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ESTIMATING THE SUPPLY CHAIN EFFICIENCY LOSS
WHEN THE SELLER HAS TO ESTIMATE THE BUYER’S
WILLINGNESS TO PAY

X AVIER BRUSSET!

Abstract. We study the pricing problem between two firms when the
manufacturer’s willingness to pay (wtp) for the supplier’s good is not
known by the latter. We demonstrate that it is in the interest of the
manufacturer to hide this information from the supplier. The precision
of the information available to the supplier modifies the rent distri-
bution. The risk of opportunistic behaviour entails a loss of efficiency
in the supply chain. The model is extended to the case of a supplier
submitting offers to several manufacturers. Some managerial insight
through a numerical illustration is provided.
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1. INTRODUCTION

In a supply chain and particularly in B2B markets, firms often have to look
for new customers and new markets for their products. Motivation for the present
paper can be found in the way that some suppliers have to price some specialised
good or service which they sell to some manufacturer without being fully informed
of the value of this good or service to this manufacturer, nor the potential competi-
tors’ price for similar product. Usually, the supplier already has a steady client base
through which to sell the same good. They can be in different markets for different
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uses and at different prices. For example, agricultural, chemical or mineral prod-
ucts have wide ranging applications: calcium carbonate is used in industries like
paint, plastic, rubber, ceramic, cement, glass, steel, oil refining, iron ore purifica-
tion and biorock creation for mariculture of sea organisms® Gelatin from organic
material has applications in pharmaceutical products, X-ray and photo prints,
cosmetics, banknotes and food among others. Road transport in its common form
can transport any type of common cargo. Enterprise Information Systems can be
tailored to suit different customers in different industries. More generally, some
products have very different uses but essentially the same production process and
cost.

In most of the above instances, the exact relationship between demand in these
new markets and price may not be known. In fact, even after accounting for the
intrinsic qualities of his product, the supplier still has to guess at his potential
clients’ willingness to pay (wtp) or reservation price. To do so, he must build
upon his prior knowledge of the industry to which the prospective client belongs,
the potential existing competition, alternative sources of supply, etc. It may also
induce a less efficient supply chain in a dynamic setting as shall be shown later.
This lack of information may induce unsatisfactory pricing decisions leading to
either unsuccessful offers or less profitable transaction for the supplier. It may
further stunt the supplier’s effort in developing the product into a more specific
one better suited to the new customer.

On the other hand, the manufacturer will usually hide or mis-inform the supplier
about his wtp. The prospective clients use such input in their industrial processes
to enhance either the quality of the final end-product or the efficiency of the
production process.

Consider the use of calcium carbonate as paper coating or as water absorbent
for diapers: the multiplying factor in value for the supplier between the first and
second use is a power of ten®. Some twenty years ago, it was found that when fine
grains of calcium carbonate were flash calcined (cooked for a fraction of a second
at a very high temperature), the grains exploded into balls that could absorb
several times their volume in water. Kimberley Clarke was approached with an
offer to produce such grains in sufficient volume if they could be incorporated
into diapers. The kiln to flash calcine the required volumes is an expensive piece
of equipment. Either Imerys or Kimberley Clarke could have invested in such
equipment. However, since the expertise in rock processing lies more with Imerys,
the dyad makes a higher rent if Imerys invests than if the downstream partner
does. The decision and the subsequent rent hinged on the paper maker buying
the final product at a much higher price than for traditional markets like paper
coating.

2See the entry in Wikipedia on the industrial applications of calcium carbonate. The Anglo-
French corporation Imerys has two separate business units which refine and sell this mineral for
separate uses but essentially the same production processes.

3The reader will find further technical information at:
http://www.imerys-perfmins.com/calcium-carbonate/eu/calcium-carbonate-film.htm
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In most research on supply-chain contracting a common assumption is that all
relevant information is common between the parties concerned [8].

How is the supplier to price his good? What is the effect on supply chain rent?

We answer these questions using a mechanism design approach in a games
theoretic setting where a principal wishes to set a price for some product or service
he wishes to sell to an agent. If the agent rejects the offer, the principal is left with
the revenue generated from selling to a non-strategic third party. The supplier is
in a Bayesian setting of incomplete information and must form a belief about
the agent’s wtp. The setting of this problem is well known and has been amply
covered in literature. The model shows how the supplier maximizes his profit by
his pricing decision and how the manufacturer will attempt to increase his rent in
detriment of the supplier by keeping information private. The model yields insights
into two consequences: (a) information sharing by the downstream partner leads
to opportunistic behaviour on the upstream party’s part; (b) effort to increase the
rent of the supply chain will probably be misplaced or not undertaken leading to
long-term inefficiencies in the supply chain.

The present model helps to present in a new light the newsvendor one from [25]
in which the single price contract is studied when both manufacturer and supplier
know of the distribution of demand and the sensibility to price of this demand.

The paper is organised as follows. In the next section, we present a brief review
of existing literature justifying our approach. The model is explained in Section 3.
Two theorems are presented: in Section 3.1 for the univariate case and in Sec-
tion 3.2 for the multivariate one where a supplier faces several manufacturers with
unknown wtp. In Section 4, we illustrate the use of the first theorem when com-
paring an integrated to a decentralised supply chain management. In Section 4.1,
we prove that the agent will obfuscate information about his wtp in an attempt to
prevent the principal from behaving opportunistically when pricing his product. In
Section 4.2, we prove how the information asymmetry can induce misallocation of
effort and investment and hamper supply chain rent creation. The corresponding
insights are further illustrated succinctly in Section 5 with an upstream agent who
has to deal with first one and than two downstream customers. We conclude in
Section 6.

2. LITERATURE REVIEW

Game Theory has been widely used in supply chain management [27]. The differ-
ent parties in a supply chain are called players in game theory. The profit function
of each player is called the payoff function. Our model fits into the stream of supply
chain literature which builds upon non-cooperative Game theory using pure strate-
gies as reviewed in [10,26]. According to the classification introduced in [18,19],

e only consider here the complete information Bayesian games (C-games) in which both
players know each other’s payoff functions (i.e., rules of the game and strategy spaces) and his
attributes as defined in [21,22] and will henceforth only take into account the imperfection of
information which one player may suffer about the other player and name it incomplete.
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our model fits in the category of static games with incomplete information leading
to a Bayesian Nash Equilibrium. Some insights into dynamic interaction between
buyer and seller are also given.

The mechanism design presented here builds along the seminal work depicted
in [17] where the seller elicits the types of the buyers (through the revelation prin-
ciple) and hence chooses his rent maximising transfer mechanism. The revelation
principle has been used in several settings both in game theory and supply chain
management theory. The revelation of information is basically achieved when the
seller offers a menu of contracts from which the buyer must choose. In so doing,
the relevant information important to the seller is revealed. Let us cite some of
them here. The buyer’s set-up cost of ordering can be revealed as shown in [15].
Reference [13] shows how asymmetric information about market demand can be
obtained by the seller. [11] shows how a seller can elicit the market condition known
to the buyer but not the seller. [20] deals with asymmetric cost information. [14]
shows how the seller can obtain the buyer’s back-order cost. Note that only one
type of information can be revealed this way unless the seller were to offer not just
a single list of contracts but a two- or three-dimensional matrix of contracts. Even
if elegant mathematically, this becomes inconvenient in practice. Moreover, the
case where the seller is limited by the buyer into submitting just one contract is
not addressed. In the case of Imerys, it would have been confusing and impractical
to submit a menu of contracts to Kimberley Clarke to implement the economic
interaction of selling calcined kaolin for diaper manufacturing. In the same vein, if
a refrigerated lorry fleet operator usually carrying food receives a request to quote
from a pharmaceutical manufacturer, an industry unknown to him, submitting a
menu of contracts is not relevant.

Other models often presented in literature involve bargaining. One player makes
offers and expects the other player to either accept or turn it down in which
case the first player makes a better offer, renewing this back and forth until an
agreement is finally reached. As shown in [30], the player making the offer can
extract useful information from the answers of the other player and build upon
it to maximise his payoff function. Here again, the situation we are trying to
describe does not fit the bargaining model especially as neither players possesses
information about the other’s cost and opportunity types. The Imerys commercial
representative is not aware of the extra value that his product will bring to the
Kimberley Clarke diapers, Kimberley Clarke is unaware of Imerys production cost
or its other customers’ buying price.

Still other models consider signaling games in which the buyer signals his wtp
to the seller [9]. This supposes that the buyer has an interest in helping the seller
because not doing so reduces his payoff. In our motivating examples, the buyer
can rely on third parties to satisfy his need, reducing the advantage of signaling.
We will see however that the buyer still has an interest in conveying some type
of information, but the purpose is to deceive the seller, not increase both player’s
overall payoff.
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The problem presented in introduction was numerically solved in [6,7] as partic-
ular instances of the much broader mechanism design problem presented here. A
similar model is presented in [33] further simplified in [24], the example cited is of
a service’s pricing. The model in [24] considers that the seller knows the demand
function and optimizes his price accordingly. In the present paper, we consider
that the seller is uninformed of the demand he will face and hence is unaware of
the manufacturer’s wtp.

Reference [3] (first put out as a working paper in 1989) presents a number of the-
orems and properties based upon Log-concave and Log-convex distributions. [17]
use it to show a famous result in auction theory [32]. Namely that, under some
assumptions, the first- and second-price auctions yield the seller the optimal ex-
pected revenue when the buyers are symmetric, have independent valuations and
have a continuum of potential valuations. The characterization of the single opti-
mal allocation for a principal of a good to one buyer among several also uses the
fact that Log-concave distributions have increasing failure rates.

The models presented in [25] or in [34] also involve a manufacturer selling to
a newsvendor through a single price contract and studies the impact of demand
variability and level of the price on the buyer’s effort and profit. The model in [33]
studies the optimal admission price to a service facility for customers who have a
known wtp distribution function. The model in [29] refines the newsvendor mod-
els of [24,25] by offering some restrictive conditions so that the manufacturer is
guaranteed to have a unimodal profit function.

Yet in all of the above models alternative sources or lack of information about
the buyer’s wtp are not included in the objective functions. To our knowledge, the
case where the seller is supposed to make one single offer to a buyer without being
aware of this buyer’s wtp nor of alternative sources and must rely on some a priori
belief about this buyer’s wtp has not been addressed. The present model and its
discussion is a contribution towards closing this gap in literature.

3. MODEL

A supplier has the ability to make a product or deliver a service that can have
applications in widely differing areas and hence be of interest to very different
customers. This heterogeneity in cost structures, payoff functions, and demand for
final products on the part of customers makes it difficult to the supplier to be
precise in his pricing offers. Let us consider that a supplier already has an existing
non-strategic customer to which he sells his product or service. On the other hand,
a manufacturer requires this product or service for his own production but has an
existing non-strategic alternative supplier for a similar or substitutable product or
service. The supplier and manufacturer have not yet traded this particular good
or service before. In time, we position ourselves after the discovery process by
either has terminated but before any trading offer has been made. If it is the
manufacturer who discovers the supplier, then he sends a request for a quote
(Request For Quote (RFQ): very common practice in the case of tenders). If it is
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the supplier who discovers that the manufacturer could have a use for his product
or service, he makes an unsolicited offer. In what follows, we shall consider this
initial offer by the supplier to be the first step of the game and hence consider the
supplier as Stackelberg leader. The supplier has the capacity to make one product
or service which is why he has to choose to who he sells this product or service to.
Given his profit-maximising objective, he will sell to the highest paying customer.
No inventory will be left over as either the potential new customer or the existing
one will receive the product.

The model presented here considers that the supplier can sell to the manufac-
turer or to an alternative customer at a different price. It can accommodate both
a supplier addressing an offer to a single manufacturer as well as the case where he
can make simultaneous offers to several customers for which he may hold distinct
Bayesian beliefs about their wtp. These beliefs are assigned the same distribution
function but with distinct parameters. We start with the single potential client
case before extending the results to the multi-client one.

As is often the case in practice, we consider that the seller will use a contract
specifying only one price or a simple list linking price to quantity (in difference
to the menu of contracts mentioned above, this is a take it or leave it offer: the
buyer cannot pick). This contract is not within the scope of the coordinating or
collaboration mechanisms usually described in literature [2,16,23,31]. One justifi-
cation can be that other managerial coordination processes will be set up once an
agreement has been reached.

3.1. CASE OF A SINGLE POTENTIAL CUSTOMER

The supplier, as principal and Stackelberg leader, is uninformed of the buyer’s
reservation price for a good he wishes to sell. If he guesses wrongly this price, he
can still dump his good on a non-strategic third party for a price o. The supplier
has to form a Bayesian belief about the distribution of this reservation price and
assign it a subjective probability distribution.

Let X represent the principal’s belief about the agent’s reservation price as
a random variable with cumulative distribution function (CDF) F' ranging over
[X, X, continuous and twice differentiable. By convention, let F(z) = 1 — F(z).
Let f be its probability density (PDF). We assume without loss of generality
that 0 < X < X. This distribution’s failure rate function as defined in [4] is
r(X) = f(X)/F(X)®. X has an increasing failure rate (IFR) or, equivalently, F
is an IFR distribution if r(X) is weakly increasing for all X such that F(X) < 1.
As shown in Appendix Section A.1, given the domain we are interested in, these
functions belong to a wide family of distribution functions named Log-concave. A
property of these functions is that the set {z| f(x) > 0} is connected. We define
«, a positive real, as the price received by the principal when the buyer refuses the
offer and

0<X<a<X. (3.1)

5This function is also called hazard function.
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Note that if that were not the case, the supplier’s belief would have no bearing
on his objective function. If @ < X, the maximum revenue for the principal is
achieved for him by choosing X as the offering price. Similarly, if « > X, the
principal just sells to this third party for a and does not consider selling to the
agent.

Tracing a parallel to the model in [24], here the supplier also has to sell to
a downstream partner (say a retailer) a quantity at a posted price. However,
in our setting, the supplier can also sell to a third party in the case where the
quoted price does not satisfy the manufacturer. This option can also be seen as
the buyer’s option of returning all unsold goods to the supplier. Contrary to the
present setting, in [24] the supplier bears no responsibility for the unsold goods
and enjoys full information about the retailer’s demand and retail price.

Here, the supplier does not have information about the manufacturer’s reserva-
tion price nor about the competition’s eventual offer, so the supplier, based upon
his belief, must maximise the following objective function

II,(z) = aF (x) + 2F (z),
= F(z)(a — 2) + =z, (3.2)

after normalising the cost to 0. The case where o = 0 is the one covered in [24]. It
is straightforward to prove that there is a unique interior point within the range
[X, X] (the proof can be found in Appendix A).

The manufacturer’s objective function is more straightforward:

nm(@:{p:% LT
p—=7 - x=7,

where p is the expected revenue to be generated through the use of the good or
service provided either by the supplier or the non-strategic alternative source and
v is the alternative source’s cost for this good or a substitute.

Some corollaries can be stated stemming from the properties of the first differ-
ential of the seller’s profit function.

Corollary 3.1. If F is such that F(1) = 1, then © = 1 is solution and is also
a mazimum because IT! (1) < 0. This covers the case when the properties of the

IFR distributions cannot be applied since at x = 1, r(x) is not defined. Similarly,
if f(X) =0, then X is a mazimum if X < « because II7(X) > 0.

Corollary 3.2. Since F is increasing, the domain [X, X| can be truncated at the
largest value x1 for which f(x1) =0 and set X = x1. So when x = X, Il (z) = X.

We enunciate the following theorem.

Theorem 3.3. Assuming that F is log-concave with a finite support [X, X|, then
the seller has a unique optimal solution x* to his concave profit function which is
solution to

(3.3)
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Corollary 3.4. The optimal value is always higher than the outside option price
« reflecting the belief held by the seller that there is a non-zero probability that the
buyer is willing to pay more than «.

3.2. CASE OF SEVERAL POTENTIAL CUSTOMERS

Up till now, we have been looking at the univariate variable case. Let us now
solve for the case where the supplier, having one single good to sell, may wish
to offer it to several customers, all of which would have different wtp. We build
on properties of log-concave distributions as characterised in [1,4] and as further
elaborated in [3]. We extend some of their properties as described in Appendix
in A.1. These properties can be applied in cases where the upstream party has to
price a good or service to k potential customers involved in different industries
and hence where the beliefs about their outside options may be different. In this
section, we consider that the supplier has to build a belief about k& wtp and assigns
such overall belief to a multivariate random variable X j. This multivariate random
variable has support in a CDF Fj(.) and multivariate density function f(.).

Let X = {X1,Xo,..., X;} be a k-dimensional continuous random vector with
density function fx(X) and CDF Fg(X).

Define Sk (z) = P(Xk > ).

Proposition 1 of [1] states that if fx(z) is log-concave, then

ri(z) = fi(x)/Fk(z) is mildly increasing, i.e., 7 (x) > 0.

Proposition 4 of that same source extends this result to the multivariate case
by stating that if fx(z) is log-concave on its support, then

e Both Fi(z) and Sk (x) are log-concave.
e The marginal densities of all sub-vectors are log-concave.
e fx(x) is unimodal.

The above results enable us to extrapolate the results for the univariate world
to the multivariate one. In particular, a positive valued k-dimensional continuous
random vector with log-concave density function is IFR.

Let us now see how this can apply to our field.

Consider the case of a supplier who can sell the same good to either an existing
non-strategic customer or to k£ potential customers. The case where the potential
customers can act strategically has been amply covered in [17]. Customers may be
considered to be non-strategic if they do not know each other as in our motivation
examples where they hail from different industries. He lacks information about
their wtp and so assumes that the corresponding X, ..., X; random variables for
each customer’s wtp have finite positive supports [X;, X;], i = 1,...,k and can
be represented by density function f;(.) taken from the same family of log-concave
distributions but with distinct parameters. The X; variables may be correlated
for which the covariance will be part of the calculation. Jointly, these variables
can be described by a k-dimensional continuous random vector with multivariate
density function fx(x) and a cumulated density function Fg (x). The supplier can
offer to all potential customers his only good at one single price which allows him
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to maximise his profit according to his Bayesian belief. All potential customers
announce simultaneously their acceptance or refusal decisions. Only one among
those who decide to buy will be satisfied. If several customers accept the offer, the
supplier chooses one of these and the others will fall back on their outside options.
This case is not addressed here. In the real world, the supplier might be able to
subcontract another supplier to sell to these willing customers or increase his own
quantity on offer®. If no potential customer decides to buy, the supplier falls back
on his non-strategic outside option. His profit function can be written as

I (z) = aFk(z) + z(Fg(x)), (3.4)

where x and « are scalars. He sells only one product to just one customer either
at x if at least one buyer accepts his offer or at « to the existing non-strategic
partner. This profit function can be compared to the one in the univariate example
as presented in (3.2).

We now enounce the following theorem.

Theorem 3.5. Let X be a k-dimensional continuous random vector of random
variables X1, ..., Xy with joint density function fx(x) and joint CDF Fk (x) with
the marginal densities’ finite support being [X1, X1], ..., [ Xy, Xk and Vi, 1 <i <
k, X, > 0. It exists a unique optimal solution x* to his profit function which is the
solution to .
rf—a= M, (3.5)
fr(z*)

if Fi is a multivariate log-concave distribution.
Proof. The proof follows along the same lines as in the single variate case. O

We have answered the question in introduction about how a supplier should
price his good in the face of the demand from one or several downstream parties
without knowing their wtp. We now turn to the second question: what is the effect
on supply chain efficiency?

4. SUPPLY CHAIN EFFICIENCY

To answer such a question, we first analyse the impact of the precision of in-
formation and then the lack of, or inefficient, investment in enhancing the overall
rent of both partners.

The study of the efficiency of the supply chain in the present scenario of unknown
wtp on the downstream party’s part is the study of the misallocation and the
ensuing misuse of the rent generated in the supply chain by the interaction between
both parties. Sub-efficiency arises from asymmetric information and opportunistic
behaviour.

6This might be the case of a road transport provider who can sub-contract or lease more units
to satisfy the demand.
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4.1. INFORMATION OBFUSCATION BY THE MANUFACTURER

To establish a performance benchmark, we analyse the case of an integrated
firm and common information. Let II; represent the integrated channel profit,
1, = Il + II,, with the subscript letters s and m representing the profits to
the supplier and manufacturer. We define for this scenario the manufacturer’s
reservation value of the good or service bought from the supplier as p, p > 0 and
an alternative sourcing price for the same good or service from a non-strategic
third party v, with v < p. Each party has the opportunity to source or sell outside
the organisation if that opportunity yields a larger overall profit to the supply
chain. In this case, the supplier knows the manufacturer’s wtp and adjusts z* =~
so that the parties have the following profits according to the respective cost of ~y
and « to the manufacturer. We consider that the supplier’s cost is normalised to
Z€ro.

a>y = I(x) =q,

IIi=p—v+a

Hm:p_’ya
a<y= I =7, (41)
Hi:p.

The case where o > ~ is a trivial one: if the manufacturer is able to find an
alternative source for the product or service by the supplier which is cheaper
than the alternative selling opportunity that the supplier faces, both turn to their
alternatives and the supply chain’s integrated profit is enhanced but not based on
its integration. In what follows, we focus on a < 7, i.e., the terms of trade are
favourable.

‘We now turn to the decentralised supply chain where the supplier is not informed
of v or p.

If the manufacturer accepts the supplier’s offer, it is because z* < « and the
overall profit to the supply chain is the same as in the integrated, common infor-
mation case, i.e., II; = Il = p.

The manufacturer refuses the supplier’s offer when z* > ~ and so the supply
chain’s profit becomes

and Iy < II; because a < 7. Hence there is a risk of a lower profit when informa-
tion is asymmetric. This risk is proportionate to the inaccuracy of the belief held
by the supplier.
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To the supplier, the cost of the information is reflected in the difference in profit
between the integrated (I1;) and decentralised scenarios (ITs4):

Iy — g = — oF(z*) — 2*F(z%), (4.3)

with Ilg; — IIsq > 0, since o < 2* < .
It can be proven that for two log-concave random variables Fj(u1,01) and
F5(ua,02) built from the same distribution type, if

w1 = pa, V{o1,02}, and0 < o1 < 02 < p/4, = ] <aj. (4.4)

Further, the difference z* — v tends to 0 as the first moment p of F(.) tends
to v and as the second moment o tends to 0. In other words, if we consider
that the precision of information available is continuous’, then, as the supplier
becomes better informed, the difference between the integrated and decentralised
chains becomes smaller. Given opportunity for mutually beneficial trade, supply
chain efficiency increases with the availability and precision of information about
a manufacturer’s wtp.

As a corollary from equation (4.3), in the decentralised supply chain, the man-
ufacturer’s rent increases with the standard deviation of the supplier’s belief dis-
tribution. In other words, the manufacturer will tend to refrain from informing or
signaling to the supplier about his true alternative options expecting the optimal
z* to be low compared to his outside option. The supply chain’s overall rent may
be unchanged but the profit is allocated to the downstream party.

This result is illustrated in the numerical example below (see Sect. 5.1).

4.2. RENT MISALLOCATION AND WASTEFUL INVESTMENT

Having shown how information precision affects rent allocation, we now describe
the mechanism by which the manufacturer, by his opportunistic behaviour in ob-
fuscating information about -, influences the overall rent generated from their
mutual interaction.

The following reasoning assumes without loss of generality that the supply chain
partners are specialised and hence that each has unique capabilities to invest effort
into increasing the value of their product or decreasing the cost of their processes.

This mechanism design analysis can be applied as long as the principal and
the agent can commit intertemporally to interact several times see e.g. [5]. The
decisions and results from these decisions, if both wish to trade, take place as in
Section 1.

The returns from investing an amount € of effort by either party accrues only to
that party. The decision about how much effort to provide is made considering the
price z* and extra returns. The larger the price z*, the more effort the supplier
will put in, since the expected extra cost reductions can be potentially larger. Note

"Without loss of generality, this case can be extended to the situation where information is
granular or discontinuous.
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FIGURE 1. Timeline of decisions and events if the manufacturer
decides to buy from the supplier.

that this way of ensuring effort towards the global rent generated within the supply
chain is reminiscent of the way [25] models how the decrease in the wholesale price
that the manufacturer charges the retailer enhances the possibility for this retailer
to increase the effort in market forecast and information sharing about demand.

If, due to the Bayesian belief of the supplier, x* is low, the rent is displaced into
the manufacturer’s pocket. Because of this added rent, the manufacturer will be
the one deploying an effort € into increasing the chain’s efficiency. But, since we
hypothesise that the supply chain partners are specialised, for the same effort, the
accrued cost reductions will be less than those that could have been generated by
the supplier:

rs—€>1m —€>0 = s crrore + I > I + Iy_cyfort, (4.5)

with e the effort provided either by the supplier or by the manufacturer, I1s_cy fort,
I, ¢ fort the profit accruing to the supplier or the manufacturer respectively, and
rs, Im the discounted cost reduction that accrue to each partner respectively after
the effort has been provided in the transactions that follow.

We collect the result of this demonstration in a last theorem.

Theorem 4.1. In a multiple interaction setting with intertemporal commitment,
the supply chain’s efficiency is adversely affected by the downstream party’s ability
to hide or mis-represent information about his wtp to the upstream party.

As a corollary, let us mention another potential consequence. Once the supplier
has found a “new” application for his product, he will wish to enlarge his customer
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base by offering it to other customers. The existing one becomes the non-strategic
alternative and the supplier can update his belief of the wtp of the new potential
customers using information gleaned from the first one. The supplier may hence
sell his product for a higher price, depriving the manufacturer of the product.

This result is the mirror from the one recorded in [25] where the upstream
partner foregoes some rent so as to enhance the downstream partner’s faculty to
enhance the supply chain’s efficiency by decreasing the wholesale price charged to
this downstream partner.

5. NUMERICAL ILLUSTRATION

5.1. IMPACT OF INFORMATION PRECISION

Let us examine how the supplier’s optimal z* based upon a belief which follows
a Normal distribution would behave. Suppose that v = 8 and o = 1. In Figure 2 we
can see that the optimal quantity decreases before increasing again as o decreases.
The fact that x* is “high” for high values of o can be put down to the fact that
the belief distribution spans an area much larger and includes a larger probability
of values for which the alternative o = 1 is more interesting. In other words, the
alternative becomes a bulwark which helps the supplier in case the manufacturer
has an alternative which is higher than a.. The other conclusion is that 2* converges
to v as o tends to 0. The standard deviation of the belief distribution is a proxy
to the precision of the supplier’s information.

5.2. ILLUSTRATION OF THE SINGLE POTENTIAL CUSTOMER CASE

Let us illustrate the result with two different distributions. The first is a uni-
form continuous distribution on the range [1,8]. The second is an extreme value
distribution with parameters with location parameter @ = 1 and scale parameter
B = 8. In both cases, the outside option o = 4. The graphs in Figure 3 represent
the corresponding profit functions and optimal values x*.

From Theorem 3.3, we obtain z* = 6 for the uniform distribution and z* =
12.9671 for the extreme value distribution, both of which are higher than the
outside option price a = 4 and effectively represent the maximum of the profit
function.

5.3. ILLUSTRATION OF THE CASE WITH TWO POTENTIAL CUSTOMERS

In the same way as above, we represent the profit function of a supplier who
wants to sell the same good to two different manufacturers. He forms two Bayesian
beliefs about their wtp and builds a joint distribution of their behaviours. The joint
distribution is based upon the binormal distribution of the two random variables.
Let us consider that 3 =5, 01 = 0.5, pe = 8, g2 = 1. The correlation coefficient,
set at p = 0.9, signals that he believes his customers to be in the same market
or responding to the same signals in the same way. In this example, varying the



490 X. BRUSSET

TR P PRI P PRI P Y PRI TR P o

0.5 1.0 1.5 2.0 25 3.0

FI1GURE 2. Representation of the optimal solution for the supplier
as his information about the true value of the alternative option to
the manufacturer becomes more precise. v = 8 and the alternative
«a =1 in this example where the belief follows a Normal (8, 0).

F1GURE 3. Representation of the profit function and optimal
solution when the belief distribution is uniform and ranges be-
tween 1 and 8 (left graph), when the belief distribution follows an
extreme value distribution (right graph) and « = 4.

correlation coefficient does not change significantly the optimal price offered by
the supplier.

The outside option of the supplier is set at a = 4.

In the second case,the distributions are extreme value distributions charac-
terised by parameters {1,8} and {2, 10}.
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FIGURE 4. Representation of the profit function and optimal solu-
tion when the belief distribution of the two manufacturers follows
a binormal distribution whose parameters {p, o} are {5,0.5} and
{8,1} with a correlation coefficient p = 0.9 (left graph); when the
belief distribution follows extreme value distributions {1,8} and
{2,10} (right graph); for both o = 4.

For the binormal distributions, the optimal value is * = 7.4875 and in the ex-
treme value ones z* = 17.231. The plots of the profit functions and corresponding
maxima are presented in Figure 4.

6. CONCLUSION

In many supply chains, it is worthwhile to investigate the information avail-
able to bargaining firms for improving system-wide performance. The focus of
our paper is on the analysis of the static pre-contract period where the supplier
makes his first offer. In this paper, we provide our review, discussion and appli-
cation of the supplier’s and manufacturer’s behaviours when information about
competition or reservation value and demand function is asymmetric information
available only to the manufacturer. Under asymmetric information, not only is
rent transferred from supplier to manufacturer, but the manufacturer will actively
hide or mis-represent this information to the supplier upon initially setting up
their relationship. In a setting of inter-temporal commitment, under the assump-
tion that the supplier is better placed to enhance the quality of his final product,
we prove that the efficiency of the supply chain is affected because, in the price
definition phase, the downstream partner will strive to capture a disproportionate
share of the overall rent. With these results, we address an insufficiency in supply
chain management literature. All previous models consider that at least part of
the information which we consider here to be private is available. In particular, all
newsvendor models and those derived from them consider that the supplier knows
of the final demand distribution. All the supply chain contracts [2,31] or the ex-
plicit production-distribution models [12] consider that, even though demand is
stochastic, the supplier knows of its distribution function.
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The present results build upon a large family of distribution functions (uniform,
Weibull, extreme value, normal distribution, gamma, exponential, . . .) which enjoy
the characteristic of being log-concave. The interest of such distributions lies in
their ability to represent beliefs about price distributions which range between
positive upper and lower finite bounds, a feature which is common to all beliefs
about prices.

The analysis presented here also is a first step in understanding and representing
the precision of information in game theoretic supply chain models. This feature
has never been approached before, except in fuzzy logic models but these do not
contemplate the influence of the downstream partner on the precision or accuracy
of the information. Further applications of Bayesian beliefs in supply chain settings
with asymmetric or inaccurate information can be envisioned. It is left to future
research to consider the dynamic multi-period setting in a broader sense with
strategic customers able to react to price offers.
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the kinks in this paper from my colleague Roxane Cattan-Jallet, from Yoav Kerner at
Ben Gurion University, from anonymous referees and from discussion at the MS&OM
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APPENDIX A.

Proof. Proof of Theorem 3.3.

We propose to prove that a unique interior point within the range [X, X| does
indeed maximize it. We first show that the point exists, is a maximum and then
prove that it is unique.

A.0.1. Does the optimal interior point exist?

We now prove that such an optimum exists.
For that, we proceed to prove that

I'X)>0
= Al
{H’(X) <. (A1)
By construction of F'(.), even though f(z) > 0 and F(x) < 1, at the limit,

I
I

X)(a—-X)+1
(o - X). (4.2)

{limIHX II'(z)

lim,  IT'(x)

For both conditions in (A.1) to be true, we obtain the following conditions

1
L <oty (A.3)
X > a.
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A.0.2. Is the optimum a maximum?

A property of the increasing failure rate which is of interest in what follows is
that

r'(z) > 0. (A4)

This means that
f(@)(1 = F(z)) + f(z)* > 0. (A.5)

The first order condition (F.O.C.) requires that

II'(z) = f(z)(a —z) + F(x) = 0. (A.6)

We describe in the following corollaries the properties of this first differential
For all cases such that f(z) > 0, we can write the F.O.C. as

F()
a—r=— . A7
@) A
The second order condition (S.0.C.) for a maximum requires that
" (z) = (a —z)f'(z) — 2f(z) < 0. (A.8)

In the case when f(x) > 0, when we replace (o — z) from (A.7) in (A.8), we
obtain

f@)" () = —'(z) — f(x)*. (A.9)

Since f(.) is positive and 7(.) is increasing, when the F.O.C. is satisfied, the S.O.C.
is also satisfied.
By definition of the first differential of the failure rate r'(z) > 0. So, because
f(x) >0, R'(x) <0.
So, if
dxo ‘ H’(l‘o) =0= H”(l‘o) < 0. (AlO)

If a value exists which is an extremum for the objective function, it is a maxi-
mum.
Let us now see whether this maximum is unique.

A.0.3. Is this mazimum unique?

Reasoning by the absurd, if
3(.730,.731) S [K,Y]Q, |l‘0 <, H/(J?o) = H’(lj) =0, (A.ll)

then by (A.10),
" (z9) < OAI"(21) < 0. (A12)
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Since II(.) is continuous by construction, it decreases for values in the vicinity
and above xg, whereas it increases for values in the vicinity but below x;. Hence,
between xy and z1, R’(.) changes sign, so that

dzo G}xo,.’bl[, |H/(LU2) = O,H//(l'g) > 0, (A13)

This contradicts (A.10). Hence there cannot exist another point x1, distinct from
20, for which IT'(z1) = 0.
We conclude that the point which represents the maximum of the objective

function in the interval [X, X|, if it exists, is unique. O

A.1. EXTENDING TO RESULTS TO ALL LOG-CONCAVE DISTRIBUTIONS

In this section, we present some useful properties of the IFR distributions. We
show some properties of the multivariate distribution functions. The multiplication
by a scalar can allow a principal involved in a multi period game to update his
belief.

We list here some of the properties which are of interest in the following demon-
strations.

From Theorem 4.1 on page 25 of [4], the following statements are equivalent.
We assume F'(07) = 0.

e I is an IFR distribution.
e Log F(t) is concave for t in {t| F'(t) < 1, > 0}.
e F(t)is PF% (F(z +y) is TPy in z and y for x +y > 0).

Of interest to us here, Theorem 1 on page 446 and Theorem 3 on page 448 from [3]
enounce the following. Let , f be a probability density function whose support is
the interval (a,b), and let F' be the corresponding reliability function:

e If the density function f is continuously differentiable and log-concave on (a, b),

then both F, (F') is also log-concave on (a,b).

o If F, (F) is log-concave on (a, b), then the right hand integral H of the reliability
function, defined by H(z) = fTb F(t)dt, (H(x) = fTb F(t)dt), is also log-concave
on (a,b).

Corollary 2 from the same source is also of interest here:
If the density function f is log-concave on (a,b), then the failure rate r(x) is
monotone increasing on (a, b).

Reference [3] in Remark 1, which states that the converse of the Corollary 2,
is not true because there exist probability distributions with monotone increas-
ing failure rates but no log-concave density functions might be considered to be
limiting. However, this remark does not concern us here because it involves distri-
butions with negative left tails, whereas we limit our interest to distributions with
finite positive supports: (a,b), {a,b} € R**+.

8Pélya frequency density function of order 2.
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In fact, as recorded by [1], for a positive-valued random variable, when its dis-
tribution is log-concave, then its failure rate is weakly increasing. Further, these
distributions have finite moments of all orders [4]. This result is derived through
a comparison to the exponential distribution, which has a constant failure rate.

Another interesting property is that if X is IFR, then so is § + v X for constants
5,v >0 [28].

We conclude that all log-concave distributions for positive-valued random vari-
ables have increasing failure rates. Another conclusion which can be drawn is that
the supplier may use any log-concave distribution function for his belief and still
obtain a unique profit-maximising offering price.
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