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ON FINDING OPTIMAL PARAMETERS
OF AN OSCILLATORY MODEL OF HANDWRITING

GAETAN ANDRE! AND FREDERIC MESSINE!

Abstract. In this paper, we show how optimization methods can be
used efficiently to determine the parameters of an oscillatory model of
handwriting. Because these methods have to be used in real-time appli-
cations, this involves that the optimization problems must be rapidely
solved. Hence, we developed an original heuristic algorithm, named
FHA. This code was validated by comparing it (accuracy/CPU-times)
with a multistart method based on Trust Region Reflective algorithm.

Keywords. Handwriting model, nonlinear programming, heuritic me-
thod, multistart method.
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1. INTRODUCTION

The studies concerning handwriting interest many different fields of science such
as for example computer science, psychology, neurology or psychomotricity. Thus,
different models of handwriting are associated with those fields of science. For
example, in computer science, one of the main issue is recognition which is often
based on Markov or Neural Networks, see [8,9] to have some examples. In mind
sciences, the understanding of the generation of handwriting as a human move-
ment is a key question, and several models try to take it into account [7,10]. These
so-called “generative models” make it possible to draw the handwriting trace of
complete words and sentences by using a small number of parameters. Although
it is now known that writing and reading are tightly linked in the brain: mo-
tor areas are involved in reading handwritten scripts [6]; “generative models” are
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barely used for recognition, [8]. However, some works have been done in that direc-
tion [4], so we would like in this paper to go further by using an oscillatory model
of handwriting. The generative model we use is an improvement of the classical
Hollerbach oscillatory model, [5] and our purpose is to extract its parameters as
fast as possible (for application purposes). This oriented us to the development of
a dedicated heuristic algorithm.

In Section 2, we present the model which will be used in this work. The for-
mulation of this model into an optimization problem is presented in Section 3.
In Section 4, we discuss how to apply standard optimization code (1sgnonlin of
MatLab) to solve this nonlinear and non-convex optimization problem. Some in-
stances are solved and the results are discussed depending on the starting points.
This shows the difficulty to solve such a problem which owns many local minima.
In Section 5, an original heuristic based algorithm, named FHA for Fast Harmonic
Approximation, is provided. Comparisons between FHA and a multistart based
local code are done and discussed in Section 6. Finally, in Section 7, we conclude.

2. AN OSCILLATORY MODEL OF HANDWRITING

One of the first oscillatory model of handwriting was proposed by Hollerbach [5].
Hollerbach’s work aimed at describing how a mass-spring model of the arm ap-
paratus could lead to an oscillatory model of handwriting. In this work, we only
focus on a model derived from a Hollerbach’s handwriting one.

In this model, handwriting is viewed as the result of two superimposed oscil-
lators. Each evolves on a distinct direction of the plane. Although any oscillator
could work as well, it is more convenient to use harmonic oscillators. Moreover,
that choice is more compliant with the spring muscle model. In this model, a pen
position evolution is defined as follows:

i—j = a sin(wgt + ¢z), (2.1)
% = ay sin(wyt + ¢y), (2.2)

where a, and a, are the horizontal and vertical velocity amplitudes; w;, wy,
¢, and ¢, are respectively the frequencies and the phases associated to these
directions.

The parameters of the model (as, ay, wa, wy, ¢, and ¢,) are supposed to
be piecewise constant. The times where these values change, occur at horizontal
(resp. vertical) zero-velocity for parameters related to the horizontal (resp. verti-
cal) component. This is the most important change between our model and the
Hollerbach’s model (in the original Hollebach model, all parameters change at
vertical zero-velocity points).

Our goal is to extract the parameters described in the model from real recorded
strokes. In this work, a stroke is the pen trajectory leading to the formation of a
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FIGURE 1. Visual example of a trace.

word. This means that for each recorded stroke, we want to be able to compute
two series: (togi, Gzis Wais Pui)1<i<n, and (toyi, @y, wy,, Oy, )1<i<N,, Where the se-
ries (to;) and respectively (o,) are the times when the horizontal (resp. vertical)
velocity is null. Note that N, and N, are not necessarily equal.

The strokes were previously recorded using a digitizing device which is supposed
to provide the pen positions at a fixed rate of 100Hz. For each stroke the following
series is provided:

S = (tivwivyi)OSiSN,NeN* where Vi > O,ti >t (23)

Because, we work on velocities, we have first to compute the derivatives of x
and y by ¢ (z and y are signals). Then, we apply a zero-crossing search algorithm
on the low pass filtered derivatives in order to obtain (¢o,) and (to,).

All numerical examples given in the following sections are based on a set of
15 strokes available here [1]. For these examples, N is between 232 and 731, N, is
ranging from 15 to 45 and Ny from 14 to 44. In the next section, we present how
to extract from the S series the piecewise constant parameters of equations (2.1)
and (2.2). On Figure 1, we provide an example of a typical trace.

3. PROBLEM FORMULATION

From real recorder strokes, the problem is to compute (ay;, Wy, ¢;)1<i<n, and
(ayivaivqﬁyi)lgigNy by using (fozi)i1<i<n,: (tOyi)lgiSNy and the two temporal
derivatives % and % (calculated by using a right-sided finite difference scheme
from S see Eq. (2.3)). In order to simplify the notations, we call 6 the variables of

our optimization problem, with

0= ((am‘a Weis ¢m‘)1§i§Nma (ayivaiv ¢yi)1§i§Ny) :

This problem can be solved by using the maximum-likelihood estimation method
(using normal distribution) and it can also be equivalently formulated as a regular
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curve-fitting problem. Hence, we obtain the the following formulation:

—1tz(j+1)—1 da:
argmlnf Z Z (d_tl

2
— Qg Sin (wmjti + qﬁzj))
i=te(j)

Ny—1iy(j+1)—1

2
n Z Z (Ciiytz ay; Sin (wyjti—kgi)yj)) , (3.1)

= i=1y (4)

where ¢, and ty are functions which return the indices of the zero-velocity points

dz dy
in §F and 37 series. ]
From parameters 6, we reconstruct the derivatives ‘é—f and 4 T (‘é—f and 3 are

column vectors of size N). This synthesized solution, that we call C5 = (‘;—f i—"t’), is

based on the same sample of time as the derivatives calculated from the recorded
stroke C,. An error measurement between the original stroke and the synthesized
solution is given by:

”Cs - CO||2 .
IColl2
Remark that solving Problem (3.1) is equivalent to find Cy; which minimizes err(Cy).

In our application, errors below 0.5 can be considered good enough.

err(Cs) = (3.2)

4. APPLYING A USUAL NON-LINEAR ALGORITHM

Because Problem (3.1) is a least square problem, we choose to apply the Trust-
Region-Reflective algorithm which is a subspace trust-region method. This algo-
rithm is based on the interior-reflective Newton method as described in [2,3]. In
this work, the MatLab implementation of this algorithm (named lsqnonlin) is
used.

Different strategies can be used to apply this algorithm. The purpose of the
next subsections is to determine the most efficient one.

4.1. TO SPLIT OR NOT TO SPLIT?

Some variables of Problem (3.1) are independent. This is due to the fact that our
model of handwriting is a piecewise parametrization, each piece being independent
to the others. Moreover, in our model of handwriting, there is no link between what
happens on horizontal and vertical directions. Therefore, parameters concerning x
and y also are independent and then, Problem (3.1) can be divided as a set S of
sub-problems:

ta(j+1)—1
S=9 Y (di—ag;sin(wajti + ¢a;))* : d € {(), ()}, € [0, Na— 1]

i=va(j)
(4.1)
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FiGUureE 2. Comparison between split and non-split methods:
(A) Error distribution of 100 runs of the split method; (B) Error
distribution of 100 runs of the non-split method; (C) Computa-
tion time (in seconds) over 100 runs where the top curve represents
split method and the bottom curve for the non-split one.

Instead of applying the algorithm to the whole problem, we might be tempted
to apply it on each element of S. In Figure 2, comparisons between the split
and non-split methods are performed for a unique stroke but using 100 different
starting points (they are the same ones for the two strategies); moreover all other
parameters are equal. In the non-split case (2(b)) the errors are distributed below
0.5 in most of the cases, with a mean of 0.33. The CPU-time to solve one instance
is about one second (2(c)). In the case of the split method (2(a)), errors are dis-
tributed with a higher dispersion (from 0.4 to 1.7) around a mean of 0.52. The
CPU-time for one instance, see (2(c)), is about 28 seconds. This is almost 30 times
higher than for the non-split method. Hence, in the following, we only consider
the non-split method.

4.2. STARTING POINTS

Solving Problem 3.1, the starting point which initiates the local search algo-
rithm, has a big impact on its convergence to a local solution. The importance
of the choice of this starting point leads us to try different strategies. Thus we
develop the following three strategies: (i) we can randomly generate these starting
points according to a uniform distribution on our working domain; (ii) we can use
starting points generated randomly according to normal laws whose parameters
can be determined statistically; (iii) we can start from the point defined by the top
of these normal laws (i.e., the mean of the distribution of the statistically studied
parameters). Note that in this case, the optimization code is run just one time.

Statistical estimations of the parameters of the normal laws used in the second
strategy are based on the search of the zero-crossings findings. In order to im-
prove the results, this estimation is done on each stroke. On each velocity profile
we compute the zero crossings, that divide the signal in semi-periods. For each
demi period, we can compute an amplitude by maximizing the profile on this
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F1GURE 3. Error distribution for 1000 runs of the optimization
algorithm on two types of starting point distribution; the errors
are on the abscices, and the number of runs by interval error are
on the ordinates.

semi-period. Frequency can easily be approximated from the same semi-period.
We take as parameters of the normal laws associated with frequencies and am-
plitudes, the mean and standard deviation of the frequencies and amplitude so
computed for all semi-periods of each profiles. The phases are supposed to follow
a uniform law.

We run the algorithm 1000 times, on one stroke, for the first two cases (i)
and (ii) and we present in Figure 3 the error distribution of these runs. Error
distribution in the case (i) has a mean of 0.7 and has a higher dispertion than
in the case (ii) where the mean is 0.3. The results concerning the third case (in
which only one starting point is considered), provides an error value of 0.8. Thus,
the error distribution is clearly much lower when the starting point is randomly
chosen according to a normal distribution determined by a statistical study.

4.3. HOw MANY RUNS 7

In the previous subsections, it was shown that the best way to apply the Trust
Region Reflective algorithm to the problem was to consider it as a single entire
optimization problem (see, Eq. (3.1)) and then to run it a lot of times with dif-
ferent starting points randomly chosen according to a normal distributions. Now,
a question remains: how many runs of this optimization algorithm do we need to
reach a good enough solution?

Suppose that 1000 runs always provide approximated solutions good enough for
our application. Let s denotes the best solution coming from these 1000 runs and
l; the local solution obtained using the ith starting point. Hence, we are interested
by the following optimization problem:

miN,e(1,... 1000} N
uc llerr(s) —err(ly)| < €



AN OSCILLATORY MODEL OF HANDWRITING 515

350

300

250

200

150

100

50

0 200 400 600 800 1000

FIGURE 4. Number of accumulated encountered good approxima-
tions (satisfying the constraint) in function of the number of runs,
for 15 different strokes (with e = 0.01).

This problem is relevant because, as we can see in Figure 4, the best found local
solutions seem to be almost equals and uniformly distributed over the number of
runs.

Suppose that at each run of the algorithm, we obtain a probability p to obtain
such an approximation. Denote n the number of times the algorithm is run in
order to have a probability ¢ to obtain at least one good enough solution which
satisfies the constraint. Thus, the condition 1 — (1 — p)™ > ¢ must be satisfied and

this yields:
In(1 —
n> In(1-qg)] (4.2)
In(1 —p)

Considering Figure 4, even if the hypothesis that all the good approximations
seem to be uniformly distributed over the number of runs, the probability p seems
to be very different from one trace to another one: a stroke has a great influence
on the value of p. Therefore, we unfortunately cannot accurately determine n
beforehand. Moreover, an overestimation of n cannot also be determined.

4.4. CONCLUSION

In this section, we study different possibilities to apply in an efficient way the
Trust-Region method in order to solve Problem 3.1. Thus, this algorithm has to
be applied on the whole problem (because the idea to split Problem (3.1) provides
bad results). Furthermore, note that the shape of the distribution of the starting
points is very important and that the number of runs needed to reach a good local
solution cannot be determined a priori.
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In the following sections, the time comparisons in Section 6, the CPU-time
comparisons will be done for a fixed number of runs, denoted N. The statistical
study (to determine normal distributions) is supposed to add no overhead as far
as time is concerned. The algorithm and the way of applying it will be referred as
MSpy (Multi-Start method using N starting points).

5. Turg FHA HEURISTIC METHOD

In this section, we present an original heuristic based algorithm named FHA
(for Fast Harmonic Approximation). FHA is used to find an approximated solution
of Problem (3.1). This algorithm has been implemented in MatLab.

This section is divided into two parts. In a first subsection, we present a mathe-
matical result enabling to quickly approximate the amplitude of a harmonic func-
tion, and, in the second part, we describe the algorithm itself.

5.1. SEMI-PERIOD WISE ESTIMATION OF THE AMPLITUDE OF A SINE FUNCTION

Consider the following function:

fx— asin(wz + ¢), (5.1)

where a, w and ¢ are independent to x. We can calculate the mean and the variance
of f between two successive zeros:

T—¢

M= %/—qﬁw f(z)dz = 27T_a7 (5.2)
w
¢ 2 2

V= %/_df (f(z) — M)*de = % (5.3)
w

This shows that the amplitude of a sinusoidal signal can be approximated both
the sum or the variance of this signal on a semi-period (zero to zero) independently
to frequencies and phases.

5.2. FHA ALGORITHM

5.2.1. Evaluating frequencies and phases

Between two zeros, we know from the model described in Section 2, that the
parameters a, w, and ¢, are constant. Now, we show that these values can be
easily computed. Let ¢; and t5 be the times of the two subsequent zeros. We have
these two following equations:

wI(tQ - tl) =T, (54)
wati + ¢y = 0. (5.5)
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From equation (5.4), we have w, and from equation (5.5), we obtain ¢,. It
provides a very simple way to obtain those parameters, but the main drawback is
that their accuracy highly depends on how we find the zero values.

5.2.2. Fvaluating amplitude

The final step is to estimate the amplitude velocity between two consecutive
zero-values. Denote ¢; and ¢;;1 the times corresponding to two subsequent zero-
values. Let us define the arc A as the part of the derivative signal between ¢;
and ti+12

d
A= (d—j> between ¢; and ¢;41, (5.6)
we approximate a thanks to results described in Section 5.1:
a= gmean(A). (5.7)

6. COMPARISON BETWEEN MSsy, MSi900 AND FHA

In this section the methods presented in Sections 4 and 5 will be compared,
regarding their precisions and computational times. Both algorithms have been
run on 15 traces which can be found in [1]. In order to have a better estimation
of the performance of MS59 and MSiggp, they have been run 10 times for each
strokes. Figure 5 presents the errors obtained for each methods. In the case of
MS5¢ and MSqggg, best fit, worst fit and mean fit are given to get a insight of the
variability of these methods.

Due to the fact that all the starting points are chosen randomly, MSs5y shows
a big variability in its efficiency. However, the general behavior of the method is
the same over the 15 strokes. First, considering the error, FHA provides correct
and regular results which are always below an error of 0.5. Contrarily, on 9 cases
over 15, MSs5o provide a mean error above 0.5. This shows that MSsg can miss
interesting local solutions. Concerning now the CPU-time, FHA is constant while
MSs50 highly depends on the starting points. In most cases, our heuristic method
FHA is from 50 to 1000 time faster than MSxg.

Same results and comments which validates the efficiency of our heuristic
method FHA were also obtained if we choose 1000 starting points instead of 50,
see Figure 5. The accuracy of the results obtained with MS;go is not so improved
comparing to the one reached with MS5g while CPU-times increase a lot. More-
over, the fact that on some strokes MSsy seems to perform better that MSiggo
(strokes 4, 6, 9 and 10) indicates that there is a high variability in results that
even 10 runs cannot avoid. These strokes (4, 6, 9 and 10) are also associated with
the worst results obtained by both methods. In all other cases, the results are
better for MSiggg, even if MSso and MSiggg seem to perform equally. Although
for each stroke, the minimum error for MSiggo is lower than the minimum error
obtained with MS5p. Note that when the starting points are not inefficient, this
provides a very low convergence of these local optimization based algorithms.
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FiGURE 5. Error of the solutions found by FHA, MS5y and
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Remark 6.1. The reason why our heuristic algorithm FHA works so well, is be-
cause it is directly relied to the property of our model where the parameters change
at zero velocity points. This makes if possible to simplify and quickly compute fre-
quencies and phases.

In Figure 6, numerical results corresponding to the use as a starting point of the
solution previously obtained by the FHA algorithm are reported. We remark that
these new optimal solutions from the FHAo method (for FHA which is optimized)
are more accurate than FHA. However, the corresponding CPU-times are much
more important.
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FIGURE 6. Comparison between FHA in grey and FHAo in black
(solution of FHA taking as a starting point)

7. CONCLUSION

In this work, we presented an efficient heuristic based algorithm for solving a
particular non-linear optimization problem dedicated to the modeling of handwrit-

ing.

Comparing to a multistart local optimization based method, it appears that

the heuristic FHA algorithm is faster and gives more regular and efficient results.
This optimization problem has many local optima and even a multistart algorithm
with 1000 starting points owns some difficulties providing a good local minimum
(see Fig. 5). This demonstrates the benefits of our FHA algorithm which can also
be used to construct efficient starting point for a local optimization code.
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