
RAIRO-Oper. Res. 48 (2014) 255–269 RAIRO Operations Research

DOI: 10.1051/ro/2014005 www.rairo-ro.org

SOLVING MULTI-AGENT SCHEDULING PROBLEMS
ON PARALLEL MACHINES WITH A GLOBAL

OBJECTIVE FUNCTION

F. Sadi
1
, A. Soukhal

1
and J.-C. Billaut

1

Abstract. In this study, we consider a scheduling environment with
m (m ≥ 1) parallel machines. The set of jobs to schedule is divided
into K disjoint subsets. Each subset of jobs is associated with one
agent. The K agents compete to perform their jobs on common re-
sources. The objective is to find a schedule that minimizes a global
objective function f0, while maintaining the regular objective func-
tion of each agent, fk, at a level no greater than a fixed value, εk

(fk ∈ {fk
max,

∑
fk}, k = 0, . . . , K). This problem is a multi-agent

scheduling problem with a global objective function. In this study, we
consider the case with preemption and the case without preemption. If
preemption is allowed, we propose a polynomial time algorithm based
on a network flow approach for the unrelated parallel machine case. If
preemption is not allowed, we propose some general complexity results
and develop dynamic programming algorithms.

Keywords. Scheduling, multi-agent, complexity, dynamic
programming.

Mathematics Subject Classification. 90C39.

1. Introduction

The multi-criteria scheduling problem has been widely studied during the last
ten years (see [17, 29]). Traditionally, these problems are modeled by assuming

Received September 11, 2013. Accepted November 28, 2013.

1 Université François-Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, 64 avenue
Jean Portalis, 37200 Tours, France.
{faiza.sadi, ameur.soukhal, jean-charles.billaut}@univ-tours.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2014

http://dx.doi.org/10.1051/ro/2014005
http://www.rairo-ro.org
http://www.edpsciences.org

256 F. SADI ET AL.

that each job has the same criteria. In practice, this assumption may not be valid.
Instead of using one or more criteria for the entire set of jobs, we may need to
consider that some subsets of jobs are evaluated on individual criteria. Each subset
is associated with one agent. For example, it is possible to consider a workflow
where jobs have the following particulars: some jobs may have a soft due date
with allowed tardiness (to be minimized); whereas some other jobs may have hard
due dates (that must be respected) and still other jobs may have no due date
(production for stock).

We analyse this problem using two cases. First, the sets of jobs associated
with the agents are all disjoint. This specific problem has been addressed in the
literature as the multi-agent scheduling problem. The terminology was introduced
in [1, 3]. Other terms have been used in the literature for this type of problem,
e.g., the interfering job set problem [14] or [6]. For the second case, we assume
that the subsets of agent’s jobs are not disjoint. These problems, i.e., multi-agent
scheduling problems with a global objective function, have also been addressed
in the literature [19]. Those authors assume that there are several agents with
disjoint subsets of jobs plus one global agent for the entire set of jobs.

In this study, we are primarily interested in multi-agent scheduling problems,
with a global objective function. These problems are related to the literature on
multi-agent scheduling problems. Section 2 introduces the problem definition and
notation. A literature survey on related problems is summarized in Section 3.
Problems with preemption are discussed in Section 4 and problems without pre-
emption in Section 5. Conclusions and directions for future research are presented
in Section 6.

2. Problem statement and notation

We consider the problem of scheduling n jobs on m parallel machines with K
agents and a global objective function. The machines are not necessarily identical.

We denote N as the set of all the jobs (|N | = n), and Nk as the job set of
agent k, with |Nk| = nk, k = 1 . . . , K. For example, if K = 2, the jobs of agent 2
are numbered from n1 + 1 to n1 + n2 = n.

The positive integer processing time of job Ji on machine Mj is denoted by pi,j

i = 1, . . . , n, j = 1, . . . , m (pi if the machines are identical). We assume that all
jobs are available at time zero. The machines are always available and can only
process one job at a time. Conversely, a job cannot be processed on more than one
machine at a time.

We denote Ci as the completion time of job Ji. For each agent k (k = 1, . . . , K),
we denote fk

max as a linear monotonically increasing function defined by fk
max =

maxi∈Nk
{fk(Ci)}, where fk does not depend on the job Ji ∈ Nk and fk

max is the
min-max function of agent k. Similarly, we denote

∑
fk as the min-sum func-

tion of agent k defined by
∑

fk =
∑

i∈Nk
fk(Ci) and f0

max (
∑

f0, respectively)
as the global min-max objective function (min-sum, respectively). For example,
C0

max = max1≤i≤n Ci is the global makespan,
∑

C0
i =

∑n
i=1 Ci is the global sum

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 257

of completion times, and
∑

C1
i =

∑n1
i=1 Ci is the sum of completion times of the

jobs of agent 1.
According to the three-field notation α|β|γ of scheduling problems introduced

in [16] and extended in [29], the problems that we consider in the following
are expressed as follows: α|β|f0, f1, . . . , fK , with α ∈ {1, P, R}, β ∈ {∅, pmtn}
and (f0, f1, . . . , fK) ∈ {(f0

max, f
1
max, . . . , f

K
max), (

∑
f0,
∑

f1, . . . ,
∑

fK)}. The
approach that is used is the ε-constraint approach expressed as follows:
α|β|ε(f0/f1, . . . , fK) or α|β, f1 ≤ ε1, . . . , fK ≤ εK |f0. In this expression, the
objective is to minimize f0 and the other objectives are bounded.

If Nk = N , k = 1, . . . , K, the problem is reduced to the classical multi-criteria
scheduling problem. If K = 0, the problem becomes a single objective problem.
This implies that if a multi-criteria scheduling problem or a classical single objec-
tive scheduling problem is NP-hard, then the corresponding problem with one or
more agents and a global objective function is also NP-hard [19].

3. State-of-the-art literature survey

3.1. Single machine

Dealing with multi-agent scheduling problems (with no global function), Ag-
netis, Mirchandani, Pacciarelli and Pacifici pioneered the concept of multi-agent
scheduling [3]. Their initial motivation was to solve a problem proposed by two
companies, interested in a joint venture, to construct a modern flexible manufac-
turing system [1]. In this paper, they considered two agents, each one related to
one company. The agents have disjoint subsets of jobs which are in conflict be-
cause they share the same resources and their cost functions are quasi-convex. The
analyses led to a polynomial algorithm that generated a set of non-dominated solu-
tions. As far as we know, before this article, no other work mentioned a scheduling
problem with interfering job sets.

The single machine problem is also considered in [5]. The authors investigate
regular objective functions (Cmax,

∑
wjCj , Lmax) and propose an algorithm for the

minimization of a linear combination of the objective functions. Complexity results
are also given and polynomially solvable cases are identified. The authors in [31]
propose some complementary results for these problems, summarizing the results
presented in [5,31]. In the work by Agnetis et al. [3], the scheduling environments
are a single machine flow shop and an open shop, with two disjoint subsets of jobs.
Each agent associated with one subset wants to minimize a regular nondecreasing
objective function, which depends only on the completion time of its jobs. The
objective functions considered are regular min-max functions, the number of late
jobs and the total weighted completion time. For various combinations of the
two agents cost functions, the problem of generating non-dominated schedules is
addressed and some complexity results are given. Furthermore, they proposed a
dynamic programming algorithm for the problem with several agents, where each
agent tries to minimize the total weighted completion time of its own jobs.

258 F. SADI ET AL.

Chang et al. [9] consider a multi-agent scheduling problem on a single machine,
where each agent wants to minimize the total weighted number of tardy jobs.
They showed that the problem is strongly NP-hard. When the number of agents
is fixed, they showed that the problem can be solved in pseudo-polynomial time
for integral weights and in polynomial time for unit weights.

Chang et al. [10] consider a single machine problem with multiple agents and
min-max objective functions (problem denoted by 1|fk

max ≤ εk|−). They show that
a feasible problem can be solved in polynomial time even if the jobs are subjected
to precedence constraints. They also identify some NP-hard problems.

Agnetis et al. [2] investigate the complexity of some scheduling problems in
which several agents have to negotiate the usage of a common processing resource.
The cost functions considered in their study are the maximum of regular func-
tions (associated with each job), the number of late jobs and the total weighted
completion time. The complexity of various problems resulting in combinations of
cost functions was also addressed. Additionally, they investigated the problem of
finding the set of all non-dominated solutions.

Parallel machines

The multi-agent scheduling problems, where the agents compete for the usage
of more than one machine, have received increasing attention in the literature.
In [30], the authors consider a two-agent scheduling problems, where the objective
function of one agent is always of the max type, while several criteria are considered
for the second agent (e.g., T 2

max and L2
max). The authors prove the NP-hardness

for the more general problems and propose polynomial time algorithms for other
problems.

Balasubramanian, Fowler et al. [6] treat the scheduling problem on parallel
machines with two agents, agent 1 and agent 2. Each agent has its own criteria to
be minimized, i.e., Cmax for agent 1 and

∑
Ci for agent 2. The goal is to determine

an optimal solution. Given that the problem is NP-hard, the authors propose an
iterative SPT2-LPT1-SPT2 heuristic (Shortest Processing Time first for the jobs
of agent 2 and Longuest Processing Time first for agent 1) and a time-indexed
integer programming formulation. To generate all non-dominated solutions, the
authors propose a bicriteria genetic algorithm.

Lee et al. [22] solve a two-machine flow-shop scheduling problem with two
agents, where the objective is to minimize the total tardiness for agent 1 with
the restriction that the number of tardy jobs for agent 2 is zero. They provide sev-
eral dominance properties to accelerate the search of the optimal solutions by the
branch-and-bound algorithm. They also propose a simulated annealing heuristic
algorithm to produce near-optimal solutions.

More recently, Elvikis and T’kindt [15] address the two-agent scheduling prob-
lem with equal-sized jobs on uniform parallel machines, where both agents try to
minimize an arbitrary function, fmax. They investigate the enumeration of strict
Pareto optima solutions and propose an O(n2

1 +n2
2 +n1n2log(n2)) time complexity

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 259

algorithm, where n1 and n2 equal the number of jobs of agent 1 and agent 2, re-
spectively.

Since the early studies in multi-agent scheduling, few results are related to multi-
agent problems with a global objective function. In [27, 28], the authors propose
exact methods for identical parallel machine problems with one agent’s objective
function equal to

∑
C1

i and the global function equal to
∑

C0
i . Huynh et al. [19]

address the complexity of several single-machine problems in which the agents
compete to perform their objectives, knowing that they all have an impact on the
global objective function.

In the context of grid computing, Cordeiro et al. [13] consider organizations
that share clusters to distribute peak workloads among all the participants. Each
cluster is associated with one agent and the global objective function is to mini-
mize the makespan. The authors propose a 2-approximation algorithm for finding
collaborative solutions.

4. Parallel machines with preemption

In this section, it is assumed that preemption is allowed. That is, job pro-
cessing can be interrupted and resumed later, eventually on another machine.
We consider two cases. In the first case, the objective functions of the agents
are of the min-max type, whereas in the second case, they are of the min-
sum type. The problems are described by Rm|pmtn|ε(f0

max/f1
max, . . . , f

K
max) and

Pm|pmtn|ε(∑ f0/
∑

f1, . . . ,
∑

fK).

4.1. Min-max functions

We consider m unrelated parallel machines and K agents with disjoint job sets.
We have Nh ∩ N� = ∅, ∀h �= �, l �= 0 and h �= 0.

For every agent, the ε-constraint states that fk
max ≤ εk, which is equivalent to

the following: fk(Ci) ≤ εk, ∀i ∈ Nk. We assume that the inverse function (fk)−1

is known and can be computed in polynomial time, i.e. Ci ≤ (fk)−1(εk), ∀i ∈ Nk.
Therefore, (fk)−1(εk) is a common deadline for the jobs in Nk. We denote this
quantity by d̃k in the following. We assume that max1≤j≤m(pi,j) ≤ d̃k, ∀i ∈ Nk.

To solve this problem, we use a two-phase exact approach. In the first phase, we
apply a linear program, which takes into consideration all the constraints of the
feasible problem, denoted by Rm|pmtn, f1

max ≤ ε1, . . . , f
K
max ≤ εK |−. This linear

program returns the proportion of each job to execute on each machine. It also
returns the optimal function value f0

max. In the second phase, using a max-flow
approach, we calculate the schedule of jobs to execute on each machine.

Phase 1. Assignment of jobs to machines

Assume the agents are numbered in d̃k non-decreasing order. The decision vari-
able xi,j (∀i = 1, . . . , n and j = 1, . . . , m) is the proportion of processing time units
of job Ji executed on machine Mj. Then, f0

max is a continuous variable associated

260 F. SADI ET AL.

with the optimal value of the global objective function. The linear program we
apply is the following:

(P1) min f0
max

s.t.
m∑

j=1

xi,j = 1, ∀i ∈ Nk, ∀k = 1, . . . , K (4.1)

f0
max − f0

(
K∑

k=1

∑
i∈Nk

pi,jxi,j

)
≥ 0, ∀j = 1, . . . , m (4.2)

f0
max − f0

(
m∑

j=1

pi,jxi,j

)
≥ 0, ∀i ∈ Nk, ∀k = 1, . . . , K (4.3)

εk − fk

(
k∑

k′=1

∑
i∈Nk′

pi,jxi,j

)
≥ 0, ∀k = 1, . . . , K, ∀j = 1, . . . , m (4.4)

εk − fk

(
m∑

j=1

pi,jxi,j

)
≥ 0, ∀i ∈ Nk, ∀k = 1, . . . , K (4.5)

f0
max ≥ 0, and xi,j ∈ [0, 1], ∀i ∈ Nk, ∀k = 1, . . . , K, (4.6)

∀j = 1, . . . , m

Constraints (4.1) require that every job Ji is completely assigned to the ma-
chines. Constraints (4.2) require that the total processing time of the jobs assigned
to machine Mj is less than or equal to f0

max. Constraints (4.3) require that the
total processing time of each job, performed on several machines, is less than or
equal to f0

max. Constraints (4.4) and (4.5) satisfy all the ε-constraints. Constraints
(4.4) require that the sum of job processing times related to agents 1 to k and
assigned to machine Mj is less than or equal to d̃k. Constraints (4.5) guarantee
that the total processing time of job Ji ∈ Nk is less than or equal to d̃k.

We claim that if problem (P1) does not have a feasible solution, then the main
problem does not have a feasible solution either. In other words, for each feasible
schedule verifying (4.1)−(4.6), it is possible to identify a schedule where there is
no job overlapping, no machine overbooking and the total processing amount over
all the machines of the jobs are respected. The value of the optimal solution of
problem (P1) is denoted by f0∗

max. Note that f0∗
max is also the optimal makespan

for the problem denoted by Rm|pmtn, f1
max ≤ ε1, . . . , f

K
max ≤ εK |f0

max.

Phase 2. Construction of a feasible solution

Every quantity xi,j is the ratio of job Ji that must be performed on ma-
chine Mj . Therefore, the remaining problem is equivalent to a preemptive open-
shop scheduling problem, where tardy jobs are not allowed (problem denoted by
Om|pmtn, d̃i|f0

max ≤ f0∗
max, where f0∗

max is the C0
max-value returned by P1), which

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 261

is again equivalent to the feasible open shop problem with preemption and dead-
lines, denoted by Om|pmtn, d̃i|−. Later on, the quantities xi,j lead to “tasks” oi,j

of job Ji of duration pi,j × xi,j to be performed on machine Mj .
The problem of finding the feasible preemptive open shop schedules with dead-

lines has been solved by Cho and Sahni [12].
The deadline for the jobs of agent k (k = 1, . . . , K) are defined as follows:

d̃k = min{(fk)−1(εk), f0∗
max}, and d̃0 = f0∗

max. Let γ0 < γ1 < . . . < γH be the
ordered sequence of all the different values of d̃k, k = 0, . . . , K (assuming γ0 = 0).

The processing time of the task oi,j that can be scheduled during the interval
[γh−1, γh[is denoted as qi,j,h and the length of this interval is denoted as Ih =
γh−γh−1 (h = 1, . . . , H−1, [γH−1, γH] for the last interval). Consider the following
system of linear constraints:

(P2)
n∑

i=1

qi,j,h ≤ Ih, ∀h = 1, . . . , H,∀j = 1, . . . , m (4.7)
m∑

j=1

qi,j,h ≤ Ih, ∀h = 1, . . . , H,∀i = 1, . . . , n, (4.8)

H∑
h=1

qi,j,h = pi,jxi,j , ∀i = 1, . . . , n, ∀j = 1, . . . , m (4.9)

qi,j,h = 0 ∀i = 1, . . . , n, ∀j = 1, . . . , m

∀h = 1, . . . , H with d̃k /∈ [γh−1, γh[(4.10)
qi,j,h ≥ 0 ∀i = 1, . . . , n,∀j = 1, . . . , m

∀h = 1, . . . , H (4.11)

Constraints (4.7) ensure that the amount of processing time assigned to each
machine and during each time interval cannot exceed the interval length. Con-
straints (4.8) avoid any overlapping of tasks on the machines. Constraints (4.9)
guarantee the assignment of the total tasks of jobs to the machines. Con-
straints (4.10) guarantee the assignment of tasks in their interval.

Using the solution of (P2), the last step is to plan the sequence of tasks on each
machine. We apply Brucker’s approach ([8], see Algorithm 1) to each interval,
i.e., each interval h, where h = 0, . . . , H, is associated with a bipartite graph
Gh = (N ,M, E, φh), where N is the set of job nodes, M is the set of machine
nodes and E is the set of edges (Ji, Mj) for i ∈ N , j ∈ M and φh(i, j) = qi,j,h

(i = 1, . . . , n, j = 1, . . . , m, h = 1, . . . , H) the weight of arc (Ji, Mj).
Using matching, at each iteration, the procedure selects δ processing time

units for different jobs that can be scheduled during the interval [γh−1, γh[and
constitutes the matching solution R during interval Ih. Hence, we derive the
following: δ = min(Ji,Mj)∈R qi,j,h. These time units are assigned to the machines.
This technique avoids an overlapping of tasks in the final schedule.

Counting the number of iterations. At each iteration of the matching pro-
cedure for interval h, at least one arc (Ji, Mj) of the maximum matching is such
that δ = φh(i, j). Hence for interval h, there are at most n×m iterations. Because
H ≤ K the procedure runs in O(nmK).

262 F. SADI ET AL.

J1

Jn1

Jn2

Jn

M1

M2

Mm

qi,j,h
J1

Jn1

Jn2

Jn

M1

M2

Mm

M1

M2

Mm

qi,j,h − δ

qi,j,h- δ

qi,j,h − δ

Graph 1 Graph 2

Figure 1. Graph Gh at Step 1 and at Step 2.

Algorithm 1 Matching procedure for a feasible solution [8]
Input: a graph Gh.
while there is an arc in the graph Gh do

Seek for the maximum matching R in Gh (see Fig. 1, Graph 1);
Let δ = min(Ji,Mj)∈R φh(i, j);
For each (Ji, Mj) ∈ R, schedule δ processing time units of Ji at the end of machine
Mj ;
Reduce the capacity φh(i, j) of all arcs in R by δ (see Fig. 1, Graph 2);
Eliminate all arcs with zero capacity.

end while

The matching can be calculated in O(nm
√

n + m) by using the algorithm de-
scribed in [18]. Thus, Step 2 runs in O(n2m2K

√
n + m) time.

4.2. Min-sum functions

Consider m identical parallel machines and K agents with disjoint job sets. For
each agent k, we define a monotonically increasing function

∑
fk =

∑
i∈Nk

fk(Ci),
k = 1, . . . , K, where fk does not depend on the job Ji ∈ Nk. The problem is
denoted by Pm|pmtn|ε(∑ f0/

∑
f1, . . . ,

∑
fK).

To prove that this problem is NP-hard, we prove that 1|pmtn|ε(∑C0
i /
∑

C1
i)

is NP-hard.
Let S be a feasible schedule for the 1|pmtn|ε(∑C0

i /
∑

C1
i) problem, where job

Ji is preempted (see Fig. 2). We have
∑

C1
i (S) ≤ ε1. Let π1/i/π2/i/π3 be sequence

S where π1, π2 and π3 are sub-sequences of jobs and notation a/b stands for the
concatenation of a and b. We denote the duration of job Ji before sequence π2 as
pi1 . Let S′ be the same solution where Ji is not preempted (i.e., shifted to the
right). Therefore, S′ = π1/π2/i/π3.

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 263

S′

S

CiCπ2

CiC ′
π2

pi1

π2

π3

π3Ji

π1

π1

Ji π2 Ji

Figure 2. Preemption of job Ji.

Shifting Ji to the right does not modify its completion time, and allows the jobs
of π2 to complete pi1 earlier time units. If Ji ∈ N1, then

∑
C1

i (S) ≤ ε1. Because
the completion of Ji does not change and because the completion times for the
jobs of N1 in π2 (if any) only decrease (the completion times of other jobs does
not change), the following applies:

∑
C1

i (S′) ≤ ε1. The same reasoning applies if
Ji ∈ N \ N1.

In that case, we can state:∑
C1

i (S′) ≤
∑

C1
i (S) ≤ ε1

∑
C0

i (S′) =
∑

C0
i (S) − pi1 |π2| <

∑
C0

i (S).

Therefore, S′ dominates S and there is no need to preempt a job to minimize
the sum of completion times; thus there is no preemption in any optimal solution.

We conclude that problem 1|pmtn|ε(∑C0
i /
∑

C1
i) is NP-hard. Suppose that

this problem can be solved in polynomial time by Algorithm A. Then, A could be
used to solve problem 1||ε(∑C0

i /
∑

C1
i), because the optimal solution returned

by A has no preemption. As the scheduling problem 1||ε(∑C0
i /
∑

C1
i) is NP-hard

in the ordinary sense [19], this is not possible, which provides the proof. Therefore
the problem Pm|pmtn|ε(∑ f0/

∑
f1, . . . ,

∑
fK) is also NP-hard.

5. Parallel machines without preemption

In this section, we first describe the case of a single machine with min-max
functions, which can be solved in polynomial time (with min-sum functions, the
problem is NP-hard [19]). Then, we prove that the problems with identical parallel
machines are NP-hard for any objective function. Finally, we propose dynamic
programming algorithms in the case of one agent, when the objective functions f0

and f1 belong to {Cmax,
∑

Ci}.

5.1. A single machine with min-max function

Consider the 1||ε(f0
max/f1

max, . . . , f
K
max) single machine multi-agent scheduling

problem. Because the objective functions are regular, the optimal schedule of this

264 F. SADI ET AL.

problem has no idle time. Therefore, the problem can be solved by the Lawler
procedure in O(n2) units of time.

Algorithm 2 Backward algorithm for the 1||ε(f0
max/f1

max, . . . , f
K
max)

P =
∑n

i=1 pi

S = {Ji ∈ N/d̃i ≥ P}
while S �= ∅ do

Select the job Jj in S such that f0
j = minJi∈S f0

i

// Schedule Jj so that it completes at time P //
P = P − pj

Update S (delete Jj and insert new jobs that can complete at time P)
end while

Consider the deadline d̃k defined in Section 4.1 as follows: dk = (fk)−1(εk) with
k = 1, . . . , K. If the inverse function (fk)−1 is available, the deadline d̃k can be
computed in constant time, otherwise the value of d̃k is obtained by binary search.
In the following, we assume that all d̃k can be readily computed. This situation is
isomorphic to the problem with ready times associated with the jobs. It is possible
to obtain an optimal solution by applying a backward algorithm (similar to the
one described in [20] for the 1|prec|fmax problem), starting at time t =

∑n
i=1 pi.

The algorithm is described in Algorithm 2. P is the completion time of the next
job to schedule and S contains the set of candidate jobs that can be completed at
time P .

5.2. Complexity analysis

In this section, we introduce some general reductions. If the decision problem π
reduces to π′, we use the notation π ∝ π′. Additionally, Γ1 and Γ2 are two subsets of
regular criteria defined by Γ1 = {Cmax, Lmax,

∑
Ui,
∑

Ti,
∑

wiTi,
∑

wiUi}, Γ2 =
{∑Ci,

∑
wiCi}, and Γ = Γ1 ∪ Γ2.

Proposition 5.1. For all f1 ∈ Γ the following reductions from the classical
scheduling problem hold:
1. Pm||C0

max ∝ Pm||ε(C0
max/f1), ∀f1 ∈ Γ .

2. Pm||ε(C0
max/f1) ∝ Pm||ε(f0/f1), ∀f0 ∈ Γ 1, ∀f1 ∈ Γ .

Proof. These claims are direct consequences of the complexity of the Pm||Cmax

problem, if the boundary ε-value is sufficiently large for the problem. �
Proposition 5.2. The scheduling problems Pm||ε(f0/f1) are NP-hard, ∀f0 and
f1 ∈ Γ .

Proof. We turn out to the decision version of the problems. We first show that
Pm|f0 ≤ ε0, f

1 ≤ ε1|−, ∀f0 ∈ Γ 1, ∀f1 ∈ Γ , is NP-complete. Then, we show that
Pm|f0 ≤ ε0, f

1 ≤ ε1|−, ∀f0 ∈ Γ 2, ∀f1 ∈ Γ , is NP-complete.
The first claim is given by Step 2 of Proposition 5.1.

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 265

It is known that Pm|C1
max ≤ ε1|− is NP-complete. Hence Pm|C1

max ≤ ε1, f
0 ≤

ε0|− is NP-complete, ∀f0 ∈ Γ . This is also true for f0 =
∑

C0
i . And because it

is true for C1
max, it is also true for any f1 ∈ Γ1. Thus, Pm|f1 ≤ ε1,

∑
C0

i ≤ ε0|−,
∀f1 ∈ Γ1 is NP-complete. We know that Pm|∑C1

i ≤ ε1,
∑

C0
i ≤ ε0|− is NP-

complete (see [19]). So Pm|f1 ≤ ε1,
∑

C0
i ≤ ε0|− is NP-complete ∀f1 ∈ Γ . This

is also true for
∑

wiC
0
i , i.e. Pm|f1 ≤ ε1, f

0 ≤ ε0|−, ∀f1 ∈ Γ , ∀f0 ∈ Γ2. �

5.3. Dynamic programming algorithms for problems with (f0, f1) ∈
{Cmax,

∑
Ci}2

To illustrate our approach, consider one agent and a global objective function
scheduling problem, where f1 and f0 are in {Cmax,

∑
Ci}. We solve problems

Pm||ε(f0/f1) using dynamic programming algorithms.
1 ≤ i ≤ n1 are the subscripts of the jobs in N1, n1+1 ≤ j ≤ n are the subscripts

of the jobs in N \ N1. All jobs in N1 are numbered in SPT order and all jobs in
N \N1 are also in SPT order as follows: p1 ≤ p2 ≤ . . . ≤ pn1 and pn1+1 ≤ . . . ≤ pn.

The parameters used to define the dynamic programs are the following: Pj is
the makespan on machine Mj , Q1 is the total completion time of jobs in N1 and
Pi1,i2 is the total processing time of the first i1 jobs in N1 plus the (i2 − n1) first
jobs in N \ N1. For this problem, UB =

∑n
i=1 pi is an upper bound for P1, and

LB = max{ 1
m

∑n
i=1 pi, max1≤i≤n pi} represents the lower bound.

5.4. Problem with f0 = C0
max

Problem 5.3. Consider that C1
max is also the agent objective function. The prob-

lem is denoted by Pm||ε(C0
max/C1

max). It is equivalent to the mono-objective prob-
lem Pm|d̃i|Cmax, where d̃i1 = ε, ∀i1 ∈ N1 and d̃i2 = UB, ∀i2 ∈ N \ N1.

We define the following recursive function (see [7]) as follows: Fi1,i2(t1, . . . , tm)
is true if jobs 1, . . . , i1 of N1 and n1 + 1, . . . , i2 of N \ N1 can be scheduled on
M1, . . . , Mm in such a way that each machine Mj is busy in the interval [0, tj],
and false otherwise.

Applying F0,n1(t1, . . . , tm) = false ∀(t1, . . . , tm) ∈ {0, 1, . . . , UB}m and
F0,n1(0, . . . , 0) = true, the recursive relation is given as follows:

Fi1,i2(t1, . . . , tm) =
m∨

j=1

(Fi1−1,i2(t1, . . . , tj − pi1 , . . . , tm) ∧ (tj ≤ ε1))

∨
m∨

j=1

Fi1,i2−1(t1, . . . , tj − pi2 , . . . , tm)

∀i1, 1 ≤ i1 ≤ n1, ∀i2, n1 + 1 ≤ i2 ≤ n, ∀tj ∈ [0, UB], ∀j, 1 ≤ j ≤ m

266 F. SADI ET AL.

Then, the optimal makespan value is given by

C0
max = min

(
max

∀tj∈[0,UB]
({t1, t2, . . . , tm}|Fn1,n(t1, . . . , tm) = true

)
.

This algorithm runs in O(n2UBm).

Problem 5.4. Consider that
∑

Ci is the agent objective function. The problem
is denoted by Pm||ε(C0

max/
∑

C1
i).

We define the following recursive function: Fi1,i2(t1, . . . , tm, Q1) is true if jobs
1, . . . , i1 of N1 and n1 + 1, . . . , i2 of N \N1 can be scheduled on M1, . . . , Mm such
that each machine Mj is busy in the interval [0, tj] and the sum of completion times
of jobs in 1, . . . , i1 is equal to Q1, and false otherwise. Q1 is the total completion
time of jobs in N1, where 0 ≤ Q1 ≤ ε1.

Applying F0,0(t1, . . . , tm, Q1) = false ∀(t1, . . . , tm) ∈ {0, 1, . . . , UB}m; 0 ≤
Q1 ≤ ε1 and F0,n1(0, . . . , 0) = true, the recursive relation is given as follows:

Fi1,i2(t1, . . . , tm, Q1) =
m∨

j=1

(
Fi1−1,i2(t1, . . . , tj − pi1 , . . . , tm, Q1 − tj) ∧ (Q1 ≤ ε1)

)

∨
m∨

j=1

Fi1,i2−1(t1, . . . , tj − pi2 , . . . , tm, Q1).

This dynamic programming algorithm determines the assignment of jobs to
machines, which is sufficient to compute an optimal schedule.

The optimal makespan value is given by

C0
max = min

(
max

∀tj∈[0,UB]
({t1, t2, . . . , tm}|Fn1,n(t1, . . . , tm, Q1) = true

)
.

For a given upper bound ε1 on the total completion time of agent jobs, this algo-
rithm runs in O(n2UBmε1) time.

5.5. Problem with f0 =
∑

Ci

Problem 5.5. Consider the problem with Cmax as the objective function of
agent 1. The problem is denoted by Pm||ε(∑C0

i /C1
max). Fi1,i2(P1, . . . , Pm) is the

total completion time when i1 jobs of N1 and i2 −n1 jobs of N \N1 are scheduled
on m machines.

F0,n1(0, . . . , 0) = 0; F0,n1(P1, . . . , Pm) = +∞, ∀(P1, . . . , Pm) �= (0, . . . , 0)

Fi1,i2(P1, . . . , Pm) = +∞, if i1 /∈ [1, n1] or i2 /∈ [n1 + 1, n] or Pj /∈ [0, UB].

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 267

Fi1,i2(P1, . . . , Pm) =

min
j=1,...,m,

⎧⎪⎨
⎪⎩
{

Fi1−1,i2(P1, . . . , Pj − pi1 , . . . , Pm) + Pj , if Pj ≤ ε1

+∞, if Pj > ε1

Fi1,i2−1(P1, . . . , Pj − pi2 , . . . , Pm) + Pj

∀i1 ∈ {1, . . . , n1}, ∀i2 ∈ {n1 + 1, . . . , n}, ∀Pj ∈ [0, UB].

The optimal total completion time is given by∑
C0

i = min
∀Pj∈[0,UB]

Fn1,n(P1, . . . , Pm).

This algorithm runs in O(n2UBm) time.

Problem 5.6. We initially examine the problem Pm||ε(∑C0
i /
∑

C1
i). In ad-

dition to the total completion time of jobs in N1, denoted Q1, we must save
the information related to the Cmax on each machine, denoted as Pj,1≤j≤m. Let
Fi1,i2(P1, . . . , Pm, Q1) be the total completion time when i1 jobs of N1 and i2−n1

jobs of N\N1 are scheduled on m machines, where Q1 ≤ ε1.

F0,n1(0, . . . , 0) = 0; F0,n1(P1, . . . , Pm, Q1) = +∞, ∀(P1, . . . , Pm, Q1) �= (0, . . . , 0)

Fi1,i2(P1, . . . , Pm, Q1) = +∞, if i1 /∈ [1, n1]
or i2 /∈ [n1 + 1, n] or Pj /∈ [0, UB] or Q1 < 0.

Fi1,i2(P1, . . . , Pm, Q1) =

min
j=1,...,m

⎧⎪⎨
⎪⎩
{

Fi1−1,i2(P1, . . . , Pj − pi1 , . . . , Pm, Q1 − Pj) + Pj , if Q1 ≤ ε1

+∞, if Q1 > ε1

Fi1,i2−1(P1, . . . , Pj − pi2 , . . . , Pm, Q1) + Pj

∀i1 ∈ {1, . . . , n1}, ∀i2 ∈ {n1 + 1, . . . , n}, ∀Pj ∈ [0, UB], ∀Q1 ∈ [0, ε1].

The optimal solution is obtained by min∀Pj∈[0,UB],∀Q1∈[0,ε1] Fn1,n(P1, . . . ,
Pm, Q1) and the computational time is of O(n2UBmε1).

Remark 5.7. The ideas of the DP algorithms can be extended to problems with
K agents. We summarize the recursive functions and the complexity of the DP
algorithms in Table 1, where ε = max1≤k≤K(εk) and iK+1 is index of job from
N\⋃K

k=1 Nk.

268 F. SADI ET AL.

Table 1. Extensions of the DP algorithms to the case of K agents.

Problem Generic function Complexity

Pm||ε (C0
max/C1

max, . . . , C
K
max

)
Fi1,...,iK ,iK+1(t1, . . . , tm) O(nK+1UBm)

Pm||ε (C0
max/

∑
C1

i , . . . , CK
i

)
Fi1,...,iK ,iK+1 (t1, . . . , tm, Q1, . . . , QK) O

(
nK+1UBmεK

)
Pm||ε (∑C0

i /C1
max, . . . , CK

max

)
Fi1,...,iK ,iK+1 (P1, . . . , Pm) O(nK+1UBm)

Pm||ε(∑C0
i /
∑

C1
i , . . . ,

∑
CK

i)Fi1,...,iK ,iK+1(P1, . . . , Pm, Q1, . . . , QK)O
(
nK+1UBmεK

)

6. Conclusions

Scheduling problems where K agents compete to perform their jobs on common
parallel machines are studied. Two cases are considered, i.e., with and without pre-
emption. The objective is to find a schedule that minimizes the global objective
function while keeping the regular objective function of each agent k no greater
than a fixed value εk. The different combinations of the cost functions lead to
various types of problems. Polynomial and pseudo-polynomial time algorithms
are derived. The models derived in this study can be extended in various direc-
tions, such as to analyze other combinations of objective functions and search for
the Pareto front. It would also be interesting to study the scheduling problem
Pm|pmtn, fk

max ≤ εk|
∑

f0, i.e., when preemption is allowed.

References

[1] A. Agnetis, P. Mirchandani, D. Pacciarelli and A. Pacifici, Nondominated schedules for a
job-shop with two competing users. Comput. Math. Organ. Theor. 6 (2000) 191–217.

[2] A. Agnetis, D. Pacciarelli and A. Pacifici, Multi-agent sincle machine scheduling. Ann. Oper.
Res. 150 (2007) 3–15.

[3] A. Agnetis, P. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two
competing agents. Oper. Res. 52 (2004) 229–242.

[4] A. Agnetis, G. Pascale and D. Pacciarelli, A Lagrangian approach to single-machine schedul-
ing problems with two competing agents. J. Scheduling 12 (2010) 401–415.

[5] K.R. Baker and J.C. Smith, A multiple-criteria model for machine scheduling. J. Scheduling
6 (2003) 7–16.

[6] H. Balasubramanian, J. Fowler, A. Keha and M. Pfund, Scheduling interfering job sets on
parallel machines. Eur. J. Oper. Res. 199 (2009) 55–67.

[7] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Handbook on scheduling:
From Theory to Applications. International handbooks on information systems. Springer
(2007).

[8] P. Brucker, Scheduling algorithms. Fifth Edition. Springer (2005).
[9] T.C.E. Cheng, C.T. Ng, J.-J. Yuan, Multi-agent scheduling on a single machine to minimize

total weighted number of tardy jobs. Theor. Comput. Sci. 362 (2006) 273–281.
[10] T.C.E. Cheng, C.T. Ng and J.-J. Yuan, Multi-agent scheduling on a single machine with

max-form criteria. Eur. J. Oper. Res. 188 (2008) 603–609.
[11] T.C.E. Cheng, S.-R. Cheng, W.-H. Wu, P.-H. Hsu and C.-C. Wu, A two-agent single-machine

scheduling problem with truncated sum-of-processing-times-based learning considerations.
Comput. Ind. Engrg. 60 (2001) 534–541.

SOLVING MULTI-AGENT SCHEDULING PROBLEMS ... 269

[12] Y. Cho and S. Sahni, Preemptive scheduling of independent jobs with release and due times
on open, flow and job shops. Oper. Res. 29 (1981) 511–522.

[13] D. Cordeiro, P.-F. Dutot, G. Mounié and D. Trystram, Tight Analysis of Relaxed Multi-
Organization Scheduling Algorithms. In Proceedings of the 25th IEEE International Parallel
& Distributed Processing Symposium (IPDPS), Anchorage, AL, USA, IEEE Comput. Soc.
(2011) 1177–1186.

[14] D. Elvikis, H.W. Hamacher and V. T’kindt, Scheduling two interfering job sets on uniform
parallel machines with makespan and cost functions. J. Scheduling 14 (2011) 471–481.

[15] D. Elvikis and V. T’kindt, Two-agent scheduling on uniform parallel machines with min-max
criteria. Ann. Oper. Res. (2012) 1–16.

[16] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5
(1979) 287–326.

[17] H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167(2005) 59–623.
[18] J.E. Hopcroft and R.-M. Karp, A n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2 (1973) 22–231.
[19] N. Huynh Tuong, A. Soukhal and J.-C. Billaut, Single-machine multi-agent scheduling prob-

lems with a global objective function. J. Scheduling 15 (2012) 311–321.
[20] E.L. Lawler, Optimal sequencing of a single machine subject to precedence constraints.

Manage. Sci. 19 (1973) 544–546.
[21] K. Lee, B.-C. Choi, J.Y.-T. Leung and M. Pinedo, Approximation algorithms for multi-

agent scheduling to minimize total weighted completion time. Inform. Process. Lett. 16
(2009) 913–917.

[22] W.-C. Lee, S.-k. Chen and C.-C. Wu, Branch-and-bound and simulated annealing algorithms
for a two-agent scheduling problem. Exp. Syst. Appl. 37 (2010) 6594–6601.

[23] J.Y.-T. Leung, M. Pinedo and G. Wan, Competitive two agent scheduling and its applica-
tions. Oper. Res. 58 (2007) 458–469.

[24] L. Peng, Y. Na and Z. Xiaoye, Two-agent single-machine scheduling problems under in-
creasing linear deterioration. Appl. Math. Model. 35 (2011) 2290–2296.

[25] A. Sedeno-Noda, D. Alcaide and C. Gonza-Martin, Network flow approaches to pre-emptive
open-shop scheduling problems with time-windows. Eur. J Oper. Res. 18 (2005) 1501–1518.

[26] R .Soltani, F. Jolai and M. Zandieh, Two robust meta-heuristics for scheduling multiple job
classes on a single machine with multiple criteria. Exp. Syst. Appl. 37 (2010) 5951–5959.

[27] A. Soukhal, N. Huynh Tuong and Z. Dao, Parallel machine scheduling with interfering jobs,
in 8th International Conference on Multiple Objective and Goal Programming (MOPGP’08),
Portsmouth, UK (2008).

[28] A. Soukhal, N. Huynh Tuong and Z. Dao, Méthodes exactes et approchées pour
l’ordonnancement de travaux interférant (in French), in Int. Symposium on Oper. Res.,
ISOR’08 Algers, Algeria (2008).

[29] V. T’kindt and J.-C. Billaut, Multicriteria scheduling. Second Edition. Springer (2006).
[30] G. Wan, J.-Y. Leung and M. Pinedo, Scheduling two agents with controllable processing

times. Eur. J. Oper. Res. 205 (2007) 528–539.
[31] J. Yuan, W.-P. Shang and Q. Feng, A note on the scheduling which two families of jobs. J.

Scheduling 8 (2005) 537–542.

	Introduction
	Problem statement and notation
	State-of-the-art literature survey
	Single machine
	Parallel machines

	Parallel machines with preemption
	Min-max functions
	Phase 1. Assignment of jobs to machines
	Phase 2. Construction of a feasible solution
	Counting the number of iterations.

	Min-sum functions

	Parallel machines without preemption
	A single machine with min-max function
	Complexity analysis
	Dynamic programming algorithms for problems with (f0, f1) {Cmax, Ci}2
	Problem with f0=Cmax0
	Problem with f0=Ci

	Conclusions
	References

