

(
xk, C

) − d (x∗, C)
)

= 0. (4.17)

�

Now using the just proved claims, we can prove assertion (ii) of the Theorem 4.2.
In fact, according to the definition of lim sup, there exists a subsequence

{
xkj

}
of

the sequence {xk} such that

lim
j→+∞

(
d

(
xkj , C

) − d (x∗, C)
)

= lim sup
k→+∞

(
d

(
xk, C

) − d (x∗, C)
)

= 0.

Since
{
xkj

}
is bounded, we may assume that

lim
j→+∞

xkj = x̄.

Then
d (x∗, C) − d (x̄, C) = lim

j→+∞
(
d (x∗, C) − d

(
xkj , C

))
= − lim

j→+∞
(
d

(
xkj , C

) − d (x∗, C)
)

= − lim sup
k→+∞

(
d

(
xk, C

) − d (x∗, C)
)

= 0,

which shows that x̄ is also an optimal solution. Keeping in mind that x∗ is the
unique solution of problem (P), we have x∗ = x̄. Since the sequence

{‖xk − x∗‖}
is convergent and the subsequence {xkj} of {xk} converges to x∗, we can write

lim
k→+∞

xk = lim
j→+∞

xkj = x∗.

Thus the whole sequence {xk} must converge to x∗. �



A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM 597

Remark 4.6.

(i) As we have seen, if either gk = 0 or xk+1 = xk, then xk is an exact solution.
In numerical computation, for an approximate solution, we can terminate the
algorithm if either ‖gk‖ ≤ ε or ‖xk+1 − xk‖ ≤ max{‖xk‖, 1}ε, where ε > 0 is
a given tolerance.

(ii) Convergence of the sequence {xk} generated by the above algorithm has been
proved in [13], Theorem 7.3 for unconstrained problems. The proof above is
quite different from the proof in [13].

(iii) The problem to be solved by the above algorithm is a special case of the min-
imax problem considered in [7] when the feasible regions is (topologically)
connected and the distance is the Euclidean. Thanks to this particular case,
the model can be formulated as a nonsmooth convex program that can be
much more easily handled than general cases considered in the above men-
tioned papers. Of course, the just described subgradient algorithm cannot be
used for models involving nonconvex objective functions and/or multi-feasible
regions. However, the algorithms that used combinatorial and/or global op-
timization techniques proposed in the above papers, for instance in [7,8,14],
are not suitable for our convex model setting.

5. Computational aspects and results

In this section we discuss computational experiments and results on the model
setting in two-dimensional spaces.

We suppose that the cardinality of the set C of users is very large (often in
practical models) and that the set D where we want to locate the facility is a
polyhedral convex set given as

D =
{
x ∈ R

2 | Ax ≤ b
}

,

where A is an m × 2 matrix of full rank, b is a vector in R
m.

As presented above, for minimizing the function d(x, C) one needs only to know
the vertices of the convex hull of C. There are some effective convex hull algo-
rithms, see e.g. Akl et al. [1], O’Rourke [10], An [2]. We applied the modification
of Quickhull algorithm proposed by Dung and Linh [6] for finding the convex
hull of the set C. For convenience of the reader, first we outline the Quickhull
algorithm [5,10] and its modification for finding the convex hull on plane.

5.1. The Quickhull algorithm and its modification

It is well-known that the convex hull of a set of finite planar points in is a poly-
gon. Since any point in the convex hull can be expressed as a convex combination
of its vertices, for simplicity, in the sequel we use the phrase “convex hull” to mean
“the set of vertices of the convex hull”.

The Quickhull algorithm [5,10] for finding the convex hull of a set P of n-points
in plane processes as follows. The first step is to find two extreme points p and q.



598 N.K. LINH AND D.M. LE

q

P1

r2
p

P2

q

p

S1
S2

r1

P2

q

P1

p

r1

Figure 1. The Quickhull algorithm.

The line pq divides (n − 2) other points into two groups P1 and P2. Then, from
P1 find the farthest point r1 from the line pq. Three points p, q, and r1 partition
the set P1 into three subsets S0, S1, and S2, where S0 consists of the points inside
the triangle pr1q, S1 consists of the points lying to the left of pr1, and S2 consists
of the points lying to the left of r1q. Replace the line segment pq by pr1 and r1q
and continue recursively the algorithm. The same process is applied for the set P2

(Fig. 1).
The complexity of the Quickhull algorithm is O(n log n) in average and O(n2) in

the worst case. But it is similar to the Quicksort algorithm, which runs in practice
much faster than in the worst case. In [6], the authors presented three techniques,
namely revised Quickhull algorithm, using orienting vectors, preprocessing and
problem separation. They combined them with Quickhull algorithm and call it is
the new Quickhull algorithm (NQH). The new Quickhull algorithm reduces the
computational time of the original Quickhull algorithm by a factor of three on
average.

5.2. Computational aspects and results

We applied the new Quickhull algorithm and implemented this algorithm in
C programming language. Algorithm 4.1 for solving the location problem was
implemented with C programming. The programs were executed on a PC Core
2Duo 2 × 2.0 GHz, RAM 2GB.

We tested the programs on various instances of the set C, which are created
randomly inside a square and a circle, which have different sizes, by the random.cpp
program. The two examples for the set D are D1, D2 defined by

A1 =
[

8 0 −1 −10 −3 14
5 1 1 −4 −15 −7

]T

,

b1 = (103, 11, 17, 142, 155, 133)T ,



A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM 599

Table 1. Numerical experiments corresponding to the set D1 (time in s).

|C| |VC | The average Time to find Computational
Total time

Computational

(1) (2)
ratio |VC |

|C| conv(C) time using NQH
(6) = (4) + (5)

time without

(3) (4) (5)
using NQH

(7)

1000 25 <10−4 0.0011 0.0011 0.0021
1000 39 <10−4 0.0014 0.0014 0.0030
1000 35 2.76% <10−4 0.0014 0.0014 0.0030
1000 22 <10−4 0.0011 0.0011 0.0022
1000 17 <10−4 0.0010 0.0010 0.0020

10000 48 0.0010 0.0018 0.0028 0.0127
10000 81 0.0010 0.0077 0.0087 0.0129
10000 100 2.75% 0.0010 0.0111 0.0121 0.0128
10000 27 <10−4 0.0013 0.0013 0.0127
10000 19 <10−4 0.0011 0.0011 0.0126

100000 94 0.0150 0.0101 0.0251 0.0312
100000 124 0.0150 0.0118 0.0268 0.0313
100000 155 0.414% 0.0161 0.0121 0.0282 0.0314
100000 23 0.0010 0.0015 0.0025 0.0310
100000 18 0.0010 0.0012 0.0022 0.0301

and

A2 =
[

1 3 2 1 2 1 1 −1 −1 −1 −2 −1 −4
0 1 1 −1 3 3 4 4 3 2 3 1 3

−3 −4 −1 −2 −1 0 1 2 1 2 3
1 −1 −1 −5 −7 −1 −4 −3 −1 −1 −1

]T

,

b2 = (15, 48, 36, 21, 52, 44, 57, 55, 42, 30, 49, 20, 73, 51, 68, 20, 64, 77, 11, 47, 44,

18, 31, 36)T .

In implementing Algorithm 4.1 we set ε = 10−3, αk = βk = 1
k+1 . The results of

testing the programs on these instances are reported in Tables 1 and 2. Running
time of executing the programs is recorded in seconds.

Columns (6) in Tables 1 and 2 contain the time for solving the problem when
applying the preprocessing step for finding the convex hull of the set C by using
the new Quickhull (shortly NQH), while columns (7) contain the time to solve the
problem without using the new Quickhull for finding the convex hull of the set C.
Comparing (6) and (7) in both Tables, we realize that exploring the convex prop-
erty of the distance function is an essential step in solving our location problem,
since this step helps us to dramatically reduce the number of points in the set
C which need to be considered as the cardinality of C gets larger. The results in
Tables 1 and 2 show that the proposed algorithm can be efficiently applied to the
single facility minimax location problems in question with planar instances, which
arise frequently from real life.



600 N.K. LINH AND D.M. LE

Table 2. Numerical experiments corresponding to the set D2 (time in s).

|C| |VC | The average Time to find Computational
Total time

Computational

(1) (2)
ratio |VC |

|C| conv(C) time using NQH
(6) = (4) + (5)

time without

(3) (4) (5)
using NQH

(7)

1000 25 <10−4 0.0014 0.0014 0.0030
1000 39 <10−4 0.0019 0.0019 0.0031
1000 35 2.76% <10−4 0.0016 0.0016 0.0032
1000 22 <10−4 0.0012 0.0012 0.0031
1000 17 <10−4 0.0009 0.0011 0.0031

10000 48 0.0010 0.0018 0.0028 0.0151
10000 81 0.0010 0.0079 0.0089 0.0156
10000 100 2.75% 0.0010 0.0117 0.0127 0.0157
10000 27 <10−4 0.0017 0.0017 0.0151
10000 19 <10−4 0.0015 0.0015 0.0151

100000 94 0.0151 0.0023 0.0174 0.0402
100000 124 0.0155 0.0027 0.0182 0.0413
100000 155 0.414% 0.0165 0.0037 0.0202 0.0432
100000 23 0.0010 0.0017 0.0027 0.0403
100000 18 0.0010 0.0017 0.0027 0.0401

Acknowledgements. We would like to thank the referees for their useful remarks and
comments that helped us very much in revising the paper.

References

[1] S.G. Akl and G.T. Toussaint, A fast convex hull algorithm, Inform. Process. Lett. 7 (1978)
219–222.

[2] P.T. An, Method of orienting curves for determining the convex hull of a finite set of points
in the plane. Optimization 59 (2010) 175–179.

[3] J.L. Bentley, H.T. Kung, M. Schkolnick and C.D. Thompson, On the average number of

maxima in a set of vectors and application. J. Assoc. Comput. Machine 25 (1978) 536–543.
[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004).
[5] M.M. David, Computation geometry. Department of Computer Science (2002).
[6] H.N. Dung and N.K. Linh, Quicker than Quickhull. Viet. J. Math. (2014) DOI:10.1007/

s10013-014-0067-1.
[7] P. Hansen, D. Peeters, D. Richard and J.F. Thisse, The minisum and minimax location

problems revisited. Oper. Res. 33 (1985) 1251–1265.
[8] M. Kon and S. Kushimoto, A single facility minisum location problem under the A-distance.

J. Oper. Res. Soc. Jpn 40 (1997) 10–20.
[9] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Kluwer Academic

Publishers (2004).
[10] J. O’Rourke, Computational geometry in C, 2nd edn. Cambridge University Press (1998).
[11] F. Plastria, The generalized big square small square method for planar single facility location.

Eur. J. Oper. Res. 62 (1992) 163–174.
[12] R.T. Rockafellar, Convex Analysis, Princeton University Press (1970).
[13] A.P. Ruszczynski, Nonlinear Optimization, Princeton University Press (2006).
[14] H. Tuy, A general d.c. approach to location problems. In State of the art in global optimiza-

tion: Computational methods and applications, edited by C.A. Floudas and P.M. Pardalos.
Kluwer (1996), 413–432.

[15] H.K. Xu, An iterative approach to quadratic optimization. J. Optim. Theor. Appl. 116
(2003) 659–678.


	Introduction
	Preliminaries
	Mathematical form and its properties
	The Algorithm and Its Convergence Analysis
	Computational aspects and results
	The Quickhull algorithm and its modification
	Computational aspects and results

	References

