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A BRANCH-AND-CUT FOR THE NON-DISJOINT
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Abstract. In this article we study the realistic network topology
of Synchronous Digital Hierarchy (SDH) networks. We describe how
providers fulfill customer connectivity requirements. We show that
SDH Network design reduces to the Non-Disjoint m-Ring-Star Problem
(NDRSP). We first show that there is no two-index integer formulation
for this problem. We then present a natural 3-index formulation for the
NDRSP together with some classes of valid inequalities that are used
as cutting planes in a Branch-and-Cut approach. We propose a poly-
hedral study of a polytope associated with this formulation. Finally,
we present our Branch-and-Cut algorithm and give some experimental
results on both random and real instances.
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1. Introduction

In order to propose a reliable service to their clients, providers need to embed
particular topology for their urban optical network. In particular, SDH technology
(Synchronous Digital Hierarchy) is a wide-spread protocol for transmitting digital
data at high speed, corresponding to the SONET protocol in the United States.
SDH topology can be described as a network which consists in a set of optical fiber
rings where clients are nodes of a ring [15, 16]. Moreover, since an optical cable is
composed by a lot of optical fibers and since a ring uses only one fiber, many rings
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Figure 1. Two Non-Disjoint Ring-Stars.

share the same cable. In this article, we will show that designing a SDH topology
can be reduced to finding a set of non-disjoint ring-stars. Given a mixed graph
G = (V, E, A), we call V the set of nodes which is partitioned into the depot 0, the
set of clients U , and the set of interconnection nodes W , also known as Steiner
nodes. We will denote n = |V | and nu = |U |. Each client i ∈ U has a demand di.
The set of arcs A is equal to ∪i∈ULi, where Li is the set of potential assignments
of client i ∈ U , Li ⊂ {(i, j), j ∈ V \ {0}}. Every edge e ∈ E corresponds to a
cable which is made of γe optical fibers. To each arc (i, j) ∈ A, we associate an
assignment cost cij ∈ IR+, and to each edge e ∈ E we associate a routing cost
le ∈ IR+.

A couple R = (ER, LR) will be called a ring-star if ER is an elementary cy-
cle of E going through the depot 0 and LR is a subset of arcs of A such that
∀(i, j) ∈ LR, j ∈ VR where VR is the set of nodes belonging to the cycle. UR will
be the set of clients served by R. Figure 1 shows two non-disjoint ring-stars, the
first one in dashed lines, the other one in continuous lines. The clients are repre-
sented by circles, while the Steiner nodes are represented by triangles. The depot
is represented by a square. We remark that the ring-stars share the vertical edge.

We will denote d(R) =
∑

i∈U(R) di the demand served by R. Given Q ∈ IR+,
a ring-star R is called a Q-ring-star if d(R) ≤ Q. Given m ∈ IN+, the Non-
disjoint (Steiner) m-Ring-Star Problem (NDRSP) consists in finding a set of m
Q-ring-stars on a given graph G such that: each edge e ∈ E belongs to at most
γe rings; each client is assigned to a ring; and the sum of assignment and routing
costs is minimized. Such an instance will be denoted I = (G, d, γ, c, l, Q, m). In the
sequel, we assume that the number m of rings of capacity Q is enough to carry
out all the demands.

The NDRSP may seem similar in some aspects to vehicle routing problems, in
particular to the well-known CVRP (see for instance [5, 6, 8, 13, 14]). An instance
of the CVRP can be defined as a depot, a set of customers, each with a specific
demand, and a capacity Q for the vehicles. A solution is a partition of the client set
into subsets along with an order of visit on each subset, such that the total distance
traveled is minimized. A classic trick is then to use a complete graph on the same
node set, but where each edge represents the shortest path between two nodes.
Once a solution is obtained, one can easily find the actual path of each vehicle. It
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is worth noticing that the topology of these pathways will not be constrained, and
especially it will not necessarily be rings. On the contrary, for the NDRSP, the
elementary ring topology must be verified in the original graph as it is essential to
the reliability of an SDH network. Nevertheless, the trick of reducing the CVRP
to the search of disjoint rings cannot therefore be applied to NDRSP. Moreover,
in optical networks, cable capacity constraints has no equivalent in vehicle routing
problems. In fact, the NDRSP seems to be closer to network topology problems.

To the best of our knowledge, there is no work about the NDRSP in the network
design literature. The 1-Ring-Star case has been treated in [12] where an integer
formulation has been used in a Branch-and-Cut framework. Another integer formu-
lation together with a polyhedral study of the 1-Ring-Star can be found in [11]. We
also note that if all the assignments are previously known and if γe ≥ m, ∀e ∈ E,
our problem reduces to m independant Steiner TSP [3]. Consequently, NDRSP is
clearly NP-hard.

The disjoint case of NDRSP was introduced in [4]. In this article, the authors
present and compare two integer formulations and propose new valid inequali-
ties to strengthen the linear programming relaxation. They have implemented a
Branch-and-Cut algorithm which has been able to solve instances up to 101 nodes.
In [10], the authors develop a Branch-and-Cut-and-Price algorithm for the disjoint
case where the edge weights satisfy the triangular inequality. The authors compare
the performance of their algorithm in regards of the results in [4], improving the
previous results on several instances.

This paper is organized as follows. In Section 2 we describe the customer con-
nectivity requirements in real SDH networks. We then the show how an instance
of our problem can be built from a real SDH network. Afterwards, in Section 3 we
will discuss the encoding of a solution, showing there is no two-index formulation
of our problem. In Section 4 we will present a natural 3-index formulation, and
we will propose several new families of valid inequalities. In Section 5, we will
study a full dimensional polytope containing the NDRSP polytope as a face. This
polytope is defined as a relaxation of the fact that all clients must be served. In
Section 6 we will present our Branch-and-Cut algorithm along with the separation
of the constraints and a primal heuristic. Finally, in Section 7 we will present the
experimental results on both random and real instances.

Let us introduce some additional notations. Let G = (V, E, A) be a graph
defined as above and S ⊂ V . S̄ = {i ∈ V : i /∈ S} is the complement of S.
δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ S̄} is called the cutset defined by S, δ+(S) =
{(i, j) ∈ A : i ∈ S, j ∈ S̄} is the set of outgoing arcs from S, and δ−(S) = {(i, j) ∈
A : i ∈ S̄, j ∈ S} is the set of ingoing arcs to S. If S = {i}, we simply write δ(i)
instead of δ({i}).

2. Modeling

The strenght of SDH networks lies in the management, monitoring, alarm and
self-healing functions. The main protection comes from the ring structure of the
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Figure 2. Rerouting in case of failure.

network. The data flows in one direction and if a connection is broken, the data
is immediately redirected in the opposite direction (Fig. 2). Thus the failure of a
link does not completely isolate one element.

These optical networks include four types of point: the depot, the Network Flex-
ibility Points (NFP) and the Building Facility Points (BFP). The depot is a build-
ing from which the entire network is managed and linked to the rest of the world-
wide network. The NFP are small rooms located under the sidewalks where the
main cables are connected together. The BFP are the entry points into a building
that contains several client equipments. These three types of point are connected
with cables deployed in the sewers, pavement or in the underground corridors of
the public transport network.

A SDH ring is a sequence of fiber segments going from the depot, passing
through NFP, BFP and client equipments, and going back to the depot.

A client equipment is linked either to only one BFP (simple adduction) or to two
different BFP (double adduction). The most common configuration is the simple
adduction: a single cable enters the building through the BFP. Consequently, two
fibers of the same cable must be used to guarantee the ring structure at the fiber
level (Fig. 3a). We can see that this type of connection is not secure, because if
the cable is disconnected then the site is offline. However, only the client would be
disconnected, the remaining elements of the ring would still be online. In order to
obtain more reliability, some clients may require a double adduction: two different
cables enter the building through different paths, and the ring structure is checked
even at the client site (Fig. 3b). In addition, each client has a particular bandwidth
demand, and each ring has a fixed bandwidth capacity Q. Consequently the sum
of the client demands of a ring must be Q or less.

An optical network is hence given by a depot 0, a set of clients U , a set of
BFP, a set of NFP and the set of cables. Each cable e has a limited number
γe of fibers and each client i has a bandwidth demand di. Finally, a ring has a
maximal bandwidth capacity limited by Q. Given an optical network, the SDH
network design problem consists in finding a set of SDH rings spanning all the
clients satisfying the bandwidth and fiber capacities.

Figure 4a represents a simple but realistic example of SDH network with
6 clients, 7 BFP and 7 NFP. Figure 4b shows a solution of the SDH network design
problem on this network. This solution is made of three rings, one in dotted lines
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Figure 4. (a) A simple but realistic SDH network. (b) The fiber paths.

serving clients 4 and 5, one in dashed lines serving clients 1 and 3, and the last
one serving the remaining clients 2 and 6. We note that some cables are used by
several rings.

We can now show how to construct an instance of the NDRSP from such an
optical network. The graph is constructed as follows:

• we create a node 0 for the depot;
• for each client we create a client node i;
• for each interconnection point we create a Steiner node;
• for each cable e linking two interconnection points or a connection point and

the depot we create an edge e and we set le as the length of the cable;
• if a client i orders a double adduction, for each BFP linked to client i, we

create a Steiner node j, an edge e = {i, j} and we set le as the length of the
corresponding cable. We also create an arc (i, i) and set cii = 0;
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Figure 5. (a) A Graph model. (b) A solution.

• if a client orders a simple adduction, we create an arc (i, j) for each potential
path going from the client to an interconnection point j linked to a BFP of
client i. We set cij as 2 ∗ lp, where p is the corresponding path.

By construction, each Q-ring-star R on graph G corresponds to a SDH ring on the
optical network and conversely. Moreover, the total assignment and routing cost
of R is exactly the total length of fiber used on the optical network. Hence, we can
state the following result:

Theorem 2.1. The SDH network design problem reduces to the NDRSP.

Figure 5a (resp. 5b) shows the graph model corresponding to the network (resp.
solution) of Figure 4.

3. Solution encoding

In order to derive integer formulations for the NDRSP, we need to determine a
set of variables whose values lead in polynomial time to optimal solutions. For the
disjoint case of our problem [4], the authors have proposed two-index formulations,
that is to say, formulations based on integer variables xe, e ∈ E, corresponding to
the number of ring-stars using edge e. In this case the xe variables are binary,
implying that {e ∈ E : xe = 1} is immediatly a set of disjoint ring-stars. We will
show that, for the non-disjoint case of the Ring-Star Problem, a solution cannot
be described by such a vector.

We consider the Ring-Star Decomposition Problem (RSDP) defined as follows.

(RSDP):

Given an NDRSP instance I = (G, d, γ, c, l, Q, m) and a vector
(x, y) ∈ IN |E| × {0, 1}|A|, is there a solution R = (R1, . . . , Rm),
such that:
• Ri = (E(Ri), L(Ri)), i = 1, . . . , m,
• |{Ri, i = 1, . . . , m : e ∈ E(Ri)}| = xe, ∀e ∈ E,
• ∪i=1,...,mL(Ri) = {(i, j) ∈ A : yij = 1} ?
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Theorem 3.1. RSDP is NP-complete.

Proof. We show that the Bin Packing Problem (BPP) can be reduced to the RSDP.
An instance of the BPP can be described as a finite set of items U = {1, . . . , n}, a
size ai ∈ IN for each i ∈ U , a positive integer capacity Q, and a positive integer m.
The BPP consists in answering the question: is there a partition of U into disjoint
sets U1, . . . , Um such that the sum of the sizes of the items in each Ui is Q or less?

Given such an instance I = {U, a, m, Q} of BPP , it is possible to build an
instance I ′ of RSDP as follows. We set G = (V, E, A) as a graph with V =
{0, u, v} ∪ U and E = {{0, u}, {u, v}, {v, 0}}. Let di = ai and Li = {(i, u)} be
the demand and potential assignment of client i = 1, . . . , m. The following figure
illustrates the RSDP graph built from instance I of the BPP.

0

u

v

1 ni

Finally let xe = m, ∀e ∈ E, and yiu = 1, ∀i ∈ U . Hence, we can clearly see that
the BPP instance I has a solution if and only if there is a solution on the RSDP
instance I ′. Since the BPP is NP-complete [9], we can state that the RSD is also
NP-complete. �

The preceding result shows that, unless P = NP, it is impossible to deduce in
polynomial time a solution of the NDRSP from a vector (x, y) ∈ IN |E| × {0, 1}|A|.

Corollary 3.2. There is no 2-index formulation for the NDRSP.

Proof. Let us suppose that there exists a 2-index formulation for the NDRSP. An
optimal solution of this formulation would be a vector (x, y) ∈ IN |E| × {0, 1}|A|.
Since, from Theorem 3.1, a NDRSP solution can not be deduced in polynomial
time from (x, y), then we reach a contradiction. �

4. Natural formulation and valid inequalities

The NDRSP can be formulated as a mixed-integer linear program where
variables, called natural, are directly in correspondence with the edge of
graph G: to each edge e ∈ E, we associate m binary variables xt

e equal to 1
if e belongs to the ring-star t, 0 otherwise. To each assignment (i, j) ∈ A, we
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associate m binary variables yt
ij equal to 1 if customer i is assigned to node

j belonging to the ring-star t, 0 otherwise. We then consider the formulation (NF):

Min
m∑

t=1

∑
e∈E

lex
t
e +

m∑
t=1

∑
(i,j)∈A

cijy
t
ij

m∑
t=1

∑
(i,j)∈A

yt
ij = 1 ∀i ∈ U (4.1)

∑
(i,j)∈A

diy
t
ij ≤ Q ∀t = 1, . . . , m (4.2)

∑
e∈δ(i)

xt
e ≤ 2 ∀i ∈ V, ∀t = 1, . . . , m, (4.3)

m∑
t=1

xt
e ≤ γe ∀e ∈ E (4.4)

∑
e∈δ(S)

xt
e ≥ 2

∑
(i,j)∈A,j∈S

yt
ij ∀i ∈ U, ∀t = 1, . . . , m (4.5)

∀S ⊆ V \ {0}, S 
= ∅
xt

e ∈ {0, 1} ∀e ∈ E, ∀t = 1, . . . , m,

yt
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀t = 1, . . . , m,

Constraints (4.1) ensure that each customer is assigned to a single node, and
a single ring-star. Constraints (4.2) ensure that the capacity of each ring-star
is satisfied. Constraints (4.5) are the connectivity inequalities ; they ensure that,
for a given ring-star, there exist 2 edge-disjoint paths between the depot and
any node with a client to which it has been assigned. Associated with degree
constraints (4.3), constraints (4.5) ensure the ring structure.

The formulation (NF) is based on the Ring-Star problem formulation given by
Labbe et al. in [12]. A polynomial time cutting plane based algorithm for solving
the linear relaxation of (NF ) will be presented in Section 6.

The linear relaxation of (NF) model can be strengthened through the intro-
duction of valid inequalities.

• 1-Connectivity inequalities
Figure 6 depicts a typical fractional solution obtained from the linear relaxation

of (4.1)−(4.5). This solution can be seen as m identical subgraphs Gt where Gt =
(V t, Et, At), t = 1, . . . , m is given by the positive values of vectors xt and yt.
Unfortunately subgraphs (V (Gt), E(Gt)), which are expected to be ring-stars, are
only path-stars. Such fractional points are obtained when inequalities (4.5) are
satisfied with equality.

This fractional solution structure leads to the following remark: given a non-
empty subset S ⊆ V \ {0}, if an edge e′ ∈ δ(S) is removed from the graph, there
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Figure 6. A fractional solution.

must exist a path from the depot to any node to which a client has been assigned.
This remark shows that inequalities (4.6) are valid for NDRSP.

∑
e∈δ(S)\{e′}

xt
e ≥

∑
(i,j)∈A,j∈S

yt
ij ∀i ∈ U, ∀t = 1, . . . , m, (4.6)

∀S ⊆ V \ {0}, S 
= ∅, ∀e′ ∈ δ(S)

Adding the following inequalities to the formulation permit to cut off the frac-
tional point corresponding to the structure given in Figure 6. For instance, taking
S = {1} and e′ as the edge in δ(1) with xt

e′ = 2/m for an arbitrary t will provide
a violated inequality (4.6).

• Fractional capacity constraints
In the well-known CVRP formulation given in [6], the main inequalities, called

capacity constraints, limit the capacity requirement of the resulting CVRP tour.
Among these inequalities, the fractionnal capacity contraints can be separated
in polynomial time [2]. Since, in our case, the capacity of a tour depends on y
variables values, these inequalities have to be adapted as follows:

∑
e∈δ(S)

xt
e ≥ 2

Q

∑
(i,j)∈A,j∈S

diy
t
ij , ∀t = 1, . . . , m, (4.7)

∀S ⊆ V \ {0}, S 
= ∅

These inequalities ensure that a sufficient number of rings enter each subset of
nodes and thus are valid for the NDRSP.

It is interesting to notice that inequalities (4.7) dominate the so-called CVRP
fractional capacity constraints [2]. This can be easily proved by summing some of
the inequalities (4.7) as follows. Let U � U be a client subset. Let us consider a set
S � V such that {j ∈ V : ∃(i, j) ∈ Li, i ∈ U} ⊂ S. By summing inequalities (4.7)



176 P. FOUILHOUX AND A. QUESTEL

corresponding to subset S for t = 1, . . . , m, we then obtain

m∑
t=1

∑
e∈δ(S)

xt
e ≥ 2d(U)

Q
·

By letting xe =
∑

t=1,...,m

xt
e, ∀e ∈ E the resulting inequality is exactly the CVRP

fractional capacity constraint for subsets U and S.

• Rounded capacity constraints
In the CVRP formulation [6] the right hand side of the capacity constraint can

be rounded up in order to obtain stronger inequalities. In the case of the NDRSP
capacity constraint, such rounding operation cannot directly be done. In fact, for
a given subset of clients U ⊂ U ,

⌈
d(U)

Q

⌉
gives a lower bound on the number of

rings required to satisfy the demand of these clients. Moreover, suppose that a
quantity Q of the demand d(U) is satisfied through a tour t′, then the number
of rings necessary to satisfy the remaining demand will be

⌈
d(U)

Q

⌉
− 1. This idea

can be generalized as follows, removing a subset T � {1, . . . , m}, the number of
rings necessary to satisfy the remaining demand d(U) will have to be greater than⌈

d(U)
Q

⌉
− |T |. Consequently, the following rounded capacity constraints are valid

for NDRSP.

m∑
t=1, t/∈T

∑
e∈δ(S)

xt
e ≥ 2(

⌈
d(U)
Q

⌉
− |T |) ∀U � U,U 
= ∅, (4.8)

∀T � {1, . . . , m},
{j ∈ V : ∃(i, j) ∈ Li, i ∈ U} ⊂ S.

By setting S as it has been done previously, and T = ∅, we obtain the CVRP
rounded capacity constraints.

5. Polyhedral study

In this section, we focus on the Non-Disjoint Ring-Star polytope which can be
defined as the convex hull of the solutions of formulation (NF). Unfortunately,
checking if NDRSP has a feasible solution is NP-complete, even if graph G is
complete, consequently finding the dimension of this polytope is not easy. However
we can study the polytope P defined as a relaxation of the fact that all clients
must be served. Since the NDRSP polytope is a face of P , studying P provides a
useful structural insight of our valid inequalities.
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P is then the convex hull of the solutions of formulation obtained from (NF) by
replacing inequalities (4.1) by the following inequalities (5.1):

m∑
t=1

∑
(i,j)∈A

yt
ij ≤ 1, ∀i ∈ U. (5.1)

In the sequel, we will suppose that graph G is complete, with nu ≥ 1 and n ≥ 5.

5.1. Basic properties

In this section we present basic properties for the facial description of the poly-
tope.

We first introduce a short description of an integer point of P . A NDRSP solu-
tion σ will be given by the positive variables: σ =

(
{xt

e : xt
e = 1} ; {yt

ij : yt
ij = 1}

)
.

Given an arc (i, j) ∈ A and t ∈ {1, . . . , m}, we define a particular solution χt
ij

χt
ij = (xt

0j , x
t
jk, xt

k0 ; yt
ij),

where k is an arbitrary node. In fact, χt
ij is the incidence vector of a ring-star

passing through the depot, node k, and node j to which client i is assigned. We
note that such a solution will always exist under our assumptions.

Theorem 5.1. P is full-dimensional.

Proof. To show that dim(P) = m|E| + m|A| we have to exhibit m|E| + m|A| + 1
integer points of P whose incidence vectors are affinely independent.

First, remark that points (xt
e; ∅), for t = 1, . . . , m, e ∈ E, are within P . More-

over, for a given arc (i, j) and t ∈ {1, . . . , m}, χt
ij is also clearly a point of P . We

then obtain m|E| + m|A| integer points of P whose incidence vectors form the
following matrix M where the columns corresponding to variables x are on the
left, and those corresponding to variables y are on the right. Matrix M can be
written

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0

0
. . . 0 0 · · · 0

0 · · · 1 0 · · · 0
1 · · · 0

M ′ 0
. . . 0

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where matrix M ′ is a 0/1 matrix. Since M is a nonsingular matrix, and (∅; ∅)
is another point of P , then P is full dimensional. �

With similar arguments, we can easily obtain the following corollary.
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Corollary 5.2. Let t ∈ {1, . . . , m}.
Given an edge e ∈ E, the trivial inequality xt

e ≥ 0 is facet defining for P.
Given an arc (i, j) ∈ A, the trivial inequality yt

ij ≥ 0 is facet defining for P.

We can now state that the degree inequalities are facet defining.

Theorem 5.3. The degree inequalities (4.3) are facet defining for P .

Proof. Let i0 ∈ V and t0 ∈ {1, . . . , m}. Let us denote by ax + by ≤ α the degree
inequality

∑
e∈δ(i0)

xt0
e ≤ 2. Suppose that there exists an inequality a′x + b′y ≤ α′

that is facet defining for P such that F = {(x, y) ∈ P : ax + by = α} ⊂ F ′ =
{(x, y) ∈ P : a′x+ b′y = α′}. We use Claim 5.4 to prove that the degree inequality
ax + by ≤ α is facet defining for P .

Claim 5.4. Let ax + by ≤ α (resp. ax + by ≥ α) be a valid inequality for P .
Suppose that there exists an inequality a′x + b′y ≤ α′ (resp. a′x + b′y ≥ α′) that
is facet defining for P such that F = {(x, y) ∈ P : ax + by = α} ⊂ F ′ = {(x, y) ∈
P : a′x + b′y = α′}. Since, by Theorem 5.1, P is full dimensional, if there is λ > 0
such that (a′, b′) = λ(a, b) and α′ = λα, then ax + by ≤ α (resp. ax + by ≥ α) is
facet defining for P . ♦

Let {e1, e2} ⊂ δ(i0) and e3 ∈ E \ δ(i0). Considering solutions σ1 = (xt0
e1

, xt0
e2

; ∅)
and σ′

1 = (xt0
e1

, xt0
e2

, xt0
e3

; ∅), we then use Claim 5.5.

Claim 5.5. Let us consider two solutions σ and σ′ such axσ + byσ = α and
axσ′

+ bzσ′
= α. Then, by definition, both vectors also verify a′x + b′y ≤ α′ with

equality and, consequently, a′(xσ − xσ′
) + b′(yσ − yσ′

) = 0. ♦

We obtain at0
e1

+ at0
e2

= at0
e1

+ at0
e2

+ at0
e3

and then at0
e = 0, ∀e ∈ E \ δ(i0).

Let e4 ∈ E and t′ 
= t0. By considering the two solutions σ1 and σ′′
1 =

(xt0
e1

, xt0
e2

, xt′
e4

; ∅), using Claim 5.5 we get that at′
e = 0, ∀e ∈ E, t′ 
= t0.

Let (i, j) ∈ A and t′ 
= t0. By considering the two solutions σ1 and σ2 = σ1+χt′
ij ,

using Claim 5.5 we get that bt′
ij = 0, ∀(i, j) ∈ A, t′ 
= t0.

Let (i′, j′) ∈ A. Note that, since G is a complete graph, j′ is either i0 or
{i0, j′} ∈ δ(i). If j′ = i0, let k ∈ V \ {0, i0} and consider solutions σ2 =
(xt0

0i0
, xt0

i0k, xt0
k0 ; yt0

i′i0), and σ′
2 = (xt0

0i0
, xt0

i0k, xt0
k0 ; ∅). If j′ 
= i0, consider solu-

tions σ2 = (xt0
0i0

, xt0
i0j′ , x

t0
j′0 ; yt0

i′j′), and σ2 = (xt0
0i0

, xt0
i0j′ , x

t0
j′0 ; ∅). In both cases,

using Claim 5.5, we get that bt0
ij = 0, ∀(i, j) ∈ A.

Let e4 ∈ δ(i). Considering the two solutions σ1 and σ3 = (xt0
e1

, xt0
e4

; ∅). Using
Claim 5.5, we get that at0

e1
= at0

e2
. By letting λ = at0

e1, we then get that at0
e =

λ, ∀e ∈ δ(i0).
Finally, considering solution σ1, we obtain α = 2λ.
We have shown that (a′, b′) = λ(a, b) and α′ = λα. Since the solution (∅, ∅)

is valid for our polytope, λ ≥ 0. Moreover, since a′x + b′y ≤ α′ is facet-defining,
λ > 0. Then, using Claim 5.4, inequality ax + by ≤ α is facet-defining for P . �
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5.2. Connectivity inequalities

Unlike the previous inequalities, connectivity constraints (4.5) and 1-
connectivity constraints (4.6) are not always facet defining. In order to obtain
facet defining inequalities, we first give a technical definition.

• 2-cover set
Given S ⊂ V , we define U(S) as the client subset having an assignment arc

ending in S, that is to say

U(S) = {i ∈ U : ∃(i, j) ∈ Li, j ∈ S}.

A subset C ⊂ U(S), will be called 2-cover set if di + dj > Q, ∀i, j ∈ C, i 
= j.
A 2-cover set C is maximal for U(S) if for each j in U(S) \ C there exists i ∈ C
such that di + dj ≤ Q. In order to give a short description of our inequalities,
we introduce a last notation A(C) = {(i, j) ∈ A : i ∈ C, j ∈ S}, along with the
following remark.

Remark 5.6. Let S ⊂ V and t ∈ {1, . . . , m}. For each 2-cover set C ⊂ U(S), at
most one client of C can be assigned to the ring-star t, that is to say

∑
(i,j)∈A(C)

yt
ij ≤ 1.

•Generalized Connectivity inequalities
Given S ⊂ V \ {0} and t ∈ {1, . . . , m}, the corresponding connectivity inequal-

ities (4.5) can be strengthened by considering a 2-cover set C ⊂ U(S) instead of a
single client. In fact, from Remark 5.6, the generalized connectivity inequality

∑
e∈δ(S)

xt
e ≥ 2

∑
(i,j)∈A(C)

yt
ij (5.2)

is valid for P . Moreover, we have the following result.

Theorem 5.7. The generalized connectivity inequalities (5.2) are facet defining
for P if and only if (i) an (ii) hold:

(i) C is maximal for U(S);
(ii) if |S̄| < 3, then for every (i, j) ∈ A, j ∈ S or i ∈ U \ C.

Proof. Let t0 ∈ {1, . . . , m}, S � V, S 
= ∅, and C ⊂ U(S) a 2-cover set. If C is
not maximal for U(S), there exists a 2-cover set C′ ⊂ U(S) containing C such
that the connectivity constraint corresponding to C′ dominates the inequality
corresponding to C. In the sequel we suppose that i) holds.

Let us now suppose that property (ii) does not hold, that is to say that |S̄| < 3
and there exists (i′, j′) ∈ A such that j ∈ S̄, i ∈ C. Every valid solution such that
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yt0
i′j′ = 1 must use at least two edges e, e′ ∈ δ(S). It follows that inequality (5.2) is

clearly dominated by the following valid inequality:

∑
e∈δ(S0)

xt0
e ≥ 2

∑
(i,j)∈A(C)

yt0
ij + 2yt0

i′j′ .

Conversely, let us suppose that (i) and (ii) hold. Let us denote by ax+by ≥ 0 the
generalized connectivity constraint

∑
e∈δ(S) xt0

e ≥ 2
∑

(i,j)∈A(C) yt0
ij . We suppose

that solutions (x, y) of {(x, y) ∈ P : ax + by = 0} also satisfy a′x + b′y = α′,
where a′x + b′y ≥ α′ is facet defining for P . Using Claim 5.4 we want to prove
that a′x + b′y ≥ α′ is a multiple of ax + by ≥ 0.

Since the solution σ1 = (∅; ∅) ∈ F , we get that α′ = 0.
Let e1 ∈ E\δ(S), considering the solutions σ1 and σ′

1 = (xt0
e1

; ∅), using Claim 5.5,
we get that at0

e = 0, ∀e ∈ E \ δ(S).
Let e2 ∈ E and t′ 
= t0, considering the solutions σ1 and σ′′

1 = (xt′
e2

; ∅), using
Claim 5.5, we get that at′

e = 0, ∀e ∈ E, t′ 
= t0.
Let (i, j) ∈ A and t′ 
= t0. Considering solutions σ1 and χt′

ij , using Claim 5.5,
we get that bt′

ij = 0, ∀(i, j) ∈ A, t′ 
= t0.
Let (i, j) ∈ A(C) and k, k′ ∈ S̄ \ {0}, k 
= k′. Since |S̄| ≥ 3, k and k′ exist.

Considering solutions σ2 = (xt0
0j , x

t0
jk, xt0

k0; y
t0
ij ) and σ′

2 = (xt0
0j , x

t0
jk′ , x

t0
k′0; y

t0
ij ), using

Claim 5.5, we get that at0
{kj} = at0

{k′j}. By letting λ = at0
{kj}, we then get that

at0
e = λ, ∀e ∈ δ(S).
Let (i, j) ∈ A with j /∈ S. Since |S̄| ≥ 3, there exists a node k 
= j, and we can

consider solutions σ1 and σ3 = (xt0
0j , x

t0
jk, xt0

k0; y
t
ij). Using Claim 5.5, we get that

bt0
ij = 0, ∀(i, j) ∈ A with i ∈ U and j /∈ S.

Let (i, j) ∈ A with j ∈ S and i /∈ C. Since C is maximal for U(S), ∃(i′, j′) ∈
A(C) such that di + di′ ≤ Q. Let k ∈ V \ {0, j, j′}. We then consider solutions
σ4 = (xt0

0j′ + xt0
j′j + xt0

j′k + xt0
k0; y

t0
i′j′ ) and σ′

4 = (xt0
0j′ + xt0

j′j + xt0
j′k + xt0

k0; y
t
i′j′ , y

t
ij).

Using Claim 5.5, we get that bt0
ij = 0, ∀i ∈ U \ C, j ∈ S.

Finally, let (i, j) ∈ A(C) and (i′, j′) ∈ A(C), (i, j) 
= (i′, j′) and k ∈ V \{0, j, j′}.
Considering solutions σ5 = (xt0

0j′ + xt0
j′j + xt0

jk + xt0
k0; y

t0
ij ) and σ′

5 = (xt0
0j′ + xt0

j′j +
xt0

jk + xt0
k0; y

t
i′j′), using Claim 5.5, we get that bt0

ij = bt0
i′j′ , ∀(i, j), (i′, j′) ∈ A(C).

Considering solution σ5, we also get that bt
ij = −2at

e, e ∈ δ(S), ∀(i, j) ∈ A(C),
that is to say bt

ij = −2λ, ∀(i, j) ∈ A(C).
We have shown that (a′, b′) = λ(a, b). Moreover, let e ∈ δ(S), since the solution

(xt0
e , ∅) is valid for our polytope, we can deduce that λ ≥ 0. Since a′x + b′y ≥ α′

is facet-defining, λ > 0. Then, using Claim 5.5, inequality ax + by ≥ α is facet-
defining for P . �



A BRANCH-AND-CUT FOR THE NON-DISJOINT M-RING-STAR PROBLEM 181

•Generalized 1-Connectivity inequalities
Using Remark 5.6, 1-connectivity constraints can be enforced so that the fol-

lowing inequality are valid:
∑

e∈δ(S)\{e′}
xt

e ≥
∑
i∈C

∑
(i,j)∈A,j∈S

yt
ij ∀S ⊆ V \ {0}, S 
= ∅, (5.3)

∀C ⊂ U(S), ∀e′ ∈ δ(S), ∀t = 1, . . . , m.

Using similar arguments as those used in the previous theorem proof, we then
get a necessary and sufficient condition for inequality (5.3) to be facet defining.

Theorem 5.8. The generalized 1-connectivity inequalities (5.3) are facet defining
for P if and only if (i) an (ii) hold:

(i) C is maximal for U(S),
(ii) if |S̄| < 3, then for every (i, j) ∈ A, j ∈ S or i ∈ U \ C.

6. Branch-and-Cut algorithm

In this section we present a Branch-and-Cut algorithm for the NDRSP. Our aim
is to address the algorithmic application of the polyhedral results described in the
previous sections.

The algorithm starts by solving a linear relaxation program containing as-
signment constraints (4.1), degree constraints (4.3) and trivial constraints. We
then use separation algorithm for the generalized connectivity constraints (5.2).
Usually the solution obtained at the end of this cutting plane phase is not
integer, and thus, it is necessary to generate further additional inequalities:
1-connectivity (5.3) and capacity inequalities (4.7) or (4.8). If the solution is
still fractional, we then use a Branch-and-Bound tree, where the additional
inequalities (4.7), (4.8) and (5.3) are no longer separated. In what follows we
present separation algorithms for the different classes of inequalities used by the
algorithm as well as our branching strategy and primal heuristic.

• Exact and heuristic separations
Now we describe the separation routines used in the algorithm. These are exact

algorithms except for the one used for the rounded capacity constraints (4.8).
In what follows we denote (x̃, ỹ) an optimal (fractional) solution of the linear
relaxation of (4.1)−(4.3).

We first have to give some notations. Given t0 ∈ {1, . . . , m} and a 2-cover set C,
we denote by G̃t0 = (Ṽ , Ẽ, Ã) the support graph associated with the partial solution
(x̃t0 , ỹt0) defined as follows: we set Ṽ as V ∪{n+1}, Ã = {(i, j) ∈ A : yt0

ij > 0}, and
Ẽ = {e ∈ E : xt0

e > 0} ∪ E(C) where E(C) = {{j, n + 1}, j ∈ {j : (i, j) ∈ A(C)}}.
From the following Lemma 6.1 it is sufficient to separate inequalities (5.2)

and (5.3) only for subsets C which are maximal for U .
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Lemma 6.1. If ax + by ≤ 0 is the connectivity constraint, for a ring-star t0 ∈
{1, . . . , m}, corresponding to subsets S ⊂ V and a 2-cover set C maximal for U(S),
then there exists a 2-cover set C′ maximal for U defining the same connectivity
constraint, for the ring-star t0, on subset S ⊂ V .

The separation of the generalized connectivity constraint (5.2) can be performed
in polynomial time. By extending the exact separation of connectivity constraints
given in [12] for the Ring-Star problem, we can devise the following algorithm. Let
C be a 2-cover set maximal for U , we denote by Ȳ the following sum:

Ȳ =
∑

t=1,t�=t0

∑
i∈C

∑
(i,j)∈A

yt
ij .

Finding a most violated connectivity constraint
∑

e∈δ(S0) xt0
e ≥ 2

∑
(i,j)∈A(C) yt0

ij

is equivalent to finding the largest violation of
∑

e∈δ(S0)
xt0

e + 2Ȳ ≥ 2|C|. This
reduces to finding a maximum flow on graph G̃t0 where the capacity of each edge
e ∈ Ẽ∩E is equal to xt0

e and where the capacity of each edge e = {j, n+1} ∈ E(C)
is equal to 2

∑
i∈C yt0

ij . Let S′ ⊂ Ṽ \ {0} be such that n + 1 ∈ S′, and such that
the capacity Δ of the cut δ(S′) in G̃t0 is minimum. If Δ ≥ 2|C|, there is no
connectivity constraint involving C violated by the current solution on the tour
t0. Otherwise, S = S′\{n+1} defines a most violated connectivity constraint (5.2)
involving C. Consequently, by finding a maximum flow associated with each 2-cover
set C maximal for U and with each t ∈ {1, . . . , m}, we can exactly separate
constraints (5.2) by solving at most m × nu max flow problems.

Our separation algorithm for the generalized 1-connectivity constraints (5.3)
uses ideas similar to the ones presented above. Consequently, by finding a maxi-
mum flow associated with each 2-cover set C maximal for U , with each edge e ∈ E
and with each t ∈ {1, . . . , m}, we can exactly separate constraints (5.3) by solving
at most m × nu × |E| maximum flow problems.

Now we turn our attention to the separation of capacity constraints (4.7)
and (4.8). For the fractional capacity inequalities (4.7) an exact separation algo-
rithm can be easily constructed using principles similar to the ones presented in [2]
for the fractional capacity constraints of the CVRP. In the same way, a heuristic
separation algorithm for inequalities (4.8) can be presented as follows: we first
construct a procedure create ineq(U , T ), starting with a subset U ⊂ {1, . . . , nu}
and subset T ⊂ {1, . . . , m}, that computes a set S such that x̃(δ(S)) =

∑
e∈δ(S) x̃t

e

is minimum using a max flow algorithm. If x̃(δ(S)) < 2
(⌈

d(U)
Q

⌉
− |T |

)
then a

violated inequality (4.8) has been found. We use procedure create ineq(U , T ) for
several values of U and T that are heuristically constructed.

• Branching strategy
The instances that we will address are dense and planar. In this type of instance,

we have remarked that, when the y variables are integer, the x variables are also
almost all integer at the end of the cutting-plane phase. That is related to the
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fact that if the assignments are known, our problem reduces to finding m Steiner
TSP. In addition, the inequalities separated during the Branch-and-Cut phase are
almost sufficient to give a partial characterization of the Steiner TSP polytope on
these instances [3].

Consequently, we have chosen to branch first on the assignment variables y. We
can further improve this branching rule by branching on assignment constraints:

∑
(i,j)∈Li

yt
ij = a, a ∈ {0, 1}.

• Primal heuristic
We have also developed a primal heuristic in order to compute an integer solu-

tion, which corresponds to an upper bound for our problem. This heuristic works
as follows.

For every t = 1, . . . , m we first try to construct an elementary cycle E(Rt) with
a greedy procedure which starts from the depot and constantly selects the edge
having the highest value x̃t

e among the edges e incident to the last reached node.
If this first step succeeds, we then try to determine, for every client i ∈ U , a pair
(j′, t′) so that j′ belongs to E(Rt′) and d(E(Rt′ )) + di ≤ Q. In case there are
several potential pairs (j′, t′), we opt for the one with yt′

ij′ of maximal value. Note
that there is no guarantee that this heuristic produces a feasible solution.

7. Experimental results

The Branch-and-Cut algorithm described in the previous section was imple-
mented in C++, using the SCIP 2.0 framework (see [1] for details on this software)
using Cplex 12.1 as linear solver. The graph data structure was implemented us-
ing Lemon 1.2.1 library [7]. It was tested on PC Intel2 Duo running at 3.33 GHz
with 8 Go RAM. We have considered two classes of instances, one randomly gen-
erated, while the other come from a SDH network corresponding to Paris and its
surrounding business areas.

The first instances were generated in the following way:
Given the problem parameters |U |, |W | and m, we generated vertices with

coordinates in [0, 100 ∗ |V |] × [0, 100 ∗ |V |]. We then consider a complete graph
induced by this node set where the weight of each edge {i, j} is computed as the
Euclidean distance between nodes i and j. We sort the edges in decreasing order of
weight and then delete every edge crossing a shorter one, thus the resulting graph
is planar. We choose the assignments set Li = {(i, j) : j ∈ δ(i) ∪ {i}}, where cij is
the Euclidean distance between nodes i and j. Finally, we manually fix the capacity
Q and values di such that there exist solutions using exactly m ring-stars. For each
triplet (m, |U |, |W |) we have generated twenty instances.

The realistic instances we have treated have been obtained from real data on
a Parisian optical network belonging to one of the main European providers of
wide band telecommunications. Since the real network is pretty large, we have



184 P. FOUILHOUX AND A. QUESTEL

Table 1. Primal heuristic efficiency.

Instances First solution Best solution
|U | |W | m G1st T1st #N1st H1st TBst #NBst HBst

10 10 3 7.48% 0.11’ 9.55 70% 0.15’ 40.55 60%
10 10 4 6.98% 0.15’ 12.1 80% 0.35’ 177 80%
10 10 5 6.69% 0.25’ 18.15 95% 1.08’ 683.35 75%
10 20 3 4.19% 0.33’ 6.65 25% 0.35’ 17.95 30%
10 20 4 5.75% 0.77’ 19.25 90% 1.36’ 221.4 95%
10 20 5 9.92% 1.31’ 17.1 100% 3.51’ 943.6 55%
10 40 3 3.92% 2.93’ 7.15 35% 2.99’ 16.7 20%
10 40 4 9.45% 4.66’ 15.5 90% 5.56’ 122.35 80%
10 40 5 5.70% 9.73’ 23.45 100% 16.91’ 763.35 75%
15 10 3 5.05% 0.5’ 25.95 80% 0.74’ 123.7 90%
15 10 4 14.74% 0.84’ 22.7 95% 4.08’ 867.65 95%
15 10 5 16.81% 1.55’ 66.65 100% 51.19’ 8703.65 100%
15 20 3 6.89% 1.64’ 23.3 80% 2.89’ 270.7 70%
15 20 4 15.66% 3.61’ 25.3 100% 13.12’ 1075.1 90%
15 20 5 15.22% 3.92’ 82.6 100% 61.21’ 5472.6 100%
15 40 3 8.08% 8.88’ 24.7 85% 10.98’ 185.75 75%
15 40 4 14.42% 14.37’ 28.2 100% 34.03’ 894.6 100%
15 40 5 14.39% 27.36’ 79.7 100% 62.42’ 1241.9 100%

Table 2. Cut efficiency.

Instances SCIP without cuts SCIP with cuts
|U | |W | m FG RG #N TT FG RG #N TT
10 10 3 0% 22.59% 184.85 0.11’ 0% 6.37% 74.05 0.16’
10 10 4 0% 29.52% 1820.2 1.07’ 0% 7.22% 438.8 0.47’
10 10 5 0% 44.01% 9167.35 5.84’ 0% 6.10% 1608.1 1.59’
15 10 3 0% 22.68% 419.15 0.68’ 0% 7.91% 218.75 0.84’
15 10 4 0% 33.09% 15627.95 27.19’ 0% 9.25% 2894.65 7.55’
15 10 5 16.53% 44.60% 33384.25 111.43’ 4.80% 14.05% 21 733.7 98.44’

extracted only one area as follows. Let α ∈]0, 1] and a depot i, we have considered
every network point (clients, interconnection points . . . ) whose distance from the
depot is at most α× lmax, where lmax is the maximum distance between two points
of the instance. To ensure the feasibility of the resulting instance, it is necessary to
add some edges until having a 2-connected graph. Using this procedure, we have
obtained three realistic instances.

Tables 1–4 summarize the performance of our Branch-and-Cut algorithm on our
instances. The first columns indicate the instance characteristics: the number of
ring-stars m, clients |U |, and Steiner nodes |W |.

Table 1 focuses on the efficiency of our primal heuristic. It gives the relative gap
(G1st) between the best known upper bound and the first feasible solution found
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Table 3. Experimental results on randomly generated instances.

Instances Gaps and solving time Additional cuts
|U | |W | m O/P FG RG #N TT # 1-con # capa # Rcapa # con
10 10 3 20/20 0% 6.37% 74.05 0.16’ 676.9 761.9 140 4324.5
10 10 4 20/20 0% 7.22% 438.8 0.47’ 860.2 1009.2 128.1 15 308.5
10 10 5 20/20 0% 6.10% 1608.1 1.59’ 1298.2 1487.1 133.3 40 082.5
10 20 3 20/20 0% 4.71% 37.35 0.37’ 900.8 1218.9 197.3 4166.1
10 20 4 20/20 0% 7.69% 687.45 1.99’ 1594.2 2150.0 241.3 46 145.1
10 20 5 20/20 0% 6.21% 1710.2 4.37 1967.9 2649.0 233.7 66 405.0
10 40 3 20/20 0% 4.29% 37.25 3.05’ 1966.9 2994.6 439.9 9369.4
10 40 4 20/20 0% 7.24% 309.8 6.31’ 2719.3 4278.9 417.1 46 958.7
10 40 5 20/20 0% 5.68% 1705.15 21.24’ 3696.7 5690.3 442.1 174 124.5
15 10 3 20/20 0% 7.91% 218.75 0.84’ 1083.3 757.0 211.4 16 444.4
15 10 4 20/20 0% 9.25% 2894.65 7.55’ 1584.4 1337.8 227.1 178 804.9
15 10 5 5/20 0% 14.05% 21733.7 98.44’ 2123.7 1763.5 236.5 2 296 017.6
15 20 3 20/20 0% 8.92% 429.25 3.16’ 1626.0 1286.2 322.8 535 404.1
15 20 4 20/20 0% 9.28% 5077.9 29.05’ 2293.7 2310.6 346.6 506 289.7
15 20 5 3/20 6.63% 14.41% 11904 110.05’ 2738.4 2744.8 331.9 2 162 005.9
15 40 3 20/20 0% 8.06% 319.6 11.69’ 2777.6 2515.2 600.5 75 123.4
15 40 4 16/20 0.70% 14.42% 2670.75 54.6’ 3669.0 4257.8 580.1 593 106.1
15 40 5 1/20 13.25% 14.39% 3389.3 119.58’ 5640.3 6545.0 645.7 1 289 893.4

Table 4. Experimental results on realistic instances.

Instances Gaps and solving time Additional cuts
α |U | |W | m FG RG #N TT # 1-con # capa # Rcapa # con
5% 23 104 3 0% 12.01% 1903 10.60’ 2789 3118 1616 226 836
5.3% 35 127 3 0% 7.61% 5442 64.73’ 9503 9096 3782 1 018 048
5.4% 42 136 3 18.33% 21.98% 7300 120’ 7668 7527 4914 2 473 000

during the Branch-and-Cut process. The other columns give more details about
those two solutions:

T1st (resp. TBst) : the total CPU time in minutes needed
to get the first (resp. best) solution.

#N1st (resp. #NBst) : the number of nodes of the Branch-and-Bound tree
treated before getting the first (resp. best) solution.

H1st (resp. HBst) : the number of instances for which our heuristic
found the first (resp. best) solution.

It can be deduced from Table 1 that for 77% (resp. 85%) of the instances, the
best (resp. first) solution has been provided by our primal heuristic. Note that,
since there is no guarantee that our heuristic produces a feasible solution, the
first solution may not be computed at the root node and may be determined by
one of the SCIP heuristics. The average relative gap between the first and the
best solution is 9.5%, and the highest gap is 16.78%. The first solution is obtained
in less than thirty minutes. Note that, in most cases, this first solution is in fact
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obtained in less than 10 minutes. This proves that our algorithm is able to quickly
provide a good solution. Furthermore, the efficiency of this heuristic permits to
limit the size of the Branch-and-Bound tree.

For the remaining tables, the columns give the following results:

O/P : the number of problems solved to optimality over the number
of instances tested,

FG : the relative gap between the best known upper and lower
bounds,

RG : the relative gap between the best known upper bound
and the lower bound achieved before branching,

#N : the number of nodes of the Branch-and-Bound tree,
TT : the total CPU time in minutes within a time limit of two hours,
#con : the number of connectivity constraints separated,
#ineq : the number of constraints of each family separated at the root

node of the Branch-and-Bound tree.

The two parts of Table 2 indicate the results obtained with and without using
our additional 1-connectivity cuts (5.3) and capacity cuts (4.7), (4.8). This table
focuses on lines (m, |U |, |W |) where at least one instance among the twenty in-
stances is both solved to optimality with or without our additional inequalities.
We can notice that the inequalities we introduced really improve both the lower
bound obtained from the linear relaxation and the size of the Branch-and-Bound
tree. Moreover the total CPU time is globally better or similar. This shows that
the separation procedures we developed for these inequalities are effective.

Table 3 presents the results on the randomly generated instances. Each line
gives the average values obtained from twenty instances. For each size, at least
one instance was solved to optimality within the time limit and for all of them
a valid solution has been provided. We have solved instances up to 15 clients,
40 Steiner nodes and 5 ring-stars. We can remark that the size of the Branch-
and-Bound tree strongly depends on the value of m. This follows from the fact
that the symmetry of our formulation inscreases as a function of m. Note that the
number of connectivity constraints that have to be generated during the whole
Branch-and-Bound phase reaches more than 2 millions.

Finally, Table 4 gives the results obtained for realistic instances. We can first
remark that they seem to be easier than the ones randomly generated. Our Branch-
and-Cut algorithm succeeds in solving network instances corresponding to a small
town area (5% of the big real network).

8. Concluding remarks

In this article we have studied the Non-Disjoint (Steiner) m-Ring-Star Prob-
lem. We have shown that this problem is the combinatorial structure of SDH
networks which can be seen as the practical implementation of reliability for
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telecommunication networks. We have discussed about the possible integer for-
mulations and shown that they cannot be written with two index variables.

We have given a natural integer formulation for the problem and propose ad-
ditional inequalities. Some polyhedral results have been established about a full
dimensional polytope containing the NDRSP polytope as a face. In particular we
have given a generalization of the basic connectivity inequalities together with nec-
essary and sufficient conditions for this generalized inequalities to be facet defining.
We have constructed a Branch-and-Cut algorithm which consists in several effi-
cient exact separation algorithms. A dedicated branching strategy along with an
efficient primal heuristic were also provided. Our experimental results have shown
that our Branch-and-Cut algorithm succeeds in solving network instances corre-
sponding to realistic networks. However, this method must be improved in order
to solve instances on bigger graphs.

Since the NDRSP cannot be solved with a two index variables and suffers from
symmetry with an increase of the number of ring-stars, it will be interesting to
try another approach like a column generation based algorithm, especially for
instances when the number of ring-stars is greater than 4.
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[3] M. Bäıou and A.R. Mahjoub, The Steiner traveling salesman polytope and related polyhe-
dra. SIAM J. Opt. 13 (2002) 498.

[4] R. Baldacci, M. Dell’Amico and J.S. Gonzalez, The capacitated m-ring-star problem. Oper.
Res. 55 (2007) 1147.

[5] R. Baldacci, E. Hadjiconstantinou and A. Mingozzi, An exact algorithm for the capacitated
vehicle routing problem based on a two-commodity network flow formulation. Oper. Res.
52 (2004) 723–738.

[6] G. Cornuejols and F. Harche, Polyhedral study of the capacitated vehicle routing problem,
on the p-median polytope. Math. Program. 60 (1991) 21–52.
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