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A NOTE ON ROBUST NASH EQUILIBRIA
WITH UNCERTAINTIES ∗

Vianney Perchet1

Abstract. In this short note, we investigate the framework where
agents or players have some uncertainties upon their payoffs or losses,
the behavior (or the type, number or any other characteristics) of other
players. More specifically, we introduce an extension of the concept
of Nash equilibria that generalize different solution concepts called by
their authors, and depending on the context, either as robust, ambigu-
ous, partially specified or with uncertainty aversion. We provide a sim-
ple necessary and sufficient condition that guarantees its existence and
we show that it is actually a selection of conjectural (or self-confirming)
equilibria. We finally conclude by how this concept can and should be
defined in games with partial monitoring in order to preserve existence
properties.
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1. Introduction

Uncertainties or ambiguities have been introduced in several fields (such as op-
timization [5, 6], operations research [7–9, 14] or game theory [1, 4, 12]) to take
into account the fact that real agents do not have a perfect knowledge of their
environment, an infinite memory or rationality, etc. There are basically two dif-
ferent approaches to handle them, either to assume the existence of an underlying
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probability distribution (sometimes refereed as a stochastic or Bayesian approach)
or to accept the existence of non-unique environment and to find a solution that
behaves well in any of them (this could be refereed as a minmax approach or
maximization with a non-unique prior, following [12]).

This note is dedicated to some theoretical consequences of uncertainties on game
theory and on the concept of Nash equilibrium, the latter needing to be adapted.
Indeed, its original definition strongly relies on the absence of ambiguity. Quoting
Nash himself, we recall that equilibria are “N -tuple of [mixed] strategies, one for
each player, [that] may be regarded as a point in the product space obtained by
multiplying the N strategy spaces of the players” [20], “such that each player’s
mixed strategy maximizes his payoff if the strategies of the others are held fixed.
Thus each player’s strategy is optimal against those of the others” [21]. It implicitly
assumes that each player knows not only his own reward mapping, but also his
set of opponents and their strategies. However, in some cases (which can rely on
empirical or intuitive results as in Ellsberg’s paradox [10]), they do not have perfect
knowledge of their own payoff mapping (or preferences can not be represented by
such mappings) or might have only partial information upon their opponents, their
action set (as in games on networks, or played on internet), etc.

Different, yet quite related, models have emerged to encompass uncertainties.
From the minmax approach, we can cite robustness [1] (when payoff mappings are
unknown, as a reference to robust optimization [6]) or uncertainty aversion [16],
ambiguity [3], partially specified probabilities [17] (when strategies actually played
at an equilibrium is not perfectly known to players, their only knowledge is that
they must belong to some given sets). In the stochastic approach, players for-
mulate a conjecture upon their opponents, and then maximize payoffs with re-
spect to this conjecture; this is the idea behind conjectural and self-confirming
equilibria [4, 11, 15].

The main objective of this note is to formalize and unify in a general framework
different notions of Nash equilibria with uncertainties (we decided to keep the
name of robust Nash equilibria) and to provide a simple necessary and sufficient
condition guaranteeing their existence. We also show how the aforementioned two
different approaches articulate, as our concept is in fact a selection of conjectural
equilibria. We finally describe how equilibria should be defined in games with
partial monitoring [18, 19, 24]. Results are, as often as possible, based on simple
and illustrating examples.

2. Robust Nash equilibria

We consider N -player games where the action set of player n ∈ N := {1, . . . , N}
is denoted by Xn ⊂ R

An and his payoff mapping by un : X → R, where X =∏
m∈N Xm. We assume that Xn is a compact and convex set and un is multilinear,

which means that un(·, x−n) is linear for every x−n ∈ X−n :=
∏

m �=n Xm.
Let us recall basic facts on Nash equilibria. Define, for every n ∈ N , the best

reply correspondence BRn from R
An to Xn by BRn(Un) := arg maxxn∈Xn〈xn, Un〉.
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Then x∗ = (x∗
1, . . . , x

∗
n) ∈ X is a Nash equilibrium iff there exists, for every n ∈ N ,

Un ∈ R
An satisfying x∗

n ∈ BRn(Un) and Un = un

(·, x∗
−n

)
. As it is a fixed point of

x → ∏
n∈N BRn

(
un(·, x−n)

)
, its existence is ensured by Kakutani’s theorem. This

definition of equilibria highlights the fact that an equilibrium can be decomposed
into two components: an optimization one, as every player is maximizing again Un,
and a compatibility one, as Un = un(·, x∗−n).

Best replies are extended with uncertainties in the minmax approach [12], into

BRn : P(RAn) → P(Xn) with BRn(Un) = arg max
xn∈Xn

inf
Un∈Un

〈xn, Un〉,

where, for any set E, P(E) is the family of its subsets. This is well-defined since
x �→ infUn∈Un〈x, Un〉 is concave and upper semi-continuous hence maxima are
attained.

Remark 2.1. Evaluation of payoff decreases with respect to uncertainties, i.e.,
the subset Un. Indeed, if Vn ⊂ Un, then infVn∈Vn〈xn, Vn〉 ≥ infUn∈Un〈xn, Un〉,
for every xn ∈ Xn. This is referred as “uncertainty aversion” of players, see for
instance [12]: the more information a player has, the more he values his payoff.

No assumptions are made on origins or structure of uncertainties; they are rep-
resented, for every n ∈ N , by a given mapping Φn : X−n → P(RAn). The original
framework, called full monitoring case, corresponds to Φn(x−n) =

{
un(·, x−n)

}
.

Definition 2.2. x∗ = (x∗
1, . . . , x

∗
n) ∈ X is a robust Nash equilibrium iff there

exists, for every n ∈ N , Un ⊂ R
An satisfying x∗

n ∈ BRn(Un) and Un = Φn

(
x∗−n

)
.

Here again, our concept of equilibria has an optimization and a compatibility
component. Existence of Robust Nash equilibria is ensured under a mild regularity
assumption, namely the continuity of the mappings Φn.

We recall that a multivalued mapping Ψ : R
k → P(Rd) is continuous at x∗ ∈ R

k

if it is upper semi-continuous (for every sequence xn ∈ R
k converging to x∗, if

zn ∈ Φ(xn) converges to some z ∈ R
d, then z ∈ Φ(x∗)) and lower semi-continuous

(for any sequence xn ∈ R
k converging to x∗ and any z∗ ∈ Φ(x∗), there exists a

subsequence nk and zk ∈ Φ(xnk
) such that znk

converges to z∗).

Proposition 2.3. If every Φn is continuous, there exist robust Nash equilibria.

Proof. Robust Nash equilibria are fixed points of the correspondence defined, for
every x ∈ X , by BR

[
Φ(x)

]
=

∏
n∈N BRn

[
Φn(x−n)

]
, which is always a com-

pact non-empty convex subset of X . If Φ is continuous then BR
[
Φ(·)

]
has a

closed graph, hence by Kakutani’s theorem, it has fixed points that are Nash
equilibria. �
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An alternative proof2 of this result is to appeal to the existence theorem of
Nash−Glicksberg [13]

A key property is that existence of Nash equilibria is not implied only by either
upper nor lower semi-continuity of Φ, as illustrated in the following Example 2.4.

Example 2.4. Consider the following bi-matrix game, whose unique Nash equi-
librium in full monitoring is (x∗, y∗) = (1/2T + 1/2B, 2/3L + 1/3R), defined by

L R
T 1;0 0;1
B 0;1 2;0

X1 = Δ({T, B}), X2 = Δ({L, R}), Φ2(x) = {u2(x, ·)}, Φ1(y∗) =
{u1(·, y); y ∈ X2} and Φ1(y) = {u1(·, y)} otherwise.

Φ2 is continuous, Φ1 upper semi-continuous, yet no robust Nash equilibrium exists.
If Φ1 is modified into Φ′

1(R) = {u1(·, R)} and Φ′
1(y) = {u1(·, y); y ∈ X2} other-

wise, then Φ′
1 is lower semi-continuous and no robust Nash equilibrium exists.

Equilibria concepts that can be found in the literature correspond to specific
structures of Φn: define for instance, as in [1], Φn(x−n) = {u(·, x−n); u ∈ U}
where U is some given convex family of possible payoff mappings or, as in [17],
Φn(x−n) = {un(·, q−n); q−n ∈ ∏

m �=n Xm[xm]} where Xm[xm] ⊂ Xm is defined by
a small number of linear (in x−m) mappings.

Similarly to the full monitoring case, we can naturally define ε-robust equilibria.

Definition 2.5. Given ε > 0, x∗ = (x∗
1, . . . , x

∗
n) ∈ X is an ε-robust equilibrium

iff there exists, for every n ∈ N , Un ⊂ R
An satisfying Un = Φn

(
x∗
−n

)
and

inf
Un∈Un

〈x∗
n, Un〉 ≥ sup

xn∈Xn

inf
Un∈Un

〈xn, Un〉 − ε.

It is possible to relate perturbation of robust equilibria and ε-robust equilibria.

Proposition 2.6. If Φ is a continuous with a bounded range then, for every ε > 0,
there exists δε > 0 such that every δ-perturbation of a robust Nash equilibria, for
δ ≤ δε, is an ε-robust Nash equilibria.

If Φ is continuous but with an unbounded range then, no matter ε > 0, there
might exist no ε-robust equilibria apart from robust equilibria.

Proof. The first part is an immediate consequence of continuity of Φ and of x �→
infU∈U 〈x, U〉 if U is bounded.

For the second part, consider N = 2, X1 = X2 = {(x, y) ∈ R
2
+ s.t. x + y = 1}

and both Φ1 = Φ2 are constant equal to

Φ1(x2) = Φ2(x1) := {(α, β) s.t. α ≥ 0, β ≤ 0} =: U∗, ∀x1 ∈ X1, x2 ∈ X2.

There exists a unique robust equilibria x∗ = (x∗
1, x

∗
2), with x∗

1 = x∗
2 = (1, 0), and

no other ε-Nash equilibria. Indeed infU∈U∗〈x∗
i , U〉 = 0 and, no matter x �= x∗

i ,
infU∈U∗〈x, U〉 = −∞. �

2We thank an anonymous referee for this suggestion.
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3. Selection of conjectural equilibria

Conjectural, self-confirming or subjective equilibria [4, 11, 15] can be related to
robust Nash equilibria. Recall that x∗ ∈ X is a conjectural equilibrium of a game
with uncertainties if, for every n ∈ N , there exists a conjecture V �

n on the possible
set of outcomes, i.e., an element of co

(
Φ(x∗

−n)
)
, the convex hull of Φ(x∗

−n), such
that x∗

n is a best reply to {V �
n }, see e.g. [2]. Equivalently, V �

n can be represented
as a probability distribution over Φ(x∗

−n).
Sets of conjectural equilibria can be very large and even equal to X . This hap-

pens in every game (without strictly dominated strategies) such that Φn(·) =
{un(·, x−n)}. As player actually observe nothing, those games are called in the
dark and they have generically only one robust Nash equilibrium, each player
playing his maxmin strategy.

Proposition 3.1. A robust Nash equilibrium is a conjectural equilibrium.

Proof. Any robust Nash equilibrium x∗ satisfies, by linearity of 〈x, ·〉,
x∗

n ∈ arg max
x∈Xn

min
Un∈Φn(x∗

−n)
〈x, Un〉 = arg max

x∈Xn

min
Vn∈co(Φn(x∗

−n))
〈x, Vn〉.

So x∗
n is an optimal strategy in the zero-sum game with action sets Xn,

co
(
Φn(x∗

−n)
)

and payoff 〈x, Vn〉. It remains to let V ∗
n be any optimal strategy

of the second player. �

A conjecture could also be defined as a subset of possible outcomes instead of a
probability distribution upon them, as in [16]: an equilibria is then a pair (x∗,U)
such that x∗

n ∈ Un and un(·, x∗
−n) ∈ Un. A robust Nash equilibria obviously still

satisfies this requirement.

4. Equilibria of games with partial monitoring

An important class of games where uncertainties appear are finite game with
partial monitoring, see [19, 24]. Here sets of pure and mixed action of player n
are respectively An and Xn = Δ(An) and players do not observe actions of their
opponents but they receive messages. Formally, there exist a convex compact set
of messages H and signaling mappings Hn from A :=

∏
n∈N An into H, extended

multi-linearly to X . Given a ∈ A, player n receives the message Hn(a).
No matter his choice of actions, player n cannot distinguish between x−n and

x′−n in X−n satisfying Hn (a, x−n) = Hn

(
a, x′−n

)
for all a ∈ An. As usual in this

setup [18,22,24], we define the maximal informative mapping Hn : Xn → HAn by:

∀x−n ∈ X−n, Hn(x−n) =
[
Hn (a, x−n)

]
a∈An

∈ HAn .

These mappings naturally define the correspondences Φn : X−n → P(RAn) by:

Φn (x−n) :=
{
un(·, x′

−n) ∈ R
An ; Hn

(
x′
−n

)
= Hn (x−n)

}
. (4.1)



370 V. PERCHET

Definition 4.1. x∗ ∈ X is a Nash equilibrium of a game with partial monitoring
H iff it is a robust Nash equilibrium, with uncertainties Φn defined by equa-
tion (4.1).

Hn and un are continuous, so Φ is continuous and Nash equilibria always exist.

Example 4.2. Consider the game with payoffs given by the left matrix and H =
{a, b, c}. Player 2 has full monitoring, so H2 is not represented, and H1 is the
matrix on the right:

u1; u2 =
L M R

T 2; 0 1; 0 1; 2
B 0; 1 2; 0 2; 2

and H1 =
L M R

T a a b
B c c c

Actions L and M are undistinguishable so, for every λ ∈ [0, 1] and η ∈ [0, λ]:

Φ1

(
λL + (1 − λ)R

)
= Φ1

(
λM + (1 − λ)R

)
= Φ1

(
ηL + (λ − η)M + (1 − λ)R

)

=
{

(1 + γ, 2 − 2γ) ; γ ∈ [0, λ]
}

,

where (1+γ, 2−2γ) are respective payoffs of T and B for some γ. As a consequence:

BR1

(
Φ1

(
λL + (1 − λ)R

))
=

⎧⎨
⎩

{2/3T + 1/3B} if λ < 1/3
{B} if λ > 1/3
Δ({T, B}) if λ = 1/3,

and, since R is a strictly dominating strategy, the only Nash equilibrium is (B, R).

A usual objection is that, given x∗ = (x∗
n, x∗−n), there might exist an ∈ An

such that x∗
n[an], the weight put by x∗

n on an, is zero; stated otherwise, these an

are not in supp(x∗
n), the support of x∗

n. So, player n cannot observe Hn(an, x∗
−n)

nor compute Hn(x∗
n), as in Example 4.2. So we should consider instead of Φn the

following correspondence Φ̂n : X → R
An defined by

Φ̂n(x) =
{
un(·, x′

−n) ∈ R
An ; Hn(an, x′

−n) = Hn(an, x−n), ∀an ∈ supp(x∗
n)

}
.

Proposition 4.3. With respect to Φ̂, there exist games without any equilibria or
such that any perturbation of equilibria is not an ε-equilibrium (even if Φ̂ has a
bounded range).

Proof. In Example 4.2, if (B, R) is played, the only message received is c so
Φ̂(B, R) = {(1 + γ, 2− 2γ) ; γ ∈ [0, 1]}. Its best reply is T ; yet, for every δ ∈ (0, 1],
best reply to Φ̂(δT + (1 − δ)B, R) = {(1, 2)} is B. So this game has no equilibria.

For the second part of the proposition, consider the following two players game:

(u1, u2) =
L R

T −1; 0 1; 1
B 0; 0 0; 1

and H1 =
L R

T a b
B c c
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(B, R) is an equilibrium since Φ̂(B, R) =
{

(λ, 0) ; λ ∈ [−1, 1]
}
. However, for every

δ > 0, Φ̂
(
δT+(1−δ)B, R

)
=

{
(1, 0)

}
, so δT +(1−δ)B is not an ε-equilibrium. �

Random messages can be embedded into this framework. Assume that there
exists a finite set S and given a ∈ A, player n receives the signal s ∈ S of law
sn(a) ∈ Δ(S). We define H := Δ(S) and Hn(a−n) :=

[
sn(a, a−n)

]
a∈An

. Although
Hn(a−n) is a vector of laws, unbiased estimators can estimate it at an arbitrarily
small cost, see e.g. [22].
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