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A BRANCH AND BOUND ALGORITHM
FOR THE TWO-MACHINE FLOWSHOP PROBLEM

WITH UNIT-TIME OPERATIONS AND TIME DELAYS
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Abstract. In this paper we consider the problem of scheduling, on
a two-machine flowshop, a set of unit-time operations subject to time
delays with respect to the makespan. This problem is known to be NP-
hard in the strong sense. We propose an algorithm based on a branch
and bound enumeration scheme. This algorithm includes the implemen-
tation of new lower and upper bound procedures, and dominance rules.
A computer simulation to measure the performance of the algorithm is
provided for a wide range of test problems.
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1. Introduction

The classical flowshop scheduling problem can be described as follows. Given
are a set J = {1, . . . , n} of n jobs and a set M = (M1, . . . , Mm) of m machines.
Each job j has to be processed for a given time on each machine starting from M1,
then M2 and so forth until Mm. We seek a schedule of the n jobs that minimizes
the makespan.
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The flowshop problem is known to be solvable in O(n log n)-time for m = 2 [5],
and NP-hard in the strong sense for fixed m ≥ 3 [4]. It is also known that the
permutation flowshop schedules are dominant for m ≤ 3 (see for e.g. [3]).

In most of the classical shop scheduling models, it is assumed that once an
operation is completed, the corresponding job instantaneously becomes available
for further processing. In practice, however, there is often a time delay between
two successive operations of the same job. This time delay may be attributed,
for example, to the transfer of jobs through the machines or the cooling of jobs
before they can be handled by the next machine. On the other hand, in some
applications, the processing times might even be negligible compared to the time
delays. We can then assume in this case that the processing times of the jobs are
unitary, and therefore have a small influence on the makespan of the schedule. As
an example, we might mention the application of painting a set of small items,
each of which has to be painted several times. However, a minimum time delay
must elapse between two successive paintings in order to allow for the previous
color to dry. One can easily imagine that the drying process may take far more
time than the painting process.

The present study is devoted to the minimization of the makespan in a two-
machine flowshop with unit-time operations and time delay considerations. A
schedule to be valid must thus be such that a time delay of at least τj ≥ 0 units
of time must elapse between the completion of job j on machine M1 and its start
on machine M2.

This problem is shown to be NP-hard in the strong sense [9]. The investigation
of enumerative and heuristic approaches is thus well justified. We consider in this
paper the resolution of the above problem within the framework of the branch and
bound scheme. Note that the heuristic approach has been also investigated for this
problem (see for e.g. [7]. On the other hand, the permutation flowshops with time
delays are not dominant anymore, even for m = 2. Indeed, it is shown in [8] that the
best unit-time operation permutation schedule is worse than that of the best unit-
time operation flowshop schedule by a factor of (2−3/(n+2)) and m respectively
for m = 2 and m ≥ 3. However, special cases exist where permutation schedules
are still dominant (see for e.g. Yu [10]). Note that the permutation counterpart of
the above problem can be solved respectively in O(n), O(n log n), and O(n2) for
m = 2, m = 3, and m = 4, and still open for m ≥ 5 [6].

This paper is organized as follows. In Section 2, the branch and bound algorithm
we are presenting is described in details. Section 3 presents the computational
simulation we conducted to study the performance of this algorithm. Concluding
remarks are given in Section 4.

2. The branch and bound algorithm

A branch and bound algorithm consists of breaking up the target problem into
successively smaller sub-problems, computing bounds on the objective function
associated with each sub-problem, and using them to discard certain of these
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sub-problems from further consideration. The procedure ends up when each sub-
problem has either produced a feasible solution or been shown to contain no better
solution than the one already in hand. The best solution found at the end of
the procedure is the global optimum. Applying a branch-and-bound algorithm
requires specifying the ingredients described in the following subsections. It is
worth mentioning that the effectiveness of branch and bound algorithms relies not
only on the tightness of these ingredients but also on the running time to compute
them (for more details, see for e.g. [1]).

2.1. Branching rule

In the search tree, generated by the branch and bound algorithm, a node at
level k corresponds to a partial sequence in which the jobs in the first k positions
have been already fixed (scheduled). A node at level k ≥ 0 is then expanded into
at most (n−k) nodes according to the following rule: among the jobs left, we only
consider those with distinct time delays. This rule is a consequence of the following
observation.

Observation 2.1. Let i and j be two jobs where τi = τj. If i < j then there exists
an optimal solution in which i precedes j.

2.2. Lower bounds

The basic idea of the use of a lower bound, within the framework of a branch and
bound algorithm, is to be able to discard nodes at early stages of the search tree. If
this lower bound is greater than or equal to the current makespan, then this node
and all the subtrees associated with that node can be discarded as they cannot
lead to a better solution. Before proceeding further, we introduce the following
notation for the remaining sections.

– Given a sequence σ, Jσ denotes the set of jobs in σ, and |Jσ| or |σ| its cardinality.
– The set of jobs that belong to set J but not to Jσ is denoted by J − Jσ.
– The starting time of job j on Mi in a given schedule is denoted by ti(j).

In the following we start by presenting known lower bounds that are relevant to
the present work, and then we continue the discussion with new lower bounds.

Throughout this section we will be evaluating the complexity of the lower
bounds on each internal node by assuming that the n jobs are already sorted at
the root of the search tree. The running time of this procedure is O(n log n)-time.

2.2.1. Previous lower bounds

Here we discuss some known results related to the problem we are considering.
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Lemma 2.2 [9]. Let us assume that the time delays are such that τ1 ≥ . . . ≥ τn.
If Cmax(Sopt) denotes the makespan of an optimal schedule Sopt then

Cmax(Sopt) ≥ LB(J) = max
1≤k≤n

⎧⎨⎩
⎡⎢⎢⎢

k∑
j=1

τj/k

⎤⎥⎥⎥ + k + 1

⎫⎬⎭ .

For the sake of completeness, we provide a proof of Lemma 2.2 along the fol-
lowing lines.

Proof. Let us first observe that a valid schedule with a makespan C may be easily
transformed into a valid schedule of the same length such that the n jobs of set
J are processed continuously on both machines. Therefore, finding a schedule of
makespan C is the same as finding two permutations, say σ and π, on machine M1

and M2, respectively. Let denote by σ−1(j) and π−1(j) respectively the position
of job j in σ and π. In terms of σ and π, a schedule with a makespan C is valid
only if

π−1(j) − σ−1(j) + C − n ≥ τj + 1, j = 1, . . . , n,

which may be rewritten as

τj − C + n + 1 ≤ π−1(j) − σ−1(j), j = 1, . . . , n.

Adding together the above n equations, we get

n∑
j=1

(τj − C + n + 1) ≤
n∑

j=1

π−1(j) −
n∑

j=1

σ−1(j).

≤ 0.

The result is then derived by developing the last above inequality and putting
aside C:

C ≥
n∑

j=1

τj/n + n + 1.

By observing that the makespan is integral, we obtain:

C ≥
⎡⎢⎢⎢

n∑
j=1

τj/n

⎤⎥⎥⎥ + n + 1.

Finally, by considering only the k first jobs, we have:

C ≥
⎡⎢⎢⎢

k∑
j=1

τj/k

⎤⎥⎥⎥ + k + 1. �
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Corollary 2.3 [10]. Consider a schedule S with a job sequence σ = (σ1, σ2) on
M1, where σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Then it holds
that

Cmax(S) ≥ LB1(σ1) = max {LB(J), |σ1| + LB(Jσ2)} .

Definition 2.4. If job j is completed at time k on M1, then its arrival time on
M2 is k + τj .

Definition 2.5 [10]. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1,
where σ1 is fixed and σ2 an arbitrary subsequence of J−Jσ1 . Let also C(σ1) be the
minimal makespan obtained by scheduling jobs of Jσ1 according to their arrival
time on M2, and t∗ the minimal arrival time of jobs in σ1 on M2, such that M2 is
not idle in [t�, C(σ1)]. In addition, let δ be the maximum cardinalty of matching
between the positions on M1 within [|σ1| + 1, n] and jobs in σ2 with arrival times
on M2 less than t∗.

Let us mention that Yu [10] pointed out that δ corresponds to the number of time
slots i = |σ1| + 1, . . . , n, which can be filled by jobs in σ2, starting by those with
the largest time delays and arrival times on M2 less than t∗. This observation leads
to the following lower bound, which can be implemented in O(n).

Lemma 2.6 [10]. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1,
where σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Then it holds that

Cmax(S) ≥ LB2(σ1) = C(σ1) + n − |σ1| − δ.

Let us observe that, besides the sorting procedure that is involved, the rest of the
evaluation of LB, LB1 and LB2 takes O(n)-time.

2.2.2. New lower bounds

In the branch and bound algorithm that we are designing we are interested in
building a solution, with a makespan less than or equal to a given value L. In
this section we first present new lower bounds. In the second step, we continue
with other results related to the existence of a schedule of a given length. We
also discuss dominance properties. Before proceeding, we first make the following
observation.

Observation 2.7. Prior to a processing permutation on M1, solutions in which
the jobs are scheduled on M2 according to their arrival times are dominant.

Lemma 2.8. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1, where
σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Let the arrival times on
M2 of jobs in Jσ1 and Jσ2 be computed from their positions and |σ1| + 1 on M1,
respectively. Denote by LB3(σ1) the makespan generated by optimally scheduling
the n jobs according to these arrival times on M2. Then it holds that Cmax(S) ≥
LB3(σ1).
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Proof. First, observe that with respect to σ1, the arrival times of the jobs in σ2 are
computed from time slot |σ1|+1 their least starting time on M1. On the other hand,
M2 cannot complete the processing of the jobs before the makespan produced by
solving the one machine problem with release dates, which are nothing else than
the arrival times of the jobs (Observation 2.7). Furthermore, we know that the
latter problem can be solved optimally according to the nondecreasing order of
the release dates. Therefore, the result is established. �

Theorem 2.9. Let S be a schedule with a job sequence σ = (σ1, σ2), where σ1

is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Then, it holds LB3(σ1) ≥
LB2(σ1). Furthermore, there exist instances for which the inequality is strict.

Proof. Let S2 be a one machine optimal schedule of the n jobs on M2 according
to their arrival times as defined in Lemma 2.8. Let also t2(j) be the starting time
of job j in S2, and δ and t∗ be as in Definition 2.5. Let us now denote by ξ1, . . . , ξu

the jobs of Jσ2 processed in that order in S2 between time |σ1| + 1 and t∗ − 1. In
order to prove the first statement of the theorem, we first need to prove u ≤ δ.
In fact, we need to prove that jobs ξ1, . . . , ξu can take positions on M1 within
[|σ1| + 1, n] and their arrival times are less than t∗. We proceed as follows. Note
first that if u = 0, we are done. Otherwise, by definition of u, we have

t2(ξu) ≤ t∗ − 1.

Therefore,
|σ1| + 1 + τξu ≤ t∗ − 1.

Since jobs ξk and ξk+1, k ∈ {1, . . . , u − 1}, are processed in that order then we
have

t2(ξk) + 1 ≤ t2(ξk+1).

Summing up the above inequality from k to u − 1 we get

t2(ξk) + (u − k) ≤ t2(ξu), k = 1, . . . , u − 1.

From the structure of S we have

|σ1| + 1 + τξk
≤ t2(ξk), for k = 1, . . . , u − 1.

It then follows

|σ1| + 1 + τξk
+ (u − k) ≤ t2(ξk) + (u − k)

≤ t2(ξu)
≤ t∗ − 1.

Therefore, we deduce u ≤ δ. From the definition of u, the number of jobs scheduled
on M2 after C(σ1) in S is equal to n−|σ1|−u and LB3(σ1) ≥ C(σ1)+n−|σ1|−u.
So, since δ ≥ u, we derive that LB2(σ1) ≤ LB3(σ1).
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With regard to the strict inequality (the second statement of the theorem),
consider the instance with n = 3 jobs, τ1 = 7, τ2 = 2, and τ3 = 0. Let us now
assume that σ1 = (2, 3). It follows that LB2(σ1) = 5, whereas LB3(σ1) = 11.
Thus, the result of the theorem follows. �

Following is another lower bound similar to that of Lemma 2.2. However, the
time delays of the jobs already scheduled are updated here to express the real
times of processing the jobs on both machines.

Proposition 2.10. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1,
where σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Let γj = t2(j) −
t1(j)− 1, j ∈ Jσ1 , be the new time delay of job j, where ti(j) denotes the starting
time of j on Mi. The time delays of jobs of Jσ2 do not change, and we set γj = τj ,
j ∈ Jσ2 . If the time delays are such that γj1 ≥ . . . ≥ γjn , then it holds that

Cmax(S) ≥ LB4(σ1) = max
1≤k≤n

{⌈
k∑

i=1

γji/k

⌉
+ k + 1

}
.

Proof. Let I1 and I2 be two instances with time delays τj and γj , respectively. It
is clear that any feasible solution, starting with σ1 for I1, is also a feasible solution
starting with σ1 for I2, with no change on the makespan. Thus, the result follows
immediately. �

Note that as the sorting procedure is involved in the evaluation of LB3 and
LB4, their running time is O(n log n).

The remaining results of this section are based on the following. To eliminate
partial solutions from further expansion at earlier stages, we incorporated in the
implementation of the branch and bound algorithm a procedure to detect whether
a partial solution is feasible by looking at the existence of a schedule with a
makespan ≤ L for a given value L. Let us start with the following obvious ob-
servation.

Observation 2.11. A schedule of makespan L may be assumed to be such that
the jobs are sequenced continuously on both machines without an idle time, from
time zero and (L − n) on M1 and M2, respectively.

It is worth noting from Observation 2.11 that LB4 may be computed by tight-
ening the time delays as follows without increasing the makespan and still leaving
a valid schedule: γj = max{L − n, t2(j) − t1(j) − 1} for j ∈ Jσ1 and γj = τj for
j ∈ Jσ2 .

Proposition 2.12. Let L be an integer, such that there is no feasible schedule
with a makespan strictly less than L and let S be a schedule with a job sequence
σ = (σ1, σ2) on M1, where σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 .
Let the arrival times of job j be max{L − n, s(j) + 1 + τj} where s(j) = t1(j) if j
is in σ1 and s(j) = |σ1| if j is in Jσ2 . Denote by val3(σ1) the makespan generated



242 A. MOUKRIM ET AL.

by optimally scheduling the n jobs according to the nondecreasing order of these
arrival times on M2. If val3(σ1) > L then there is no schedule with a makespan
≤ L. Furthermore, val3(σ1) ≥ LB3(σ1).

Proof. From Observation 2.11, we may assume the arrival time of jobs of Jσ1 in
Lemma 2.8 can be tightened to max (L − n, |σ1| + τj + 1). Therefore, the result
follows immediately. �

Let us examine the computation time of val3. First, we recall that the arrival
times of jobs in σ are in I = [L−n, L]. Using the counting sorting procedure [2], we
get a sorted list of jobs in a nondecreasing order of their arrival times in O(n)-time.
These jobs can be optimally scheduled on M2 in O(n)-time, which represents the
overall time complexity to evaluate this lower bound.

In what follows we discuss another result based on checking the feasibility of
several schedules starting with a known sequence. We first make the following
obvious observation.

Observation 2.13. Let I be an arbitrary instance of jobs and I ′ ⊂ I. If there is
no feasible solution for I ′ with a makespan ≤ L, then there is no feasible solution
for I with a makespan ≤ L.

Let us now consider S a schedule of an instance I with a job sequence σ =
(σ1, σ2) on M1, where σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Let
Ip (p > |σ1|) be the instance that is composed of jobs from σ1 and (p − |σ1|) jobs
from σ2 with the largest time delays. Let us make the following computations.

1. For k = 1 to |σ1| do
(a) Let j be the job processed at time k − 1 on M1 (j ∈ Jσ1).
(b) Process job j on M2 as soon as possible from time θ(j) = max{t1(j)+ τj +

1, L − p}.
(c) Set τ̃j = θ(j) − t1(j) − 1.

2. For j ∈ Ip − Jσ1 , we set τ̃j = τj .

The resulting instance we get from Ip is denoted by Ĩp. We suppose that the jobs
of Ĩp are sorted in nonincreasing order of τ̃j . The second result is stated as follows.

Proposition 2.14. Let L be an integer, such that there is no feasible schedule with
a makespan strictly less than L and S be a schedule of an instance I with a job
sequence σ = (σ1, σ2) on M1, where σ1 is fixed and σ2 an arbitrary subsequence of
J − Jσ1 . Let val4(σ1) = max|σ1|<p≤n LB(Ĩp). If val4(σ1) > L, then the makespan
of S is strictly greater than L.

Proof. We first deduce from Observation 2.11 if there exists a schedule for Ip

with a makespan less than or equal to L, then there exists a schedule for Ĩp with
a makespan less than or equal to L. From Observation 2.13 we derive that if
LB(Ĩp) > L, for a given p, then there is no feasible schedule for I with a makespan
≤ L. Therefore, the result follows. �
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Let us now examine the time complexity associated with the evaluation of
val4(σ1). First, note that the new time delays τ̃j should be in nonincreasing order
to compute LB(Ĩp). Therefore, the evaluation of LB(Ĩp) takes O(|Ĩp| log |Ĩp|)-time.
Since p varies from (|σ1| + 1) to n, a running time of O(n2 log n) follows in order
to complete the computation of val4.

Observation 2.15. LB(Ĩn) and LB4(σ1) are evaluated similarly on the same
instance by modifying the time delays. Thus, val4(σ1) ≥ LB4(σ1).

2.3. Dominance rules

A dominance rule is a testing procedure which discards a partial schedule from
further expansion as there exists another better solution starting with another
partial sequence. The existence of a dominance rule, when used, may speed up the
computations of a branch and bound algorithm. In this section, two dominance
rules are presented. Clearly, at each node, the evaluation of these dominance rules
can be done in O(n)-time.

Lemma 2.16. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1, where
σ1 is fixed and σ2 an arbitrary subsequence of J − Jσ1 . Let β(j) be the time at
which job j in σ2 is processed on M2 if it is processed at time |σ1| on M1. If there
exists a job j′ in σ2 such that τj′ > τj and β(j) − |σ1| − 1 ≥ τj′ , then the partial
solution starting with σ1 followed by job j can be fathomed.

Proof. The above lemma can be established through a simple interchange argu-
ment between job j and j′. �

Example 2.17. Consider the instance with n = 5 jobs, τ1 = τ2 = τ3 = 2, τ4 = 1,
and τ5 = 0. Let us assume that σ1 = (1, 2). From Lemma 2.16, solutions starting
with σ1 followed by either job 4 or job 5 may be ignored.

Let us observe that we may have instances for which Lemma 2.16 is of no help as
illustrated by Example 2.19. Lemma 2.18 may thus be useful to ignore additional
partial solutions from further exploration.

Lemma 2.18. Let S be a schedule with a job sequence σ = (σ1, σ2) on M1, where
σ1 is fixed and σ2 an arbitrary subsequence of J−Jσ1 . Let j be the last job scheduled
in Jσ1 . If t2(j)− (t1(j)+1) > τj and there exists a job j′ in Jσ2 such that τj′ > τj ,
then the partial solution starting with σ1 followed by j′ can be fathomed.

Proof. Let j be the last job scheduled in Jσ1 and assume that t2(j)−(t1(j)+1) > τj .
Also, assume there exists a job j′ in Jσ2 such that τj′ > τj . It is then clear that
there is no point to process job j′ at time |σ1| on M1 since these two jobs can be
interchanged on M1 without increasing the overall makespan. �
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Example 2.19. Consider the instance with n = 6 jobs, τ1 = 7, τ2 = 5, τ3 = τ4 =
4, τ5 = 2, and τ6 = 0. Let σ1 = (1, 3, 2, 5). It is clear that Lemma 2.16 cannot
be applied. However, when it comes to expand this node, it is not difficult to see
that we should ignore schedule starting with σ1 followed by job 4 since schedule
starting with (1, 3, 2, 5, 4) will not produce a better makespan than (1, 3, 2, 4, 5).

2.4. Upper bounds

The following heuristic algorithms are intended to be used as an upper bound on
the makespan on each node of the search tree of the branch and bound algorithm.

We discuss three different ways of building a priority list, and two different
strategies to schedule a given priority list. Observe that six heuristic algorithms
can be built out of this approach.

Step 1. The priority list is constructed any of the following rules:
1. Nonincreasing order of the time delays.
2. Given the nonincreasing order of the time delays, we first consider the set

of jobs with time delays of a difference of at least two, followed by the set
of jobs with time delays of a difference of at least two and so on until there
is no job to consider anymore.

3. Given the nonincreasing order of the time delays, we consider first the set of
jobs with time delays of a difference of at least two or the same time delays,
followed by the set of jobs with time delays of difference at least two or the
same time delays, and so on until there is no job to consider anymore.

Step 2. The priority list is then scheduled with either of the following strategies
according to the ordering generated in Step 1.
1. On M1 the jobs are processed by examining the priority list from left to

right. On M2, the jobs are scheduled according to the nondecreasing order
of their arrival times as in Observation 2.7.

2. First, place the next job of the priority list on the first available position
on M1, and as soon as possible on M2. Then, we replace this job on M1 to
make it processed now as close as possible to its processing on M2 according
to its time delay.

In what follows, we denote by Hij the corresponding heuristic algorithm in which
priority rule i of Step 1 is applied to strategy j of Step 2.

Example 2.20. Let us consider the following instance I with n = 8 jobs, and
τ1 = τ2 = 9, τ3 = τ4 = 8, τ5 = τ6 = 7 and τ7 = τ8 = 6. We first apply priority
rules of Step 1 on this instance. We derive the following lists: (1, 2, 3, 4, 5, 6, 7, 8),
(1, 5, 2, 6, 3, 7, 4, 8), and (1, 2, 5, 6, 3, 4, 7, 8) corresponding respectively to priority
rule 1, 2, and 3. If we now apply the two strategies of Step 2 on the above lists,
then we get the schedules shown in Table 1. Each entry in this table corresponds
to the sequence generated by one of the heuristic algorithms and processed on M1

and M2, respectively.
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Table 1. Schedules generated by the six heuristic algorithms on instance I.

���������Hij

Time slot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

H11 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

H12 1 2 7 3 4 8 5 6
7 1 2 3 4 5 6 8

H21 1 5 2 6 3 7 4 8
5 1 6 2 3 7 4 8

H22 1 5 2 6 3 8 4 7
5 1 6 2 3 7 4 8

H31 1 2 5 6 3 4 7 8
1 2 5 6 3 4 7 8

H32 1 2 7 3 5 6 4 8
7 1 2 5 6 3 4 8

Algorithm 1 BB(σ1,L)
Let σk

2 be the k-th job in σ2;
Let LBσ1 be the lower bound associated with σ1;
if LBσ1 > L then

Prune node starting with σ1;
end if
Let UBσ1 be the makespan produced by heuristic H32 when σ1 is processed first on
M1;
if UBσ1 = L then

Stop the process and a feasible solution with a makespan of value L is found.
end if
if UBσ1 < UB then

UB = UBσ1 ;
end if
k = 1;
while k ≤ |σ2| do

Consider σk
2 ;

if Not(Dominance rules(σk
2 )) then

σ1 = σ1 ∪ σk
2 ;

σ2 = σ2\σk
2 ;

call BB(σ1, L);
end if

end while

With regard to the implementation of the above heuristic algorithms in the
branch and bound scheme, we proceeded as follows. At the root of the search
tree, the six heuristic algorithms are run, and the solution generated with the
smallest makespan is retained as the best upper bound to start with. Within the
internal nodes, we only invoke heuristic H32. This choice is justified by the good
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performance of this heuristic that emerged through the computational experiment
discussed in Section 3.1.

Let us now examine the time complexity of the above heuristic algorithms. We
start with the priority rules in Step 1. The first is clearly in O(n log n)-time. To
be processed, each job in the second and third rule has to find its right position
within the jobs already processed. This step takes O(n)-time. As this process is
done for every job, an O(n2)-time follows for the corresponding rule. With regard
to Step 2, in the first strategy, once we compute the arrival times of the jobs
on M2, which can be done in O(n), we process the jobs on M2 according to the
nondecreasing order of the arrival times. This step takes O(n log n)-time. In the
second strategy, each job scans the list of the scheduled jobs before finding its time
of processing. This task takes O(n)-time. Since every job is concerned with this
process, this strategy takes O(n2)-time. To conclude, the time complexity of the
above six heuristic algorithms varies from O(n log n) to O(n2).

2.5. Algorithm scheme

The branch and bound algorithm we implemented is mainly a series of feasibility
test problems. Each time we check whether there exists a solution with a given
makespan of value L along the lines of Algorithm 1. If it is the case, then we stop
the process. Otherwise, we increment the value of L, and repeat the same process
until eventually reaching (UB−1), where UB denotes the best upper bound found
so far. Initially, L is set to a lower bound.

We discuss in the next section the empirical performance of the heuristic algo-
rithms, lower bounds, dominance rules within the framework of the implementation
of the branch and bound scheme we are designing.

3. Experimental results

We conducted a computational experiment where the heuristic algorithms and
the branch and bound algorithm are coded in C language, and executed on
an Intel CORE Duo 2 × 2.4 GHz PC with 3 GB RAM memory. The main
parameters characterizing an instance of the problem we are investigating are
the number and the time delays of jobs. The problem sizes tested are n =
20, 40, 60, 80, 100, 120, 150, 160, 180, 200, 250, and 300. The time delays are drawn
from a uniform distribution in [0, n] in Sections 3.1 and 3.2, and in

[
0,

⌈
n
r

⌉]
in

Section 3.3, where r is a parameter defined in that section. For each value of n,
10 instances were randomly generated. Let us note that, in the instances we gen-
erated, we assumed that the smallest time delay is always 0. If it is not the case,
then it is straightforward to derive an equivalent instance in which the new time
delays are respectively the old time delays minus the smallest time delay.

This section is organized as follows. First, we study and compare the perfor-
mance of the heuristic algorithms. Then, we perform an experimental protocol to
determine the best configuration for the branch and bound scheme. Finally, we
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discuss the impact of the time delay distribution on the performance of the selected
branch and bound configuration.

3.1. Performance of the heuristic algorithms

We report in this section the performance of the heuristic algorithms proposed
in Section 2.4. For each heuristic algorithm, the following points are provided in
Table 2.

– Opt: number of times a given heuristic algorithm achieves the optimal makespan.
– Best: number of times a given heuristic algorithm achieves the best solution

among the rest of the heuristic algorithms.
– Gap O: average gap related to the best lower bound.
– Gap B: average gap related to the best generated solution among the proposed

heuristic algorithms.

From Table 2, we observed the two best heuristic algorithms are H32 and H22.
Actually, H22 exhibits a good performance on small size instances. However, this
good performance degrades as the size instances get larger. On the other hand,
H32 outperforms the rest of the heuristic algorithms, and has a stable performance.
Moreover, it generates a better performance on larger size instances.

3.2. Configuration of the branch and bound algorithm

We started by incorporating into the branch and bound scheme the lower bounds
LB1 and LB4, the computing procedure of Proposition 2.12 namely val3, and
the dominance rules of Lemmas 2.16 and 2.18. This choice is mainly justified by
their time complexity of at most O(n log n). Let us also mention that the depth
first search method is the search strategy utilized to explore the search tree of the
branch and bound algorithm. In what follows, we discus the empirical performance
of different versions of the algorithm by varying the strategies according to the
following observations:

– Which time delay ordering has an impact on the branching strategy.
– What is the impact of val4 on the performance of the branch and bound

algorithm.
– What is the impact of the heuristic algorithms when they are invoked in the

internal nodes of the search tree.

The results of the simulation are summarized in Tables 3–5. For each instance, we
set a time limit to 300 s. So, if the branch and bound algorithm is still running
after 300 s, then it is aborted. The following points are computed in each of these
tables.

– USI: the number of unsolved instances after 300 s.
– Nodes: the average number of nodes generated for the solved instances.
– Time: the average CPU times required for the solved instances.
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Table 2. Performance of the heuristic algorithms.

n H11 H12 H21

Opt Best Gap O Gap B Opt Best Gap O Gap B Opt Best Gap O Gap B

20 0 0 20.32 18.43 0 1 4.71 3.06 0 2 8.03 6.33

40 0 0 25.04 21.70 0 1 6.89 4.00 0 0 15.25 12.14

60 0 0 26.73 22.50 0 1 7.19 3.60 0 0 15.20 11.34

80 0 0 28.59 24.56 0 0 8.10 4.71 0 0 21.91 18.05

100 0 0 28.83 25.08 0 0 7.46 4.35 0 0 16.21 12.85

120 0 0 28.79 24.76 0 0 7.55 4.17 0 0 19.59 15.84

150 0 0 29.61 26.15 0 0 7.65 4.78 0 0 23.73 20.42

160 0 0 30.14 26.27 0 0 7.51 4.31 0 0 22.71 19.07

180 0 0 29.81 26.83 0 0 7.55 5.08 0 0 23.16 20.33

200 0 0 29.93 26.13 0 0 7.73 4.57 0 0 26.49 22.79

250 0 0 29.75 27.06 0 0 7.59 5.35 0 0 24.60 21.99

300 0 0 30.54 26.72 0 0 8.10 4.94 0 0 25.10 21.43

n H22 H31 H32

Opt Best Gap O Gap B Opt Best Gap O Gap B Opt Best Gap O Gap B

20 5 10 1.61 0.00 0 1 6.96 5.29 3 7 3.21 1.60

40 1 4 7.29 4.37 0 0 10.35 7.38 1 8 3.96 1.14

60 0 3 8.07 4.45 0 0 9.03 5.37 0 9 3.58 0.10

80 0 0 14.19 10.58 0 0 9.59 6.14 0 10 3.26 0.00

100 0 0 10.57 7.37 0 0 9.14 5.95 0 10 3.01 0.00

120 0 0 12.44 8.91 0 0 8.94 5.49 0 10 3.26 0.00

150 0 0 16.68 13.56 0 0 8.19 5.30 0 10 2.75 0.00

160 0 0 15.75 12.33 0 0 8.97 5.71 0 10 3.08 0.00

180 0 0 16.55 13.87 0 0 7.38 4.89 0 10 2.36 0.00

200 0 0 18.87 15.38 0 0 8.04 4.85 0 10 3.03 0.00

250 0 0 17.78 15.32 0 0 7.68 5.43 0 10 2.13 0.00

300 0 0 18.96 15.48 0 0 8.84 5.65 0 10 3.02 0.00

3.2.1. Impact of the branching strategy

Let us first recall from Lemma 2.1 that we are only branching on the time delay
values that are distinct. Throughout our experiments we suspected that if we adopt
a branching rule that considers the jobs in nondecreasing order of time delays, the
dominance rules of Lemmas 2.16 and 2.18 are started off more often at the higher
levels of the search tree. As a consequence, nodes are pruned at the early stages
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Table 3. Impact of the time delay ordering on the branching rule
in the search tree.

n BB1 BB2 BB3

USI Nodes Time USI Nodes Time USI Nodes Time

20 0 51.4 0 0 326.7 0 0 36 0

40 0 716 0 2 907 637.5 1.72 0 92 264.2 0.15

60 0 24 172.5 0.04 8 221 593 0.51 0 6 797 069.9 14.04

80 0 4 330 328.1 7.82 10 *** *** 2 319 630.5 0.81

of the algorithm. In order to check the validity of this assumption, we focused our
tests on three different branching strategies in which jobs are considered in:

– nondecreasing order of the time delays (BB1),
– nonincreasing order of the time delays (BB2), and
– arbitrary order of the time delays (BB3).

We first reported in Table 3 the performance of BB1, BB2 and BB3, and then
observed the following points:

– For the 40 instances BB2 fails to solve 20 instances and the average CPU times
for the solved instances is greater than those of BB1 and BB3. Compared to
the two other strategies, the branching order based on the nonincreasing order
of the time delays seems to be irrelevant.

– BB1 outperforms BB3. Indeed, the average CPU times is less important for
BB1, and for n = 80 BB3 fails to solve two instances. However the 10 instances
are solved to optimality by BB1.

– It is interesting to note that, for n = 80, BB3 seems to be less time consuming
than BB1. This is due to the fact that the average CPU times is calculated over
the solved instances, and for BB1 there are 2 more solved instances that BB3
failed to solve.

We stopped the simulation for n = 80 as we are confident on the validity of our
assumption. Therefore, we assumed in our implementation that the jobs are in
nondecreasing order of the time delays.

3.2.2. Impact of Proposition 2.14

So far we have not tested yet the efficiency of val4. We did so because of the
high cost in time to evaluate it. In this section, we intend to study its impact on
the performance of the branch and bound algorithm to see whether it is worth
to incorporate it into the final implementation. To do so we performed some ex-
periments with a variant of BB1, denoted BB4, which includes the computing
procedure of Proposition 2.14, namely val4. Table 4 summarizes the results we
obtained.
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Table 4. Impact of val4.

n BB1 BB4

USI Nodes Time USI Nodes Time

20 0 51.4 0 0 50.2 0

40 0 716 0 0 346.9 0

60 0 24 172.5 0.04 0 738.6 0

80 0 4 330 328.1 7.82 0 497.6 0

100 4 2 263 952.83 5.26 0 2 008 048.1 10.18

From Table 4, we made the following observations:

– BB4 exhibits a good performance, and outperforms BB1. Indeed, all the 50 in-
stances generated in this experiment are solved to optimality, and BB4 exhibits
smaller CPU times. Moreover, the average number of visited nodes are smaller
than those of BB1. Therefore, the computing procedure val4 is efficient as it
prunes additional instances.

– For n = 100, BB1 seems to be less time consuming than BB4. This is due to the
fact that BB4 solves the 10 instances. However, BB1 failed to solve 4 instances.

To conclude, the incorporation of val4 makes the branch and bound algorithm
more efficient.

3.2.3. Impact of the heuristic algorithms

The third and final point we are looking at in our quest for the best configu-
ration for the branch and bound algorithm that we are designing is the impact of
the heuristic algorithms when run on each internal nodes of the search tree. We
focused on BB4 version. So far, this method has the best configuration. We con-
sidered a modified version of BB4 in which we invoke in each internal node of the
search tree heuristic H32 that outperforms the rest of the implemented heuristic
algorithms as discussed above. We denote this version by BB5. Table 5 summa-
rizes the performance of BB4 and BB5. From Table 5, we make the following
observations:

– BB5 exhibits a good performance and outperforms BB4. Actually, BB5 fails to
solve only 10 instances out of 100. In addition, BB5 exhibits shorter CPU times.

– The average number of visited nodes in BB5 is about 1000 times less than that
of BB4.

– For n = 200, BB4 fails to solve all the 10 instances. However, when BB5 is
used, only 2 instances are not solved.
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Table 5. Impact of the heuristic algorithms.

n BB4 BB5

USI Nodes Time USI Nodes Time

20 0 50.2 0 0 9.7 0

40 0 346.9 0 0 269.9 0

60 0 738.6 0 0 250 0

80 0 497.6 0.01 0 392.9 0

100 0 2 008 048.1 10.19 0 1282.2 0.01

120 1 3 595 143.44 13.53 1 787.33 0.01

150 5 97 716.2 0.48 4 1174.17 0.02

160 4 1 763 743 10.31 2 1490.13 0.04

180 5 3 995 767.2 19.5 1 3571.22 0.06

200 10 *** *** 2 21 117.13 0.21

3.3. Impact of the time delay distribution

In this section, we study the impact of the time delay distribution on BB5.
To do so, we introduced new instance classes to see the impact of the interval
size from which the time delays are drawn on the performance of the branch and
bound algorithm we are designing. A class is characterized by a rational number
r to measure somehow the sparsity of the time delays: the smaller is r, the bigger
is the sparsity of the time delays over the interval they are drawn.

For each class, the time delays are drawn from a uniform distribution of values
in the range

[
0,

⌈
n
r

⌉]
, where n is 20, 40, 60, 80, 100, 120, 150, 160, 180, 200, 250, and

300. For each value of n, 10 instances are randomly generated.
Tables 6 and 7 summarize the results obtained for the values of r ≥ 1 and r ≤ 1.

For each class, the numbers of unsolved instances and the average CPU times for
the solved instances are provided.

From Table 6, we observe that for the values of r in (2, 4), the corresponding
class of instances are more difficult to solve. Especially, for r = 2, we note that
the number of unsolved instances for n = 120, 150, 160, 180,
200, 250, and 300 is 7, 7, 6, 7, 10, 10, and 10, respectively. However, when r > 4, the
class instances seem to be more easily solved.

On the other hand, from Table 7, which summarizes the results generated for
r ≤ 1, we observe that, when r decreases, BB5 solves more efficiently these class
instances.

From the previous tables, we observed that the difficult class instances are ob-
tained for the values of r in [2, 4]. In what follows we present a computational study
in order to detect the values of r that slow down the running time of the branch
and bound algorithm. The values of r that we tested are 1.5, 2, 2.5, 3, 3.5, and 4.
Table 8 summarizes the generated results. We observed that the class instances for
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Table 6. Performance of BB5 for class instances in which r ≥ 1.

r 16 8 4 2 1

n USI Time USI Time USI Time USI Time USI Time

20 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0

60 0 0 0 0 0 0 0 0.02 0 0

80 0 0.01 0 0.01 0 7.6 0 15.18 0 0

100 0 0.01 0 0.01 0 0.2 3 11.62 0 0.01

120 0 0.02 0 0.01 2 0.02 7 0.01 1 0.01

150 0 0.04 0 0.04 3 0.03 7 1.29 4 0.02

160 0 0.04 0 19.58 4 0.03 6 0.3 2 0.04

180 0 0.22 0 6.25 7 0.05 7 4.08 1 0.06

200 0 0.08 1 0.08 9 0.07 10 0 2 0.21

250 0 0.15 2 0.47 6 0.14 10 0 4 4.47

300 0 0.65 4 0.29 10 0 10 0 3 12.76

Table 7. Performance of BB5 for class instances in which r ≤ 1.

r 1 2
3

1
2

2
5

1
3

n USI Time USI Time USI Time USI Time USI Time

20 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0

60 0 0 0 0.19 0 0 0 0 0 0

80 0 0 0 0.17 1 0 0 0 0 0

100 0 0.01 1 0.03 1 0.01 0 0 0 0

120 1 0.01 0 0.19 0 0.01 0 0.01 0 0

150 4 0.02 1 0.09 0 0.23 0 0.01 0 0.01

160 2 0.04 0 0.06 0 11.85 0 0.02 0 0.01

180 1 0.06 1 3.48 0 0.05 0 0.03 0 0.01

200 2 0.21 4 0.54 0 0.06 0 0.04 0 0.02

250 4 4.47 2 0.74 0 1.45 0 0.06 0 0.04

300 3 12.76 3 33.41 2 0.66 0 0.13 0 0.08

which the values of r are in (2, 2.5, 3, 3.5, 4) are more difficult to solve. To complete
the study we visualized in Figure 1 the total number of unsolved instances as a
function of the considered values of r.

From Tables 6–8, and Figure 1, we observed that the branch and bound al-
gorithm produces efficiently an optimal solution for instances of size less than or
equal to 100. For larger instances, the performance depends on the value of r and
thus on the size of the interval where the time delays are drawn. This leads to
make the distinction between three groups of instances:

– The sparse instances obtained when r ≤ 1: since the size of the interval of the
time delays is large, the probability to have more distinct values is high. The
fact the probability that the difference between the time delays of two successive
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Table 8. Performance of BB5 for instance classes (1.5 ≤ r ≤ 4).

r 4 3.5 3 2.5 2 1.5

n USI Time USI Time USI Time USI Time USI Time USI Time

20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

40 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

60 0 0.00 0 0.00 0 0.01 0 1.16 0 0.02 0 0.01

80 0 7.60 1 0.01 0 0.04 1 1.64 0 15.18 0 0.00

100 0 0.20 2 0.01 1 3.18 4 16.56 3 11.62 0 1.10

120 2 0.02 6 0.01 1 0.01 5 0.01 7 0.01 3 0.01

150 3 0.03 4 0.04 4 0.03 7 3.17 7 1.29 7 0.03

160 4 0.03 6 0.04 6 27.56 7 0.28 6 0.30 4 0.71

180 7 0.05 7 0.06 6 0.10 8 80.41 7 4.08 4 10.10

200 9 0.07 4 0.14 8 0.16 7 0.52 10 0.00 7 0.06

250 6 0.14 8 0.15 10 0.00 10 0.00 10 0.00 5 2.04

300 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 6 16.36

0

10

20

30

40

50

60

0 4 8 12 16

Figure 1. Total unsolved instances as a function of r.

jobs is greater than 2 is higher makes these classes easier to solve. For these class
instances, the average number of visited nodes is very small. Any subsequence
not starting with the biggest time delay job is rapidly ignored in the search tree.
This is the main reason why the number of nodes explored is relatively small
for these instances.

– The dense instances obtained when r > 4: The larger is the value of r, the
larger is the number of jobs with the same time delays. Thus, the statement of
Lemma 2.1 is frequently invoked in the course of the execution of the branch and
bound algorithm. This means that the number of internal nodes in the search
tree might be significantly reduced since we are only branching on distinct values
of the time delays. As a consequence, the size of the search tree is reduced and
the branch and bound algorithm converges to the optimal solution more quickly.
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– Finally, we are left with the third group composed with instances that are not
sparse neither dense (2 ≤ r ≤ 4). These instance classes seem to be the most
difficult to solve since they generate a huge number of nodes to explore.

4. Conclusion

In this paper, we designed a branch and bound algorithm for the two-machine
flowshop unit-time operations problem with time delay considerations in order to
minimize the makespan. We included in this algorithm several new lower bounds
and upper bounds, dominance rules, and test procedures that detect whether a
partial solution is feasible. The experimental study we performed shows that our
algorithm generates efficiently the optimal solution for instances of the problem
up to n = 100 jobs. It is interesting to note the positive impact of the different in-
gredients we developed in this paper to speed up the branch and bound algorithm.
Indeed, without them, we noticed through the different simulation we performed
that the instances that can be solved can hardly go beyond n = 20 jobs.

For further research, it would be interesting to design better lower and upper
bounds, and dominance rules in order to increase the size of instances that can be
solved within a reasonable amount of time.
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