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1. Introduction and preliminaries

1.1. Introduction

Two approaches to characterize properties of Boolean functions have been con-
sidered recently: one in terms of functional equations [12], another in terms of
relational constraints [26]. As it turns out, these two approaches have the same
expressive power in the sense that they characterize the same properties (classes)
of Boolean functions, which can be described as initial segments of the so-called
“minor” relation between functions: for two functions f and g of several variables,
f is said to be a minor of g if f can be obtained from g by identifying variables,
permuting variables, or adding inessential variables (see Sect. 1.3). Furthermore,
a class is characterizable by a finite number of functional equations if and only if
it is characterizable by a finite number of relational constraints (see, e.g., [5, 26]).
For the sake of simplifying the presentation of constructions and proofs, we will
focus on the approach by relational constraints.

Several properties of functions can be characterized by relational constraints
(or, equivalently, by functional equations. In fact, uncountably many properties
are expressible by such objects, even in the simplest interesting case of functions of
several variables, i.e., the Boolean functions (see [9,26]). Classical examples of such
properties include idempotency, monotonicity and linearity. More contemporary
examples include submodularity, supermodularity and the combination of the two,
i.e., modularity (see, e.g., [8, 22, 29, 31]).

Another noteworthy example is thresholdness that is the property of those
Boolean functions whose true points can be separated from the false points by
a hyperplane when considered as elements of the n-dimensional real space Rn.
Threshold functions have been widely studied in the literature on Boolean func-
tions, switching theory, system reliability theory, game theory, etc.; for background
see, e.g., [17, 23–25,30, 32].

Despite being a property expressible by relational constraints, thresholdness
cannot be captured by a finite set of relational constraints (see Hellerstein [16]).
However, by imposing additional conditions such as linearity or preservation of
componentwise conjunctions or disjunctions of tuples, the resulting classes of
threshold functions may become characterizable by a finite number of relational
constraints. In fact, these examples can be obtained from the class of threshold
functions by intersecting it with certain clones, namely, those of linear functions,
conjunctions and disjunctions, respectively. (Recall that a clone is a class of func-
tions that contains all projections and is closed under functional composition.)
Another noteworthy and well-known example of such an intersection is the class
of “majority games”, which results as the intersection with the clone of self-dual
monotone functions. The natural question is then: Is the class of majority games
characterizable by a finite number of relational constraints?

In this paper, we answer negatively to this question. In fact, we will deter-
mine, for each clone of Boolean functions, whether its intersection with the class
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of threshold functions is finitely characterizable by relational constraints (see
Thm. 2.11). Moreover, we provide finite or infinite characterizing sets of relational
constraints accordingly (see Thm. 2.7).

The paper is organized as follows. In the remainder of this section, we recall
basic notions and results that will be needed throughout the paper. The main
results are presented in Section 2, in particular, the classification of all intersec-
tions C ∩ T , where C is a clone and T is the class of all threshold functions
(Thm. 2.11), as well as the corresponding characterizing set of relational con-
straints (Thm. 2.7). The deepest part of the proof of Theorem 2.11 is Lemma 2.9,
and, for the reader’s convenience, the technical constructions needed for the proof
of that lemma will be collected in Section 3. One of the main tools in our proof is
Taylor and Zwicker’s [30] theorem on the existence of a k-asummable function that
is not (k+1)-asummable. In Section 4, we slightly refine Taylor and Zwicker’s result
and show how the classes of functions characterizable by the relational constraints
that arise in our current work are related to each other. Appendix A provides a
list of the clones of Boolean functions and relations characterizing them.

1.2. Boolean functions

Throughout the paper, we denote the set {1, . . . , n} by [n] and the set {0, 1} by
B. A Boolean function is a map f : Bn → B for some positive integer n called the
arity of f . Typical examples of Boolean functions include

• the n-ary ith projection (i ∈ [n]) e
(n)
i : Bn → B, (a1, . . . , an) �→ ai;

• negation · : B → B, 0 = 1, 1 = 0;
• conjunction ∧ : B2 → B, x ∧ y = 1 if and only if x = y = 1;
• disjunction ∨ : B2 → B, x ∨ y = 0 if and only if x = y = 0;
• modulo-2 addition ⊕ : B2 → B, x ⊕ y = (x + y) mod 2.

The set of all Boolean functions is denoted by Ω and the set of all projections is
denoted by Ic.

The preimage f−1(1) of 1 under f is referred to as the set of true points, while
f−1(0) is referred to as the set of false points.

The ith variable of a Boolean function f : Bn → B is said to be essential in f ,
or that f depends on xi, if there are a1, . . . , ai−1, ai+1, . . . , an ∈ B; such that

f(a1, . . . , ai−1, 0, ai+1, . . . , an) 	= f(a1, . . . , ai−1, 1, ai+1, . . . , an).

The dual of a Boolean function f : Bn → B is the function fd : Bn → B given by

fd(x1, . . . , xn) = f(x1, . . . , xn).

A function f is self-dual if f = fd.
If f : Bn → B and g1, . . . , gn : Bm → B, then the composition of f with g1, . . . , gn

is the function f(g1, . . . , gn) : Bm → B given by

f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a))



42 M. COUCEIRO ET AL.

for all a ∈ Bm. A clone of Boolean functions is a subset C of the set Ω of all
Boolean functions that satisfies the following two conditions:

• Ic ⊆ C, i.e., C contains all projections;
• if f : Bn → B, g1, . . . , gn : Bm → B and f, g1, . . . , gn ∈ C, then f(g1, . . . , gn) ∈

C, i.e., C is closed under composition.

The clones of Boolean functions were completely described by Post [28], and they
are often referred to as Post’s classes. We provide a list of all clones of Boolean
functions in Appendix A.

1.3. Minors and relational constraints

We will denote tuples in Bm by boldface letters and their entries with corre-
sponding italic letters, e.g., a = (a1, . . . , am). Tuples a ∈ Bm may be viewed as
mappings a : [m] → B, i �→ ai. With this convention, given a map σ : [n] → [m],
we can write the tuple (aσ(1), . . . , aσ(n)) as a ◦ σ, or simply aσ.

A function f : Bm → B is a minor of another function g : Bn → B if there exists
a map σ : [n] → [m] such that f(a) = g(aσ) for all a ∈ Bm; in this case we write
f ≤ g. Functions f and g are equivalent, denoted f ≡ g, if f ≤ g and g ≤ f .
In other words, f is a minor of g if f can be obtained from g by permutation
of arguments, addition and deletion of inessential arguments and identification of
arguments. Functions f and g are equivalent if each one can be obtained from
the other by permutation of arguments and addition and deletion of inessential
arguments.

The minor relation ≤ is a quasi-order (i.e., a reflexive and transitive relation)
on the set of all Boolean functions, and the relation ≡ is indeed an equivalence
relation. For further background see, e.g., [6, 7, 9, 12, 26]. Note that the set of
Boolean functions ordered by the minor relation satisfies the descending chain
condition, i.e., every strictly descending sequence of elements terminates.

Recall that a subset of a partially ordered set P is an initial segment if it is
of the form ↓X := {y ∈ P : y ≤ x for some x ∈ X}. Similarly, a subset of P is a
final segment if it is of the form ↑X := {y ∈ P : x ≤ y for some x ∈ X}. In this
case, we say that the initial or final segment is generated by X . An initial or final
segment is finitely generated if it has a finite generating set.

Since (Ω/≡,≤) satisfies the descending chain condition, the initial segments
of (Ω/≡,≤) correspond bijectively to the antichains of Ω/≡. Indeed for each an-
tichain A ⊆ Ω/≡, the set forbid(A) := {y ∈ Ω/≡ : x ∈ A ⇒ x 	≤ y} = (Ω/≡) \ ↑A
is an initial segment of (Ω/≡,≤). Conversely, each initial segment K of (Ω/≡,≤)
is of this form as A = min((Ω/≡) \ K) verifies K = forbid(A). The elements of
A constitute an antichain, and they are referred to as the minimal obstructions
of K.

The following result is part of the folklore of the theory of ordered sets.

Lemma 1.1. Let P be a poset satisfying the descending chain condition. If the
union of a chain of final segments of P is finitely generated, then there is a member
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of the chain such that this member and all members containing it are finitely
generated.

In what follows, we shall consider minors of the following special form. Let n ≥ 2,
and let f : Bn → B. For any two-element subset I of [n], we define the function
fI : Bn−1 → B by the rule fI(a) = f(aδI) for all a ∈ Bn−1, where δI : [n] → [n − 1]
is given by the rule

δI(i) =

⎧⎪⎨
⎪⎩

i, if i < max I,
min I, if i = max I,
i − 1, if i > max I.

(1)

In other words, if I = {i, j} with i < j, then

fI(a1, . . . , an−1) = f(a1, . . . , aj−1, ai, aj, . . . , an−1).

Note that ai occurs twice on the right side of the above equality: both at the
ith and at the jth position. The function fI will be referred to as an identification
minor of f .

It was shown by Pippenger [26] that the classes of functions closed under tak-
ing minors are characterizable by so-called relational constraints. We will briefly
survey some results which we will use hereinafter. An m-ary relational constraint
is a couple (R, S) of m-ary relations R (the antecedent) and S (the consequent)
on B (i.e., R, S ⊆ Bm). We denote the antecedent and the consequent of a rela-
tional constraint Q by R(Q) and S(Q), respectively. If both R(Q) and S(Q) equal
the binary equality relation, then Q is called the binary equality constraint. Fur-
thermore, we refer to constraints with empty antecedent and empty consequent
as empty constraints, and to constraints where the antecedent and consequent are
the full relation Bm, for some m ≥ 1, as full constraints. The set of all relational
constraints is denoted by Θ.

A function f : Bn → B preserves an m-ary relational constraint (R, S), denoted
f � (R, S), if for every a1, . . . ,an ∈ R, we have f(a1, . . . ,an) ∈ S. (Regarding
tuples ai as unary maps, f(a1, . . . ,an) denotes the m-tuple whose ith entry is
f(a1, . . . ,an)(i) = f(a1

i , . . . , a
n
i ).)

The preservation relation gives rise to a Galois connection between functions
and relational constraints that we now briefly describe; for further background,
see [4, 9, 26]. Define cPol: P(Θ) → P(Ω), cInv : P(Ω) → P(Θ) by

cPol(Q) = {f ∈ Ω : f � Q for every Q ∈ Q},
cInv(F) = {Q ∈ Θ : f � Q for every f ∈ F}.

We say that a set F of functions is characterized by a set Q of relational con-
straints if F = cPol(Q). Dually, Q is characterized by F if Q = cInv(F). In other
words, sets of functions characterizable by relational constraints are exactly the
fixed points of cPol ◦ cInv, and, dually, sets of relational constraints characterizable
by functions are exactly the fixed points of cInv ◦ cPol.
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Remark 1.2. Preservation of a relational constraint generalizes the notion of
preservation of a relation, as in the classical Pol–Inv theory of clones and re-
lations, which establishes that the clones on finite sets are exactly the classes of
functions that are characterized by relations (see [2,15]). In this framework, a func-
tion f preserves a relation R if and only if f preserves the relational constraint
(R, R). Hence, clones are exactly the classes that are characterized by relational
constraints of the form (R, R) for some relation R.

The following result reassembles various descriptions of the Galois closed sets
of functions, which can be found in [9, 12, 26].

Theorem 1.3. Let F be a set of functions. The following are equivalent.

(i) F is closed under taking minors, i.e., F = ↓F .
(ii) F is characterizable by relational constraints.
(iii) F is of the form

forbid(A) := {f ∈ Ω : g � f for all g ∈ A} = Ω \ ↑A

for some antichain A with respect to the minor relation ≤.

Remark 1.4. It follows from the equivalence of (i) and (ii) in Theorem 1.3 that
the union and the intersection of classes that are characterizable by relational
constraints are characterizable by relational constraints.

Remark 1.5. Note that the antichain A in item (iii) of Theorem 1.3 is unique up
to equivalence. In fact, A can be chosen among the minimal elements of Ω \ F ;
the elements of A are called minimal forbidden minors for F .

As we will see, there are classes of functions that, even though characterizable
by relational constraints, are not characterized by any finite set of relational con-
straints. A set of functions is finitely characterizable if it is characterized by a finite
set of relational constraints.

The following theorem is a refinement of Theorem 1.3 and provides a description
for finitely characterizable classes.

Theorem 1.6 [9, 12]. Let F be a set of functions. The following are equivalent.

(i) F is finitely characterizable.
(ii) F is of the form forbid(A) for some finite antichain A with respect to the

minor relation ≤.

The Galois closed sets of relational constraints were likewise described by
Pippenger [26]; this description was extended to arbitrary, possibly infinite, un-
derlying sets in [5]. We shall briefly survey Pippenger’s description of the Galois
closed sets of constraints.



CLASSIFICATION OF EQUATIONAL CLASSES OF THRESHOLD FUNCTIONS 45

An m-ary relational constraint (R, S) is a simple minor of an (m + p)-ary
relational constraint (R′, S′) if there is h : {1, . . . , n} → {1, . . . , m + p} such that

⎛
⎜⎝ x1

...
xm

⎞
⎟⎠ ∈ R ⇐⇒ ∃xm+1 . . . ∃xm+p

⎛
⎜⎝ xh(1)

...
xh(n)

⎞
⎟⎠ ∈ R′

and

⎛
⎜⎝ x1

...
xm

⎞
⎟⎠ ∈ S ⇐⇒ ∃xm+1 . . . ∃xm+p

⎛
⎜⎝ xh(1)

...
xh(n)

⎞
⎟⎠ ∈ S′.

Note that simple minors subsume the notions of permutation, diagonalization
and projection of arguments; for background see [5, 26].

A constraint (R, S) is obtained from a constraint (R′, S) by restricting the an-
tecedent if R ⊆ R′. Likewise, (R, S) is obtained from a constraint (R, S′) by ex-
tending the consequent if S ⊇ S′. A constraint (R, S ∩ S′) is said to be obtained
from (R, S) and (R, S′) by intersecting consequents.

A set Q of relational constraints is said to be minor-closed if it contains the bi-
nary equality constraint, the unary empty constraint, and it is closed under taking
simple minors, restricting antecedents, and extending and intersecting consequents.

We can now state Pippenger’s [26] description of the Galois closed sets of rela-
tional constraints.

Theorem 1.7. Let Q be a set of relational constraints. The following are equiva-
lent.

(i) Q is characterizable by some set of functions.
(ii) Q is minor-closed.

The following lemma provides a noteworthy tool for showing that certain classes
of threshold functions are not finitely characterizable.

Lemma 1.8. Let C and Ci for all i ≥ 1 be classes of functions that are closed
under taking minors, such that C =

⋂
i≥1 Ci, and Ci+1 ⊆ Ci for all i ≥ 1. If C is

finitely characterizable by constraints, then there exists � ∈ N such that Cj = C�

for all j ≥ �.

Proof. Straightforward from Lemma 1.1 and Theorem 1.6. �
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2. Main results: classification and characterizations
of Galois closed sets of threshold functions

2.1. Motivation

A threshold function is a Boolean function f : Bn → B such that there exist
weights w1, . . . , wn ∈ R and a threshold t ∈ R fulfilling

f(x1, . . . , xn) = 1 ⇐⇒
n∑

i=1

wixi ≥ t.

Another, equivalent, definition is the following. An n-ary Boolean function f is
called a threshold function if there is a hyperplane in Rn strictly separating the
true points of f from the false points of f , considered as elements of Rn. The set
of all threshold functions is denoted by T .

The class of threshold functions has remarkable invariance properties. For in-
stance, it is closed under taking negations and duals (see Lem. 3.15). Moreover,
the class of threshold functions is also closed under taking minors of its members;
hence it is characterizable by relational constraints by Theorem 1.3. However, no
finite set of relational constraints suffices.

Theorem 2.1 (Hellerstein [16]). The class of threshold functions, while charac-
terizable by relational constraints, is not finitely characterizable.

Imposing some additional conditions on threshold functions, we may obtain
proper subclasses of T that are finitely characterizable. Easy examples arise from
the intersections of T with the clones L, Λ, V (see Appendix A). However, as we
have seen, other intersections C ∩ T may fail to be finitely characterizable, e.g.,
when C is the clone of all Boolean functions.

This fact gives rise to the following problem.

Problem. Which clones C of Boolean functions have the property that C ∩ T is
finitely characterizable?

In the following subsection we present a solution to this problem.

2.2. Classification and characterizations of intersections
of the class of threshold functions with clones

We start by observing that

L ∩ T = Ω(1), Λ ⊆ T, V ⊆ T,

from which it follows that the intersection C∩T is a clone for any clone C contained
in one of L, V and Λ. (Recall from Appendix A that Ω denotes the clone of all
Boolean functions, L denotes the clone of linear functions, Λ denotes the clone
of conjunctions and constants, V denotes the clone of disjunctions and constants,
and Ω(1) denotes the clone of projections, negations and constants.) Hence, the
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characterization of C ∩T for any such clone C is given by the relational constraint
(R, R), where R is the relation characterizing C ∩ T given in Appendix A.

We proceed to characterizing the intersections C ∩ T for the remaining clones
C; as we will see, none of these is finitely characterizable. A characterization of
the class T of all threshold functions (i.e., for C = Ω) is easily obtained with the
help of the notion of asummability.

For k ≥ 2, a Boolean function f : Bn → B is k-asummable if for any m ∈
{2, . . . , k} and for all a1, . . . ,am ∈ f−1(0) and b1, . . . ,bm ∈ f−1(1), it holds that

a1 + · · · + am 	= b1 + · · · + bm.

(Addition here is standard vector addition in Rn.) A function is asummable if
it is k-asummable for all k ≥ 2. It is well known that asummability characterizes
threshold functions; see [3, 13, 23].

Theorem 2.2. A Boolean function is threshold if and only if it is asummable.

Define for n ≥ 1, the 2n-ary relational constraint Bn as

R(Bn) :=

{
(x1, . . . , x2n) ∈ B2n :

n∑
i=1

xi =
2n∑

i=n+1

xi

}

S(Bn) := B2n \ {(0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

), (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

)}.

Note that in the definition of R(Bn) we employ the usual addition of real num-
bers. Denoting by w(a) the Hamming weight of a tuple a ∈ Bn (i.e., the number of
nonzero entries in a), we can equivalently define R(Bn) as {(x1, . . . , x2n) ∈ B2n :
w(x1, . . . , xn) = w(xn+1, . . . , x2n)}.
Lemma 2.3. Let f : Bn → B and � ≥ 2. Then a1 + · · · + a� 	= b1 + · · · + b� for
all a1, . . . ,a� ∈ f−1(0) and b1, . . . ,b� ∈ f−1(1) if and only if f preserves B�.

Proof. Assume first that f does not preserve B�. Then there exists a matrix

M =

⎛
⎜⎜⎜⎝

m1
1 m1

2 . . . m1
n

m2
1 m2

2 . . . m2
n

...
...

...
m2�

1 m2�
2 . . . m2�

n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

M1

M2

...
M2�

⎞
⎟⎟⎟⎠ = (M1, M2, . . . , Mn),

i.e., M1, . . . , M2� ∈ Bn are the rows of M , and M1, . . . , Mn ∈ B2� are the columns
of M , such that

• M1, . . . , Mn ∈ R(B�), and

• z := g(M1, . . . , Mn) :=

⎛
⎜⎝ g(M1)

...
g(M2�)

⎞
⎟⎠ /∈ S(B�).
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Thus z ∈ {(0, . . . , 0︸ ︷︷ ︸
l

, 1, . . . , 1︸ ︷︷ ︸
l

), (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
l

)}. As B� is invariant under swap-

ping the first � rows with the last � rows, we can assume that z = (0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�

).

Then M1, . . . , M � ∈ f−1(0) and M �+1, . . . , M2� ∈ f−1(1), and M1 + · · · + M � =
M �+1 + · · · + M2� by the definition of B�.

Assume then that there exist a1, . . . ,a� ∈ f−1(0) and b1, . . . ,b� ∈ f−1(1) such
that a1 + · · · + a� = b1 + · · · + b�. Let M be the 2� × n matrix whose rows
are a1, . . . ,a�,b1, . . . ,b�. The columns of M are tuples in R(B�), but f(M) =
(0, . . . , 0︸ ︷︷ ︸

�

, 1, . . . , 1︸ ︷︷ ︸
�

) /∈ S(B�). We conclude that f does not preserve B�. �

Now it is easy to define a set of relational constraints that characterizes k-
asummable functions. For k ≥ 2, let Ak := {Bn : 2 ≤ n ≤ k}.
Lemma 2.4. Let k ≥ 2. A Boolean function f is k-asummable if and only if
f ∈ cPol(Ak).

Proof. Follows immediately from the definition of k-asummability and
Lemma 2.3. �

Corollary 2.5. Let f : Bn → B. The following are equivalent.

(i) f is a threshold function.
(ii) f ∈ ⋂

k≥2 cPol(Ak).
(iii) f ∈ cPol({Bn : n ≥ 2}).
Proof. The equivalence of (i) and (ii) follows immediately from Theorem 2.2 and
Lemma 2.4. Conditions (ii) and (iii) are equivalent, because⋂

k≥2

cPol(Ak) = cPol
( ⋃

k≥2

Ak

)
= cPol

( ⋃
k≥2

{Bn : 2 ≤ n ≤ k}
)

= cPol({Bn : n ≥ 2}). �

Since Ak ⊆ Ak ∪ {Bk+1} = Ak+1, it is clear that cPol(Ak+1) ⊆ cPol(Ak) for
all k ≥ 2. Taylor and Zwicker have shown in [30] that for every k ≥ 2, there exist
k-asummable functions that are not (k+1)-asummable. Hence these inclusions are
strict for every k.

Theorem 2.6. For all k ≥ 2, cPol(Ak+1) ⊂ cPol(Ak).

Theorem 2.7. The set cPol({Bn : n ≥ 2}) is the class of all threshold functions.
Moreover, for every clone C, the subclass C ∩ T of threshold functions is charac-
terized by the set {Bn : n ≥ 2}∪QC, where QC is the set of relational constraints
characterizing the clone C, as given in Appendix 4.
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Remark 2.8. From Theorems 2.6 and 2.7 it follows that

T =
⋂
k≥2

cPol(Ak) ⊂ · · · ⊂ cPol(A�+1) ⊂ cPol(A�) ⊂ · · · ⊂ cPol(A2)

holds for all � ≥ 3, i.e., the sets cPol(Ak) with k ≥ 2 form an infinite descending
chain, whose intersection is the set T of all threshold functions.

Theorem 2.7 provides an infinite set of relational constraints characterizing the
set C ∩ T for each clone C. As Theorem 2.11 will reveal, the characterization
provided is optimal for the clones not contained in L, V or Λ in the sense that for
such clones C, the set C∩T is not finitely characterizable by relational constraints.

In order to proceed, we need the following lemma. Its proof is somewhat tech-
nical and is deferred to Section 3.

Lemma 2.9. Let f be a Boolean function, and let C ∈ {SM, McU∞, McW∞}.
There exists a Boolean function GC(f) that satisfies the following conditions:

(i) GC(f) ∈ C;
(ii) for all n ≥ 2, f ∈ cPolBn if and only if GC(f) ∈ cPolBn.

Proof. This brings together Corollaries 3.9, 3.14 and 3.16, which will be proved in
Section 3. �

Remark 2.10. Lemma 2.9 gives rise to a noteworthy refinement of Theorem 2.6.
Indeed, by Theorem 2.6, there is some f ∈ cPol(Ak) \ cPol(Ak+1) and, by
Lemma 2.9, there exists a function GE(f) ∈ E ⊆ C satisfying GE(f) ∈
cPol(Ak)\cPol(Ak+1). This implies that GE(f) ∈ (C∩cPol(Ak))\(C∩cPol(Ak+1))
and thus C ∩ cPol(Ak+1) ⊂ C ∩ cPol(Ak) for all k ≥ 2.

This shows that if C is a clone of Boolean functions satisfying E ⊆ C for some
E ∈ {SM, McU∞, McW∞}, then C ∩ cPol(Ak+1) ⊂ C ∩ cPol(Ak) for all k ≥ 2.

Theorem 2.11. Let C be a clone of Boolean functions. The subclass C ∩ T of
threshold functions is finitely characterizable if and only if C is contained in one
of the clones L, V , Λ.

This theorem is illustrated by Figure 1.

Proof. We have already observed that C ∩ T is finitely characterizable for every
subclone C of L, V or Λ.

Now we consider all the other clones. Let C be a clone such that C 	⊆ D for
all D ∈ {L, V, Λ}. We can read off of Post’s lattice (see Fig. 1) that there is
some E ∈ {SM, McU∞, McW∞} such that E ⊆ C. It follows from Theorem 2.6
and Lemma 2.9 that for every k ≥ 2, there exists a function fk ∈ E such that
fk ∈ cPolB� whenever 2 ≤ � ≤ k and fk /∈ cPolBk+1. Note that fk /∈ C ∩ T .

Suppose, on the contrary that C∩T is finitely characterizable. By Theorem 1.6,
C ∩ T is of the form forbid(A) for some finite antichain A of minimal forbidden
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Ω
T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Figure 1. Post’s lattice. Illustration of Theorem 2.11: for a clone
C, the set C ∩ T of threshold functions in C is finitely character-
izable if and only if C is below the dashed line.

minors. Each one of the functions fk has a minor in A. Since A is finite, there is
an element g ∈ A and an infinite set S ⊆ N such that g ≤ fk for all k ∈ S. The
function g is not threshold, so there exists p ∈ N such that p ≥ 2 and g /∈ cPolBp.
Being infinite, the set S contains an element q with p ≤ q. Then we have g ≤ fq

and fq ∈ cPolBp. We also have g ∈ cPolBp, because cPolBp is closed under taking
minors. This yields the desired contradiction. �

Remark 2.12. Alternatively, Theorem 2.11 can be proved using Lemma 1.8 and
Remark 2.10.

As before if C is a subclone of L, V or Λ, then C ∩ T is finitely characterizable.
As for any other clone C, we know (once again reading off of Post’s lattice) that
there is some E ∈ {SM, McU∞, McW∞} such that E ⊆ C. By Remark 2.10, we
have C ∩ cPol(Ak+1) ⊂ C ∩ cPol(Ak) for all k ≥ 2. Furthermore,

C ∩ T = C ∩
⋂
n≥2

cPol(Ak) =
⋂
n≥2

(C ∩ cPol(Ak)),

i.e., we have an infinite descending chain the intersection of which equals C ∩ T .
By Lemma 1.8 we thus conclude that C ∩ T is not finitely characterizable.

3. Constructions

In order to prove Lemma 2.9, we will construct from a given Boolean function
f , for each C ∈ {S, Mc, SM, U∞, McU∞, McW∞}, a Boolean function GC(f) that
satisfies the following conditions:
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(i) GC(f) ∈ C;
(ii) for all � ≥ 2, f ∈ cPolB� if and only if GC(f) ∈ cPolB�.

We do this step by step. We first construct functions GS(f) and GMc(f) with
the desired properties. Using these two constructions as building blocks, we can
construct GSM as GMc(GS(f)). Then we construct GU∞(f), and, building upon
this, we finally get GMcU∞(f) := GU∞(GMc(f)) and GMcW∞(f) := (GMcU∞(f))d.

3.1. Construction of GS(f)

Let f : Bn → B. Then we define GS(f) : Bn+1 → B by

GS(f)(x1, . . . , xn+1) = (xn+1 ∧ f(x1, . . . , xn)) ∨ (xn+1 ∧ fd(x1, . . . , xn)).

Lemma 3.1. For any f : Bn → B, the function GS(f) is self-dual.

Proof. Let g := GS(f). Then

gd(x, xn+1) = (xn+1 ∧ f(x)) ∨ (xn+1 ∧ fd(x))

= (xn+1 ∨ fd(x)) ∧ (xn+1 ∨ f(x))

= (xn+1 ∧ xn+1) ∨ (xn+1 ∧ f(x)) ∨ (fd(x) ∧ xn+1) ∨ (fd(x) ∧ f(x))

= (xn+1 ∧ f(x)) ∨ (fd(x) ∧ xn+1)
= g(x, xn+1),

where the second last equality holds since

fd(x) ∧ f(x) ≤ (xn+1 ∧ f(x)) ∨ (fd(x) ∧ xn+1)

for every xn+1. �
Lemma 3.2. Let f : Bn → B. If f /∈ cPolB� for some � ≥ 2, then GS(f) /∈
cPolB�.

Proof. Assume that f /∈ cPolB�, and let g := GS(f). Then there are y1, . . . ,yn ∈
R(B�) with f(y1, . . . ,yn) /∈ S(B�). Since g(x1, . . . , xn, 1) = f(x1, . . . , xn), we have

g(y1, . . . ,yn,1) = f(y1, . . . ,yn) /∈ S(B�).

Since also 1 ∈ R(B�), we conclude that g /∈ cPolB�. �

Lemma 3.3. Let f : Bn → B. If f ∈ cPolB� for some � ≥ 2, then GS(f) ∈
cPolB�.

Proof. Let g := GS(f). Suppose, on the contrary, that g /∈ cPolB�. Then there is
some matrix M given by

M =

⎛
⎜⎜⎜⎝

m1
1 m1

2 . . . m1
n+1

m2
1 m2

2 . . . m2
n+1

...
...

...
m2�

1 m2�
2 . . . m2�

n+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

M1

M2

...
M2�

⎞
⎟⎟⎟⎠ = (M1, M2, . . . , Mn+1),
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i.e., M1, . . . , M2� ∈ Bn+1 are the rows of M , and M1, . . . , Mn+1 ∈ B2� are the
columns of M , such that

• M1, . . . , Mn+1 ∈ R(B�), and

• z := g(M1, . . . , Mn+1) :=

⎛
⎜⎝ g(M1)

...
g(M2�)

⎞
⎟⎠ /∈ S(B�).

Thus z ∈ {(0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�

), (1, . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

)}. As B� is invariant under swap-

ping the first � coordinates with the last � coordinates, we can assume that
z = (0, . . . , 0︸ ︷︷ ︸

�

, 1, . . . , 1︸ ︷︷ ︸
�

).

We now look at the last column Mn+1 of M . Since
∑�

i=1 mi
n+1 =

∑2�
i=�+1 mi

n+1,
and since B� is totally symmetric on the first � rows and on the last � rows, we
can assume that

Mn+1 = (0, . . . , 0︸ ︷︷ ︸
α

, 1, . . . , 1︸ ︷︷ ︸
β

, 0, . . . , 0︸ ︷︷ ︸
α

, 1, . . . , 1︸ ︷︷ ︸
β

)

holds for some α, β ≥ 0 with α + β = �.
We will now construct a matrix K with

K =

⎛
⎜⎜⎜⎝

k1
1 k1

2 . . . k1
n

k2
1 k2

2 . . . k2
n

...
...

...
k2�
1 k2�

2 . . . k2�
n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

K1

K2

...
K2�

⎞
⎟⎟⎟⎠ = (K1, K2, . . . , Kn),

that satisfies K1, . . . , Kn ∈ R(B�) and f(K1, . . . , Kn) /∈ S(B�). This will yield the
desired contradiction since we started with the assumption that f ∈ cPolB�.

We define ki
j for 1 ≤ i ≤ 2� and 1 ≤ j ≤ n by

ki
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mi+�
j if 1 ≤ i ≤ α

mi
j if α + 1 ≤ i ≤ �

mi−�
j if � + 1 ≤ i ≤ � + α

mi
j if � + α + 1 ≤ i ≤ 2�.

In other words, matrix K is obtained from M by omitting the last column,
negating rows 1, . . . , α and � + 1, . . . , � + α, and then swapping rows 1, . . . , α with
rows � + 1, . . . , � + α.

We need to show that Kj ∈ R(B�) for all j ∈ [n]. Let j ∈ [n] be arbitrary, and
let

a :=
α∑

i=1

mi
j , b :=

�∑
i=α+1

mi
j , c :=

�+α∑
i=�+1

mi
j , d :=

2�∑
i=�+α+1

mi
j .
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Since Mj ∈ R(B�) we have

a + b =
�∑

i=1

mi
j =

2�∑
i=�+1

mi
j = c + d. (2)

For Kj we find the following:

α∑
i=1

ki
j =

α∑
i=1

mi+�
j =

α∑
i=1

(1 − mi+�
j ) = α −

�+α∑
i=�+1

mi
j = α − c,

�∑
i=α+1

ki
j =

�∑
i=α+1

mi
j = b,

�+α∑
i=�+1

ki
j =

�+α∑
i=�+1

mi−�
j =

�+α∑
i=�+1

(1 − mi−�
j ) = α −

α∑
i=1

mi
j = α − a,

2�∑
i=�+α+1

ki
j =

2�∑
i=�+α+1

mi
j = d.

From this it follows that

�∑
i=1

ki
j = α − c + b

(2)
= α − a + d =

2�∑
i=�+1

ki
j ,

and thus Kj ∈ R(B�) for all j ∈ [n].
We now show that f(Ki) = 0 if 1 ≤ i ≤ �, and f(Ki) = 1 if � + 1 ≤ i ≤ 2�. We

need to consider four different cases for i:

• 1 ≤ i ≤ α. Then (K
i
, 0) = M i+�, and

f(Ki) = fd(K
i
) = g(K

i
, 0) = g(M i+�) = 1.

Hence f(Ki) = 0.
• α + 1 ≤ i ≤ �. Then (Ki, 1) = M i, and

f(Ki) = g(Ki, 1) = g(M i) = 0.

• � + 1 ≤ i ≤ � + α. Then (K
i
, 0) = M i−�, and

f(Ki) = fd(K
i
) = g(K

i
, 0) = g(M i−�) = 0.

Hence f(Ki) = 1.
• � + α + 1 ≤ i ≤ 2�. Then (Ki, 1) = M i, and

f(Ki) = g(Ki, 1) = g(M i) = 1.
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Thus we have

f(K1, . . . , Kn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(K1)
...

f(K�)
f(K�+1)

...
f(K2�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

/∈ S(B�),

in contradiction to f ∈ cPolB�. We conclude that g ∈ cPolB�. �

Corollary 3.4. For any Boolean function f : Bn → B, GS(f) ∈ S and for all
� ≥ 2, f ∈ cPolB� if and only if GS(f) ∈ cPolB�.

Proof. This brings together Lemmas 3.1, 3.2 and 3.3. �

3.2. Construction of GMc(f) and GSM (f)

Let f : Bn → B. We define the Boolean function GMc(f) : B2n → B by the
following rules

• If w(x) < n, then GMc(f)(x) := 0.
• If w(x) > n, then GMc(f)(x) := 1.
• If x = (a, a) for some a ∈ Bn, then GMc(f)(x) := f(a).
• If w(x) = n and there exists i ∈ [n] such that xi = xn+i and xj 	= xn+j for all

j < i, then GMc(f)(x) := xi.

It is easy to verify that the function GMc(f) is defined on every tuple x ∈ B2n.

Lemma 3.5. Let f : Bn → B.

(i) GMc(f) ∈ Mc, i.e., GMc(f) is monotone and constant-preserving.
(ii) If f is self-dual, then GMc(f) is self-dual.

Proof. Let g := GMc(f).
(i) Let x,y ∈ B2n with x < y. Then w(x) < w(y) and one of the following

cases applies: w(x) < n or w(y) > n. In the former case, we have g(x) = 0 ≤ g(y);
in the latter case, we have g(x) ≤ 1 = g(y). We conclude that g is monotone.
Since w(0) = 0 < n and w(1) = 1 > n, it holds that f(0) = 0 and f(1) = 1, i.e.,
f preserves both constants.

(ii) Assume that f is self-dual. Let x ∈ B2n.
If w(x) > n then w(x) < n, and thus (g(x), g(x)) = (1, 0). Similarly, if w(x) < n
then w(x) > n, and thus (g(x), g(x)) = (0, 1).
If x = (a,a) for some a ∈ Bn, then (g(x), g(x)) = (f(a), f(a)) ∈ {(0, 1), (1, 0)}
since f is self-dual.
Otherwise, there is some i ∈ [m] with xi = xm+i and xj 	= xm+j for all j < i. This
holds also for the negation of x, and thus (g(x), g(x)) ∈ {(0, 1), (1, 0)}.
We conclude that g is self-dual. �
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Lemma 3.6. Let f : Bn → B. If f /∈ cPolB� for some � ≥ 2, then GMc(f) /∈
cPolB�.

Proof. Let f /∈ cPolB� and g := GMc(f). Then there are y1, . . . ,yn ∈ R(B�) with
f(y1, . . . ,yn) /∈ S(B�). Also y1, . . . ,yn ∈ R(B�) and thus

g(y1, . . . ,yn,y1, . . . ,yn) = f(y1, . . . ,yn) /∈ S(B�).

Therefore g /∈ cPolB�. �

Lemma 3.7. Let f : Bn → B with f ∈ cPolB� for some � ≥ 2. Then GMc(f) ∈
cPolB�.

Proof. Let g := GMc(f). Suppose, on the contrary, that g /∈ cPolB�. Then there
is some matrix M given by

M =

⎛
⎜⎜⎜⎝

m1
1 m1

2 . . . m1
2n

m2
1 m2

2 . . . m2
2n

...
...

...
m2�

1 m2�
2 . . . m2�

2n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

M1

M2

...
M2�

⎞
⎟⎟⎟⎠ = (M1, M2, . . . , M2n),

i.e., M1, . . . , M2� ∈ B2n are the rows of M , and M1, . . . , M2n ∈ B2� are the
columns of M , such that

• M1, . . . , M2n ∈ R(B�), and

• z := g(M1, . . . , M2n) :=

⎛
⎜⎝ g(M1)

...
g(M2�)

⎞
⎟⎠ /∈ S(B�).

Thus z ∈ {(0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�

), (1, . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

)}. As B� is invariant under swap-

ping the first � coordinates with the last � coordinates, we can assume that
z = (0, . . . , 0︸ ︷︷ ︸

�

, 1, . . . , 1︸ ︷︷ ︸
�

).

We have the following possibilities for M i with 1 ≤ i ≤ 2�:

(i) w(M i) 	= n;
(ii) w(M i) = n and there is some b ∈ [n] with mi

b = mi
n+b;

(iii) w(M i) = n and mi
b 	= mi

n+b for all b ∈ [n], i.e., there is some ai ∈ Bn with
M i = (ai,ai).

We show that case (i) cannot happen, since the weight of each row M i of M is
exactly n. Since g(M i) = 0 for 1 ≤ i ≤ �, we have w(M i) ≤ n for 1 ≤ i ≤ �.
Similarly, we have w(M i) ≥ n for � + 1 ≤ i ≤ 2�. Thus

∑�
i=1 w(M i) ≤ n� and∑2�

i=�+1 w(M i) ≥ n�. Because Mj ∈ R(B�) for 1 ≤ j ≤ 2n, we get

�∑
i=1

w(M i) =
�∑

i=1

2n∑
j=1

mi
j =

2n∑
j=1

�∑
i=1

mi
j =

2n∑
j=1

2�∑
i=�+1

mi
j =

2�∑
i=�+1

2n∑
j=1

mi
j =

2�∑
i=�+1

w(M i).
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Therefore
∑�

i=1 w(M i) =
∑2�

i=�+1 w(M i) = n�, and w(M i) = n for 1 ≤ i ≤ 2�.
Thus the case (i) cannot happen for M i.

We will show that case (ii) is also not possible. Suppose, on the contrary, that
there is some i ∈ [2�] and some b ∈ [n] such that mi

b = mi
n+b, and mi

a 	= mi
n+a for

all a < b. We can assume that b is the smallest number with this property.
Now we consider the weights of Mb and Mn+b. Because b is minimal, we have

that mi′
a 	= mi′

n+a for all a < b. Thus we have (mi′
b , mi′

n+b) ∈ {(0, 0), (0, 1), (1, 0)}
for 1 ≤ i′ ≤ �, and (mi′

b , mi′
n+b) ∈ {(0, 1), (1, 0), (1, 1)} for � + 1 ≤ i′ ≤ 2�. Then

�∑
i′=1

(mi′
b + mi′

n+b) ≤ n,

2�∑
i′=�+1

(mi′
b + mi′

n+b) ≥ n,

and at least one of these inequalities holds strictly. This implies that one of the
following holds:

�∑
i′=1

mi′
b <

2�∑
i′=�+1

mi′
b or

�∑
i′=1

mi′
n+b <

2�∑
i′=�+1

mi′
n+b.

This means that Mb /∈ R(B�) or Mn+b /∈ R(B�), in contradiction to the as-
sumption. Thus no such b exists, and case (ii) cannot happen.

Thus case (iii) applies for all M i, i.e., M i = (ai,ai) for some ai ∈ Bn holds for
all i ∈ [2�]. By the definition of g and since f ∈ cPolB�, we obtain

z = g

⎛
⎜⎝M1

...
M2�

⎞
⎟⎠ = f

⎛
⎜⎝a1

...
a2�

⎞
⎟⎠ = f(M1, . . . , Mn) ∈ S(B�).

But this is a contradiction to z /∈ S(B�). Thus the matrix M cannot exist, and
we have g ∈ cPolB�. �

Corollary 3.8. For any Boolean function f : Bn → B, GMc(f) ∈ Mc and for all
� ≥ 2, f ∈ cPolB� if and only if GMc(f) ∈ cPolB�.

Proof. This brings together Lemmas 3.5(i), 3.6 and 3.7. �

Let GSM (f) := GMc(GS(f)). Then we can conclude the following corollary from
the preceding lemmas.

Corollary 3.9. For any Boolean function f : Bn → B, GSM (f) ∈ SM and for all
� ≥ 2, f ∈ cPolB� if and only if GSM (f) ∈ cPolB�.



CLASSIFICATION OF EQUATIONAL CLASSES OF THRESHOLD FUNCTIONS 57

Proof. By Corollary 3.4, we have GS(f) ∈ S, and by Lemma 3.5, we get GSM (f) =
GMc(GS(f)) ∈ SM .

By Corollary 3.4, the condition f ∈ cPolB� is equivalent to GS(f) ∈
cPolB�, which is in turn equivalent to GSM (f) = GMc(GS(f)) ∈ cPolB� by
Corollary 3.8. �

3.3. Construction of GU∞(f), GMcU∞(f) and GMcW∞(f)

Let f : Bn → B. Define GU∞(f) : Bn+1 → B by

GU∞(f)(x1, . . . , xn+1) = xn+1 ∧ f(x1, . . . , xn).

Lemma 3.10. Let f : Bn → B.

(i) GU∞(f) ∈ U∞.
(ii) If f is monotone, then GU∞(f) is monotone.
(iii) If f(1) = 1, then GU∞(f) preserves both constants.
(iv) If f ∈ Mc, then GU∞(f) ∈ McU∞.

Proof. Let g := GU∞(f).

(i) By the definition of g we have that if g(x1, . . . , xn+1) = 1 then xn+1 = 1.
Thus g ∈ U∞.

(ii) Let x,y ∈ Bn+1, and assume that x < y. If xn+1 = 0, then g(x) = 0 ≤ g(y).
If xn+1 = 1, then also yn+1 = 1, and since f is monotone, we have

g(x) = f(x1, . . . , xn) ≤ f(y1, . . . , yn) = g(y).

We conclude that g is monotone.
(iii) By the definition of g, we have g(0) = 0. Furthermore, if f(1) = 1, then we

have g(1) = f(1) = 1.
(iv) Follows immediately from the previous items. �

Lemma 3.11. Let f : Bn → B. If f /∈ cPolB� for some � ≥ 2, then GU∞(f) /∈
cPolB�.

Proof. The proof is exactly the same as the proof of Lemma 3.2. �

Lemma 3.12. Let f : Bn → B. If f ∈ cPolB� for some � ≥ 2, then GU∞(f) ∈
cPolB�.

Proof. Let g := GU∞(f).
Suppose, on the contrary, that g /∈ cPolB�. Then there is some matrix M given

by

M =

⎛
⎜⎜⎜⎝

m1
1 m1

2 . . . m1
n+1

m2
1 m2

2 . . . m2
n+1

...
...

...
m2�

1 m2�
2 . . . m2�

n+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

M1

M2

...
M2�

⎞
⎟⎟⎟⎠ = (M1, M2, . . . , Mn+1),
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i.e., M1, . . . , M2� ∈ Bn+1 are the rows of M , and M1, . . . , Mn+1 ∈ B2� are the
columns of M , such that
• M1, . . . , Mn+1 ∈ R(B�), and

• z := g(M1, . . . , Mn+1) :=

⎛
⎜⎝ g(M1)

...
g(M2�)

⎞
⎟⎠ /∈ S(B�).

Thus z ∈ {(0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�

), (1, . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

)}. As B� is invariant under swap-

ping the first � coordinates with the last � coordinates, we can assume that
z = (0, . . . , 0︸ ︷︷ ︸

�

, 1, . . . , 1︸ ︷︷ ︸
�

).

We now look at the last column Mn+1 of M . Since
∑�

i=1 mi
n+1 =

∑2�
i=�+1 mi

n+1,
and since B� is totally symmetric on the first � rows and on the last � rows, we
can assume that

Mn+1 = (0, . . . , 0︸ ︷︷ ︸
α

, 1, . . . , 1︸ ︷︷ ︸
β

, 0, . . . , 0︸ ︷︷ ︸
α

, 1, . . . , 1︸ ︷︷ ︸
β

)

holds for some α, β ≥ 0 with α + β = �.
If α > 0 then g(M �+1) = g(m�+1

1 , . . . , m�+1
n , 0) = 0 ∧ f(m�+1

1 , . . . , m�+1
n ) = 0,

in contradiction to g(M �+1) = 1. Thus α = 0, and Mn+1 = 1. But then
f(M1, . . . , Mn) = g(M1, . . . , Mn,1) = z /∈ S(B�), which implies that f /∈
cPolB�. This contradicts the assumption f ∈ cPolB�, and we conclude that
g ∈ cPolB�. �
Corollary 3.13. For any Boolean function f : Bn → B, GU∞(f) ∈ U∞ and for
all � ≥ 2, f ∈ cPolB� if and only if GU∞(f) ∈ cPolB�.

Proof. This brings together Lemmas 3.10 and (i), 3.11 and 3.12. �

Let GMcU∞(f) := GU∞(GMc(f)) and GMcW∞(f) := GMcU∞(f)d.

Corollary 3.14. For any Boolean function f : Bn → B, GMcU∞(f) ∈ McU∞ and
for all � ≥ 2, f ∈ cPolB� if and only if GMcU∞(f) ∈ cPolB�.

Proof. By Corollary 3.8, we have GMc(f) ∈ Mc, and by Lemma 3.10, we get
GMcU∞(f) = GU∞(GMc(f)) ∈ McU∞.

By Corollary 3.8, the condition f ∈ cPolB� is equivalent to GMc(f) ∈ cPolB�,
which in turn is equivalent to GMcU∞(f) = GU∞(GMc(f)) ∈ cPolB� by Corol-
lary 3.13. �

Let f : Bn → B. We define the functions f : Bn → B and f : Bn → B, for u ∈ Bn,
as

f(a) = f(a),
fu(a) = f(a ⊕ u).

Note that fd = f1, where 1 := (1, . . . , 1) ∈ Bn.
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Lemma 3.15. Let f : Bn → B, and let � ≥ 2. The following are equivalent:

(i) f ∈ cPolB�;
(ii) fu ∈ cPolB� for any u ∈ Bn;
(iii) f ∈ cPolB�;
(iv) fd ∈ cPolB�.

Proof. (i) ⇐⇒ (ii): Let a1, . . .an ∈ R(B�). Since R(B�) is invariant under taking
negations of its members, we also have a1, . . .an ∈ R(B�). Let u ∈ Bn, and let
bi := ai if ui = 0 and bi := ai if ui = 1, for i ∈ [n]. If f ∈ cPolB�, then

fu(a1, . . . ,an) = f(b1, . . . ,bn) ∈ S(B�);

hence fu ∈ cPolB�. The converse implication holds, since (fu)u = f .
(i) ⇐⇒ (iii): Assume that f ∈ cPolB�, and let a1, . . .an ∈ R(B�). Then

f(a1, . . . ,an) ∈ S(B�). Since S(B�) is invariant under taking negations of its mem-
bers, we have

f(a1, . . . ,an) = f(a1, . . . ,an) ∈ S(B�);

hence f ∈ cPolB�. The converse implication holds, since f = f .
(i) ⇐⇒ (iv): This follows immediately from the equivalence of (i), (ii) and

(iii), because fd = f1. �
Corollary 3.16. For any Boolean function f : Bn → B, GMcW∞(f) ∈ McW∞
and for all � ≥ 2, f ∈ cPolB� if and only if GMcW∞(f) ∈ cPolB�.

Proof. Since McW∞ = {fd : f ∈ McU∞}, the claim follows from Lemma 3.15 and
Corollary 3.14. �

4. “Simple games and magic squares” revisited

In their paper “Simple games and magic squares” [30], Taylor and Zwicker
constructed a certain family of functions in order to prove the existence of k-
asummable functions that are not (k + 1)-asummable (see Thm. 2.6). We recall
their construction here, and then we will refine Theorem 2.6 and determine how
the sets cPolBn are related to each other. We will also show that Taylor and
Zwicker’s functions actually constitute an antichain of minimally non-threshold
functions (Thm. 4.8).

Fix an integer k ≥ 3. For p, q ∈ [k], define the k × k matrix Ap,q = (ai,j) as
follows:

ai,j =

⎧⎪⎨
⎪⎩

k − 1, if (i, j) = (p, q),
1, if i 	= p and j 	= q,
0, otherwise.

For example, if k = 4, then A2,3 =

⎛
⎜⎝

1 1 0 1
0 0 3 0
1 1 0 1
1 1 0 1

⎞
⎟⎠. Let B be the k × k matrix all of

whose entries are equal to k − 1.
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Let S be a subset of [k]×[k]. We refer to S as the ith row if S = {(i, j) : j ∈ [k]},
and we refer to S as the jth column if S = {(i, j) : i ∈ [k]}.
Lemma 4.1. Let S ⊆ [k]× [k]. Then

∑
(p,q)∈S Ap,q = B if and only if S is a row

or a column.

Proof. It is clear that if S is a row or a column, then
∑

(p,q)∈S Ap,q = B.
Assume then that

∑
(p,q)∈S Ap,q = B. Clearly S is nonempty, so choose an

element (p, q) of S; clearly S contains another element (p′, q′). If p 	= p′ and q 	= q′,
then the entry on row p column q in the sum

∑
(p,q)∈S Ap,q is at least k; hence the

sum cannot be equal to B. Thus either p = p′ or q = q′. It is easy to see that in the
former case, all remaining entries of S must be on the pth row, and all elements
of the pth row must be in S; in the latter case, all remaining entries of S must be
on the qth column, and all elements of the qth column must be in S. We conclude
that S is either a row or a column. �

We define a function φ : [R]k×k → N that maps each k×k matrix with entries in
[R] to an integer, where R is a sufficiently large integer that will be specified below.
The function φ is defined as follows: for a matrix M , read the entries of M from
left to right and from top to bottom; the resulting string is the representation
of φ(M) in base R. For p, q ∈ [k], denote wp,q := φ(Ap,q) and t := φ(B). For
example if k = 4, then w2,3 = 1101003011011101R and t = 3333333333333333R.
We must choose R in such a way that when we add these numbers to form the
sum

∑
(p,q)∈S wp,q for any S ⊆ [k] × [k], no carry will occur. Thus, the number

(k − 1)2 + (k − 1) + 1 = k2 − k + 1, or anything larger, would be fine.
It is easy to see that the function φ has the following preservation property:

for any S ⊆ [k] × [k], φ(
∑

(p,q)∈S Ap,q) =
∑

(p,q)∈S φ(Ap,q). It thus follows from
Lemma 4.1 that for all S ⊆ [k] × [k], it holds that

∑
(p,q)∈S wp,q = t if and only if

S is a row or a column.
Fix a bijection β : [k] × [k] → [k2]. The characteristic tuple of a subset S of

[k]× [k] is the tuple eS ∈ Bk2
, whose ith entry is 1 if i = β(p, q) for some (p, q) ∈ S

and 0 otherwise. With no risk of confusion, we will refer to the characteristic tuples
of rows and columns also as rows and columns, respectively.

Let w = (wβ−1(1), . . . , wβ−1(k2)).
For any n-tuples a,b ∈ Rn, the dot product is defined as

a · b =
n∑

i=1

aibi.

Taylor and Zwicker’s function fk : Bk2 → B is defined by the following rule:
fk(x) = 1 if and only if x · w > t or x is a row.

Note that for all x ∈ Bk2
, x ·w = t if and only if x is a row or a column.

Lemma 4.2. Let k ≥ 3 and � ≥ 2. Then fk preserves B� if and only if k is not a
divisor of �.
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Proof. If � = mk for some integer m, then let a1, . . . ,a� comprise m occurrences of
each column, and let b1, . . . ,b� comprise m occurrences of each row. Then, the ai

are false points of fk and the bi are true points, and a1 + · · ·+ a� = (m, . . . , m) =
b1 + · · · + b�. Thus fk is not �-asummable. Lemma 2.3 implies that fk does not
preserve B�.

Assume then that k is not a divisor of �. Suppose, on the contrary, that fk does
not preserve B�. By Lemma 2.3, there exist a1, . . . ,a� ∈ f−1(0) and b1, . . . ,b� ∈
f−1(1) such that a1 + · · · + a� = b1 + · · ·+ b�. Since x ·w ≤ t for any false point
x of fk, and x ·w ≥ t for any true point x, we have

�∑
i=1

ai · w ≤ �t and
�∑

i=1

bi ·w ≥ �t.

On the other hand, since a1 + · · · + a� = b1 + · · · + b�, we have

�∑
i=1

ai ·w = (a1 + · · · + a�) · w = (b1 + · · · + b�) ·w =
�∑

i=1

bi · w.

Consequently, ai ·w = t and bi ·w = t for all i ∈ [�], and we conclude that each
ai is a column and each bi is a row. Since k is not a divisor of �, there necessarily
exist two columns that have a different number of occurrences among a1, . . . ,a�.
Then φ−1(a1 + · · ·+an) is a matrix that is constant along each column, but there
are two columns with distinct values. This contradicts the fact that the matrix
φ−1(b1 + · · · + bn) is constant along each row. This completes the proof, and we
conclude that fk preserves B�. �

Lemma 4.3. The modulo-2 addition operation ⊕ preserves B� if and only if � is
odd.

Proof. The false points of ⊕ are (0, 0) and (1, 1), while the true points are (0, 1)
and (1, 0). Hence the sum of any � false points is of the form (m, m) for some m
with 0 ≤ m ≤ �. The sum of any � true points is of the form (m, � − m) for some
m with 0 ≤ m ≤ �.

If � is odd, then m 	= �−m for any m. It follows that a1 + · · ·+a� 	= b1 + · · ·+b�

for any false points a1, . . . ,a� and any true points b1, . . . ,b�. By Lemma 2.3, ⊕
preserves B�.

If � is even, say � = 2k, then

(0, 0) + · · · + (0, 0)︸ ︷︷ ︸
k

+ (1, 1) + · · · + (1, 1)︸ ︷︷ ︸
k

=

(0, 1) + · · · + (0, 1)︸ ︷︷ ︸
k

+ (1, 0) + · · · + (1, 0)︸ ︷︷ ︸
k

.

By Lemma 2.3, ⊕ does not preserve B�. �
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Proposition 4.4. Let �, m ≥ 2. Then cPolB� ⊆ cPolBm if and only if m di-
vides �.

Proof. Assume first that m does not divide �. If m 	= 2, then by Lemma 4.2,
fm ∈ cPolB� but fm /∈ cPolBm. If m = 2, then by Lemma 4.3, ⊕ ∈ cPolB� but
⊕ /∈ cPolBm. In either case, we conclude that cPolB� 	⊆ cPolBm.

Assume then that � = km for some integer k. Let f ∈ cPolB�. Let a1, . . . ,an ∈
R(Bm). For each i ∈ {1, . . . , n}, define the tuple bi ∈ B� as

bi = (ai
1, . . . , a

i
1︸ ︷︷ ︸

k

, . . . , ai
m, . . . , ai

m︸ ︷︷ ︸
k

, ai
m+1, . . . , a

i
m+1︸ ︷︷ ︸

k

, . . . , ai
2m, . . . , ai

2m︸ ︷︷ ︸
k

).

It is clear that bi ∈ R(B�). Let z := f(b1, . . . ,bn), that is,

z = (f(a1
1, . . . , a

n
1 ), . . . , f(a1

1, . . . , a
n
1 )︸ ︷︷ ︸

k

, . . . , f(a1
2m, . . . , an

2m), . . . , f(a1
2m, . . . , an

2m)︸ ︷︷ ︸
k

).

Since f ∈ cPolB�, we have z ∈ S(R�). Then

z ∈ B� \ {(0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
�

), (1, . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

))}.

This implies that

f(a1, . . . ,an) ∈ Bm \ {(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
m

), (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m

))}.

Thus f ∈ cPolBm, and we conclude that cPolB� ⊆ cPolBm. �

Proposition 4.5. The functions fk (k ≥ 3) are pairwise incomparable by the
minor relation.

Proof. Let m 	= n, and consider the comparability of fm and fn. Since all variables
are essential in fm and in fn, and the number of essential variables cannot increase
when taking minors, we have that fm 	≤ fn whenever m > n. If m < n, then n
is not a divisor of m but n is a divisor of itself. By Lemma 4.2, fn preserves Bm

and fm does not preserve Bm. Since every minor of fn preserves all relational
constraints fn does, we must have that fm 	≤ fn also in this case. �

Proposition 4.6. For every k ≥ 3, the function fk is monotone.

Proof. Let x,y ∈ Bk2
. If x < y, then, since each wp,q is positive, x · w < y · w.

Therefore one of the following conditions holds: x · w < t or y · w > t. In the
former case, f(x) = 0 ≤ f(y). In the latter case, f(x) ≤ 1 = f(y). �

Proposition 4.7. For every k ≥ 3, the function fk is minimally non-threshold.
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Proof. We need to show that every identification minor of fk is threshold. Let
(p, q) and (p′, q′) be distinct elements of [k] × [k], let I = {β(p, q), β(p′, q′)}, and
assume without loss of generality that β(p, q) < β(p′, q′). We will show that (fk)I

is �-asummable for every � ≥ 2 and hence threshold by Theorem 2.2. Let � ≥ 2, and
let a1, . . . ,a� ∈ ((fk)I)−1(0), b1, . . . ,b� ∈ ((fk)I)−1(1). Suppose, on the contrary,
that a1 + · · · + a� = b1 + · · · + b�. Let v ∈ Bk2−1 be the tuple obtained from w
by replacing its β(p, q)th entry by wβ(p,q) + wβ(p′,q′) and deleting the β(p′, q′)-th
entry. (Before proceeding, we ask the reader to recall the definition of δI from (1)
in Sect. 1.3). It clearly holds that x · v = xδI · w for all x ∈ Bk2−1. Therefore
((fk)I)(x) = fk(xδI) = 1 if and only if x · v = xδI · w > t or xδI is a row. Note
that if xδI is a row or a column, then x · v = xδI · w = t. In a similar way as we
argued in the proof of Lemma 4.2, we have

�t ≥
�∑

i=1

ai · v = (a1 + · · · + a�) · v = (b1 + · · · + b�) · v =
�∑

i=1

bi · v ≥ �t.

Hence ai · v = t and bi · v = t for all i ∈ [�], that is, aiδI is a column and biδI

is a row for all i ∈ [�].
Since (p, q) 	= (p′, q′), we have p 	= p′ or q 	= q′. If p 	= p′, then none of the rows

biδI is the pth row; hence φ−1(b1δI + · · · + b�δI) is a matrix with a row full of
0’s, while φ−1(a1δI + · · · + a�δI) has no row full of 0’s. If q 	= q′, then none of the
columns aiδI is the qth column; hence φ−1(a1δI + · · · + a�δI) is a matrix with a
column full of 0’s, while φ−1(b1δI + · · · + b�δI) has no column full of 0’s. On the
other hand,

a1δI + · · · + a�δI = (a1 + · · · + a�)δI = (b1 + · · · + b�)δI = b1δI + · · · + b�δI .

We have reached a contradiction.
We conclude that (fk)I is �-asummable for every � ≥ 2 and hence threshold. �

Theorem 4.8. Taylor and Zwicker’s functions fk constitute an infinite antichain
(with respect to the minor relation) of monotone, minimally non-threshold func-
tions.

Proof. This brings together Propositions 4.5, 4.6, 4.7. �

Remark 4.9. It should be noted here that the antichain of Theorem 4.8 does
not, however, characterize the set of monotone threshold functions in terms of
forbidden minors, i.e., M ∩ T 	= forbid({fk : k ≥ 3}). For example, there exist
self-dual monotone non-threshold functions of arity 6 (see, e.g., [1]), which clearly
fail to have any of the fn as a minor.

Appendix A. Post classes

We provide a concise description of all clones of Boolean functions as well as
characterizing sets of relations R – or, equivalently, relational constraints (R, R) –
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for some clones; the characterization of the remaining clones is easily derived by
noting that if C1 = cPol(Q1) and C2 = cPol(Q2), then C1 ∩ C2 = cPol(Q1 ∪ Q2).
This presentation is based on the one appearing in [10] and extends it with the
details on relations, and it makes use of notations and terminology appearing in
the papers by Foldes and Pogosyan [14] and Jablonski et al. [18].

• Ω denotes the clone of all Boolean functions. It is characterized by the empty
relation.

• T0 and T1 denote the clones of 0- and 1-preserving functions, respectively,
i.e.,

T0 = {f ∈ Ω : f(0, . . . , 0) = 0} and T1 = {f ∈ Ω : f(1, . . . , 1) = 1}.

They are characterized by the unary relations {0} and {1}, respectively.
• Tc denotes the clone of constant-preserving functions, i.e., Tc = T0 ∩ T1.
• M denotes the clone of all monotone functions, i.e.,

M = {f ∈ Ω : f(a) ≤ f(b) whenever a ≤ b}.

It is characterized by the binary relation ≤ := {(0, 0), (0, 1), (1, 1)}.
• M0 = M ∩ T0, M1 = M ∩ T1, Mc = M ∩ Tc.
• S denotes the clone of all self-dual functions, i.e.,

S = {f ∈ Ω : fd = f}.

It is characterized by the binary relation {(0, 1), (1, 0)}.
• Sc = S ∩ Tc, SM = S ∩ M .
• L denotes the clone of all linear functions, i.e.,

L = {f ∈ Ω : f = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn}.

It is characterized by the quaternary relation {(a, b, c, d) ∈ B4 : a ⊕ b ⊕ c = d}.
• L0 = L ∩ T0, L1 = L ∩ T1, LS = L ∩ S, Lc = L ∩ Tc.
Let a ∈ {0, 1}. A set A ⊆ {0, 1}n is said to be a-separating if there is some

i ∈ [n] such that for every (a1, . . . , an) ∈ A we have ai = a. A function f is said to
be a-separating if f−1(a) is a-separating. The function f is said to be a-separating
of rank k ≥ 2 if every subset A ⊆ f−1(a) of size at most k is a-separating.

• For m ≥ 2, Um and Wm denote the clones of all 1- and 0-separating func-
tions of rank m, respectively. They are characterized by the m-ary relations
Bm \ {(0, . . . , 0)} and Bm \ {(1, . . . , 1)}, respectively.

• U∞ and W∞ denote the clones of all 1- and 0-separating functions, respec-
tively, i.e., U∞ =

⋂
k≥2 Uk and W∞ =

⋂
k≥2 Wk.

• TcUm = Tc ∩ Um and TcWm = Tc ∩ Wm, for m = 2, . . . ,∞.
• MUm = M ∩ Um and MWm = M ∩ Wm, for m = 2, . . . ,∞.
• McUm = Mc ∩ Um and McWm = Mc ∩ Wm, for m = 2, . . . ,∞.
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• Λ denotes the clone of all conjunctions and constants, i.e.,

Λ = {f ∈ Ω : f = xi1 ∧ · · · ∧ xin} ∪ {0(n) : n ≥ 1} ∪ {1(n) : n ≥ 1}.

It is characterized by the ternary relation {(a, b, c) : a ∧ b = c}.
• Λ0 = Λ ∩ T0, Λ1 = Λ ∩ T1, Λc = Λ ∩ Tc.
• V denotes the clone of all disjunctions and constants, i.e.,

V = {f ∈ Ω : f = xi1 ∨ · · · ∨ xin} ∪ {0(n) : n ≥ 1} ∪ {1(n) : n ≥ 1}.

It is characterized by the ternary relation {(a, b, c) : a ∨ b = c}.
• V0 = V ∩ T0, V1 = V ∩ T1, Vc = V ∩ Tc.
• Ω(1) denotes the clone of all projections, negations, and constants. It is char-

acterized by the ternary relation {(a, b, c) : a = b or b = c}.
• I∗ = Ω(1) ∩ S, I = Ω(1) ∩ M .
• I0 = I ∩ T0, I1 = I ∩ T1.
• Ic denotes the smallest clone containing only projections, i.e., Ic = I ∩ Tc.
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