
RAIRO-Oper. Res. 47 (2013) 445–464 RAIRO Operations Research

DOI: 10.1051/ro/2013051 www.rairo-ro.org

SERVICE NETWORK DESIGN
IN SHORT AND LOCAL FRESH FOOD SUPPLY CHAIN ∗

Maxime Ogier
1
, Van-Dat Cung

1
and Julien Boissière

2

Abstract. This paper aims at developing efficient solving methods
for an original service network design problem imbued with sustain-
able issues. Indeed the network has to be designed for short and local
supply chain and for fresh food products. The original features of the
problem are the seasonality of supply, the limitation of transshipments
for a product and no possibility of storage between consecutive periods.
Decisions at strategic and tactical level are (1) decisions on a subset of
hubs to open among a given set of potential locations, (2) transporta-
tion services to open between the actors and (3) flow quantities for
the fresh food products. We propose for this problem a Mixed Integer
Programming formulation and two solving techniques: Benders Decom-
position and Dynamic Slope Scaling Procedure. These techniques are
adapted to the problem and some experimental tests are conducted in
order to compare the approaches on large-scale instances.
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1. Introduction

One of the major problems faced by French agriculture is the shortfall of the
farmer’s incomes. Over the last decades, farmers have been encouraged to produce
more, while their unit selling price was decreasing. Nowadays in many regions in
France coexist (1) supplies with medium-sized farms where various products of
quality (freshness) are cultivated and (2) demands within important consumption
area and a strong desire for product quality and traceability. Hence the idea has
emerged to locally connect these supplies and demands. It is referred as short
(and/or) local food supply chain. The main purpose of this kind of supply chain
is to capture more end-use value for the farmers.

Short food supply chain is officially defined by the French Ministry of Agri-
culture as a marketing mode for agricultural products either through direct sales
from producers to consumers, either through indirect sales, provided that there
is only one middleman. In local food supply chain there may be more than one
middleman but economic actors have to remain located on a restricted area. This
paper deals with short and local fresh food supply chain, which involves notions
of both relational and spatial proximity.

Short and local fresh food supply chain is linked to sustainable development. It
should enable the development of an economy that cannot be relocated, a strength-
ening of social link between farmers and consumers, jobs creation for young farm-
ers, conservation and transmission of know-how in a region, spatial planning, resis-
tance to uncertainties thanks to diverse medium-sized structures, fresh and better
quality products, and hopefully better health for consumers. However, the environ-
mental impact must be put into perspective because of transport emissions [14].

Because of fewer middlemen in the supply chain, farmers have to take charge of
a larger part of their products marketing and distribution, which is not their core
business. It is feasible for direct sales, but for indirect sales (foodservice, supermar-
ket) volumes are more important so the supply chain network has to be properly
designed in order to organize products flows and to minimize transportation costs
(in order to be competitive with global supply).

In this paper we are interested in service network design for short and local
food supply chain (SND-SLSC). This is an optimization problem at both strategic
and tactical level. The aim is (1) to find a subset of hub to open among a given
set, (2) to set-up transportation services and (3) to determine flow quantities for
the products in order to satisfy demands with a minimal transportation cost. This
paper adopts the point of view of a local association or a political institution as
final decision-maker who wants to evaluate different scenarios of the whole logistics
system. This differs from the one of a profitable business actor who may want to
optimize only direct and indirect sales. Section 1 presents a literature review on
service network design. Then SND-SLSC problem is described and a Mixed Integer
Program (MIP) formulation is given in Section 2. Section 3 details solving methods
and experimental results are analyzed in Section 4. Conclusion and some prospects
are drawn in the final section.
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2. Literature review

Service network design problem (SNDP) has been extensively studied in the
literature. One may refer to [2, 5, 15, 16] for a survey. We are interested in traffic
service network and not in transport service network (e.g. for bus or train). The
main characteristic of NDP is to balance fixed cost for the design of the network and
variable costs for the use of the network. Based on [6] the problem can be defined
on a graph G=(N,A) where N is a set of nodes and A a set of arcs connecting
nodes. N can be separated in 3 (non-disjoint) sets: (1) origin, (2) destination, (3)
transshipment of products. A capacity, a fixed cost (for design) and a linear cost
(for utilization) can be associated with arcs. It is also possible to associate a fixed
cost to nodes (location problem). The aim of NDP is to choose arcs to open in
order to satisfy the demand for the destination nodes, at the lowest cost (sum of
design and utilization costs).

NDP covers a wide range of problems: locations problems, multi-commodity
capacitated network design problems (MCNDP), network flow problems (NFP).
Our interest is not on MCNDP since it considers that origin and destinations
are known for each commodity [7]. For the SND-SLSC problem, assignment of
farmers and clients is not an entry data. Our interest is more on the coupled
location problem and NFP. The aim of location problem is to choose, among a set
of locations, which should be open and which clients they deliver. A review on the
subject can be found in [13], and [11] present a study on NDP with capacitated
facility location. In SND-SLSC hub locations for transshipment are considered to
be different of farmers and clients locations since they cannot belong to one of
these actor categories. Moreover in this study opening costs and capacities are
not considered. Thus we are interested in a location problem close to a p-median
problem which is known to be NP-hard [10]. Once hub location is fixed, there
still remains a special NFP with fixed costs associated with opened arcs: Fixed
Charge Network Flow Problem (FCNFP). The FCNFP is to select a set of arcs
to open in the graph G and to find a feasible flow (to satisfy demands) in the
resulting graph in order to minimize the sum of fixed and variables costs. This
problem is also known to be NP-Hard [8]. Since this problem is difficult to solve,
different techniques have been studied in order to solve the problem. See [4, 9, 12]
for different approaches.

In SND-SLSC, multi-period has to be considered since products seasonality
induce regular changes in the available products, while the transshipment locations
need to be the same for the whole set of periods. Moreover, local supply chains
induce that the complete graph is not considered: if actors are too far from each
other a direct link cannot exist. Short supply chain also induces that a product
cannot flow through too many transshipment locations.
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3. Problem formulation

3.1. Data and objective

The following data are considered for SND-SLSC:

F : set of farmers;
C : set of clients;
H : set of hubs;
P : set of products;
T : set of periods;
Nt : number of sub-periods in period t (∈ T );
Hmax : maximal number of open hubs;
Sp

ft : maximum supply of farmer f (∈ F ) for product p (∈ P ), for one sub-
period in period t;

Dp
ct : demand of client c (∈ C) for product p, for one sub-period in period t;

Cfi : fixed shipping cost from farmer f to client or hub i (∈ C ∪ H);
Chc : fixed cost for delivery of client c by hub h (∈ H);
chi : unit shipping cost from hub h to client or hub i;
lpct : unit penalty cost for non satisfaction of the demand of client c for

product p in period t.

The considered logistic network contains 3 (disjoint) sets of actors. Farmers
(f ∈ F ) cultivating a set of products (p ∈ P ) and who take charge of their products
delivery. They can deliver clients (c ∈ C) directly or logistics middlemen (h ∈ H)
who manage hubs. Direct delivery is considered since it is the core idea of short
supply chains, and it permits to develop direct relationships between suppliers and
clients. However, in order to satisfy all the demands with viable logistics costs and
reasonable shipping distances for farmers, delivery through hubs with cross-dock
operations is also considered. A restriction on the number of transshipments is
added to take into account the features of short fresh food supply chain.

Moreover, since all the actors are located on a restricted area, their proximity
permits to facilitate collaborations, to establish long term relationships, to share
common objectives and to foster some local associations or political entities acting
as central coordinator of the network. Hence our proposed model assumes a cen-
tralized decision maker who is in charge of coordinating the supply and demand,
and managing the set of hubs. The model allows to evaluate the logistics costs of
the whole system.

Besides, because of production seasonality, a set of periods (t ∈ T ) is considered.
To evaluate the transportation costs, a further division of the periods is made. For
each period t, Nt sub-periods are considered with the same supply of farmers (Sp

ft)
and demand of clients (Dp

ct). The transportation plan is repeated for the Nt sub-
periods of each period t, leading to multiply transportation costs by Nt. Products
are fresh, so they cannot be stored between two periods or two sub-periods. As an
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example, each period t can represent a month since seasonality is different from one
month to another; sub-periods can represent a week if clients want to be weekly
delivered.

The aim is to determine among a set of potential hubs which ones should be
opened in order to minimize logistics costs. A maximal number of open hubs
(Hmax) is considered, and this parameter allows to evaluate different investment
scenarios for the central decision-maker. The interest is mainly on routing costs,
as opening costs for hubs are not considered in this work.

For the central decision-maker, opening costs are difficult to evaluate since they
highly depend on the quantity of products transshipping through the hub. For
example, with a small quantity, one refrigerated truck can play the role of hub,
while with an important quantity a real cross-docking platform should be built.

Farmers deliver clients or hubs with small vehicles so the shipping costs (Cfc,
Cfh) are dependent on the distance from the farmer to the client/hub, and inde-
pendent of the transported quantity. It is considered the loading quantity has no
influence on the cost for a small vehicle. Trucks leave the hubs to deliver other
hubs or clients (i ∈ H ∪C): the shipping cost (chi) is dependent of the transported
quantity because it is done through a regular service, and independent of the dis-
tance. This shipping cost can include hub operating costs. A fixed cost (Chc) is also
incurred when a client is delivered by a hub. This fixed cost represents the time
for parking, unloading the truck and the delivery of the client. When a hub deliv-
ers another hub, this fixed cost is not considered since it is assumed to be easier
and faster to deliver a hub. Hence, the model contains pure fixed cost arcs (from
farmers to other actors), pure linear cost arcs (between hubs) and concave costs
arcs (from hubs to clients). Over the planning horizon, the costs are considered
constant.

Moreover, if demand is not satisfied, there is a unit penalty cost lpct to pay. This
permits to consider total supply can be lower than total demand. In this case a
penalty cost greater than the maximum transportation cost as follows,

lpct > max
{

max
f∈F

{Cfc}; max
h,h′∈H

{
max
f∈F

{Cfh} + Ch′c + chh′ + ch′c

}}
(3.1)

can be considered in order to ensure the best satisfaction of the demand because
it is costless to deliver a demand than to pay a penalty. A lower value of the
penalty cost can be considered. It would bound the maximum cost to pay for
transportation of one unit of the demand. A demand could thus be deliberately
unsatisfied because of a too high transportation cost.

Notice that since the considered supply chain is local, it is possible to limit
farmers and hubs scope. It suffices not to consider the variables related to service
and flow between actors i and j, in a pre-processing stage, if distance between
these two actors is too large.
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3.2. Restriction on the number of transshipments

Models for NDP have been extensively studied [1, 6]. But the modelling of our
problem is more complex because we have to take into account simultaneously
the fixed and variable costs in the objective function, and the restriction to two
maximal transshipments for one product. Indeed, an arc-based formulation can
easily take into account the costs structure, but restriction on transshipments is
difficult to express, while a path-based formulation is well-adapted for this last
point but not for the first.

This work proposes an arc-based formulation with the restriction on transship-
ments. The idea is to double each vertex of the graph that represents a hub. One
vertex represents the input part of the hub (i.e. the place where come products
from farmers) while the other vertex represents the output part (i.e. the place from
which products flow to clients). For each product an arc is added to represent the
product flow between the two vertices (the two parts of the hub). This permits
to ensure that a product flow coming from another hubs reaches the output part
of the hub while a flow going to another hub leaves from the input part. Thus it
becomes impossible for a product to be transshipped more than twice. An exam-
ple is given in Figure 1, for one hub represented by the vertex h2 and changed by
vertices h′

2 and h′′
2 . For the sake of simplicity this example deals with one prod-

uct and variables x represent flow quantities associated with each arc. The new
variable xpc represents the quantity coming from farmers and directly leaving to
clients (without transshipment by another hub). The associated cost is 0. Regard-
ing the formulation, the first approach is to use two flow balance constraints with
the new variable (xpc). For the example in Figure 1 with focus on hub h2 these
two constraints are:

xp2 = xpc2 + xh2 , (3.2)

xh1 + xpc2 = xc2 . (3.3)

Instead of adding new variables and constraints (3.2) and (3.3) (plus non-negativity
of the variables), the flow balance constraint in h2 can hold:

xh1 + xp2 = xh2 + xc2 . (3.4)

and the two following constraints can be added:

xh1 ≤ xc2 , (3.5)

xh2 ≤ xp2 . (3.6)
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Figure 1. Restriction on the number of transshipments with an
arc-based model.

3.3. Mixed Integer Programming Formulation

The proposed formulation comes from the arc-based formulation of the
problem. The decision variables are as follows:

xp
fit : quantities for each product p (∈ P ) which flow in each sub-period of

period t (∈ T ), between farmer f (∈ F ) and client or hub i (∈ C ∪ H);
xp

hit : quantities for each product p which flow in each sub-period of period t,
between hub h (∈ H) and client or hub i;

zp
ct : shortage in the demand of client c (∈ C) for product p in each sub-period

of period t;

yfit :
{

1 if farmer f delivers client or hub i in period t,
0 otherwise;

yhct :
{

1 if hub h delivers client c in period t,
0 otherwise;

yh :
{

1 if hub h is open,
0 otherwise.

The Mixed Integer Programming (MIP) is the following.

Min
∑
t∈T

Nt ·
⎛
⎝ ∑

f∈F,i∈C∪H

Cfi · yfit +
∑

h∈H,c∈C

Chc · yhct

+
∑

h∈H,i∈C∪H,p∈P

chi · xp
hit +

∑
c∈C,p∈P

lpct · zp
ct

⎞
⎠ (3.7)

s.t.
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∑
h∈H

yh ≤ Hmax; (3.8)

∑
i∈C∪H

xp
fit ≤ Sp

ft ∀f ∈ F, p ∈ P, t ∈ T ; (3.9)

xp
fit ≤ Sp

ft · yfit ∀f ∈ F, i ∈ C ∪ H, p ∈ P, t ∈ T ; (3.10)∑
j∈F∪H

xp
jct + zp

ct = Dp
ct ∀c ∈ C, p ∈ P, t ∈ T ; (3.11)

xp
hct ≤ Dp

ct · yhct ∀h ∈ H, c ∈ C, p ∈ P, t ∈ T ; (3.12)∑
j∈F∪H

xp
jht =

∑
i∈C∪H

xp
hit ∀h ∈ H, p ∈ P, t ∈ T ; (3.13)

xp
fht ≤ Sp

ft · yh ∀f ∈ F, h ∈ H, p ∈ P, t ∈ T ; (3.14)

xp
hh′t ≤ min

⎧⎨
⎩

∑
f∈F

Sp
ft;

∑
c∈C

Dp
ct

⎫⎬
⎭ · yh ∀h, h′ ∈ H, p ∈ P, t ∈ T ; (3.15)

∑
h′∈H

xp
h′ht ≤

∑
c∈C

xp
hct ∀h ∈ H, p ∈ P, t ∈ T ; (3.16)

∑
h′∈H

xp
hh′t ≤

∑
f∈F

xp
fht ∀h ∈ H, p ∈ P, t ∈ T ; (3.17)

yh, yfit, yhct ∈ {0; 1} ∀h ∈ H, i ∈ C ∪ H, c ∈ C, t ∈ T ; (3.18)
xp

ijt, z
p
ct ≥ 0 ∀i ∈ F ∪ H, j ∈ H ∪ C, c ∈ C, p ∈ P, t ∈ T.

(3.19)

The objective function (3.7) is to minimize fixed transportation costs for farm-
ers and hubs, linear transportation costs for hubs and shortage costs. For each
period t, costs are multiplied by the number of sub-periods Nt where the distri-
bution scheme is repeated. Constraint (3.8) is the upper bound on the number
of hubs to open. Constraints (3.9) ensure the respect of supply quantities for the
farmers. Constraints (3.11) and (3.13) are flow balance constraints respectively
for clients and hubs. Constraints (3.10) and (3.12) are linking constraints for the
opening of transportation services. Constraints (3.14) and (3.15) are linking con-
straints for the opening of hubs. Constraints (3.16) and (3.17) ensure a product is
transshipped at most twice.

Notice that this model can be extended by considering a fixed opening cost fh

for hub h. In order to do so, the term
∑

h∈H fh · yh should be added in the objective
function (3.7), and the constraint (3.8) should be deleted.

4. Solving techniques

4.1. Branch & Cut

Since the problem has a MIP formulation, it appears natural to solve it with
Branch & Cut (B&C) techniques. Indeed, cuts are generated during the Branch
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& Bound in order to speed up the solving time. These techniques calculate lower
bounds (zLB) and upper bounds (zUB) of the optimal value z∗. This permits to
reach an optimal solution, or at least to find a solution with a guaranty on the
gap with an optimal solution (zUB−zLB

zLB
). Commercial solver CPLEX 12.2 is used

to solve the problem with these techniques. For a more detailed study of cut
generation for fixed charge network flow problem, the reader can refer to [12]. The
use of commercial solver however does not allow using the characteristics of the
SND-SLSC problem. A specific B&C for this problem could be implemented, but
it goes beyond the purpose of this study.

4.2. Benders Decomposition

Benders Decomposition [3] is a mathematical technique for solving difficult prob-
lems, and more specifically problems formulated as MIP. The initial problem has
the following formulation:

Min cT · x + f(y); (4.1)
s.t. A · x + g(y) ≥ b; (4.2)

D · y ≥ e; (4.3)
y ∈ N; (4.4)

x ≥ 0. (4.5)

Benders Decomposition consists in decomposing the problem with a master
problem and a sub-problem. The master problem captures the integer (or boolean)
variables (also called design variables for NDP) plus one floating variable. The sub-
problem is formulated as a Linear Program (LP), i.e. with only floating variables,
considering ȳ the solution of the master problem as a data:

Min cT · x + f(ȳ); (4.6)
s.t. A · x ≥ b − g(ȳ); (4.7)

x ≥ 0. (4.8)

The sub-problem is easier to solve than the original problem. Note that de-
pending on the design variables chosen (ȳ) it can be infeasible. But this situation
cannot happen in SND-SLSC since demand shortages are in the model. The dual
formulation of the sub-problem is used because it permits to solve the problem
with constraints independent of the design variables. It is formulated as follows:

Max β = u · (b − g(ȳ)) + f(ȳ); (4.9)
s.t. u · A ≥ c; (4.10)

u ≥ 0. (4.11)
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The solution of this dual sub-problem (β∗) is a lower bound for the problem with
variables ȳ. The dual solution (u∗) is finite, so it is possible to add this bound in
the master problem so that it is valid for any value of the design variables (y) and
not only for the fixed values (ȳ). Indeed, the constraints of the dual sub-problem
are independent of y so the solution u∗ remains a feasible solution for any value
of y.

Hence a Benders cut is added in the master problem, which is formulated as:

Min z; (4.12)
s.t. z ≥ u∗ · (b − g(y)) + f(y); (4.13)

z ≥ 0; (4.3)− (4.4). (4.14)

The solution of this master problem gives a lower bound for the initial problem.
The new integer solutions (y) permit to solve a new sub-problem and to iterate
the method. Each sub-problem generates a cut in the master problem which is the
following after k iterations:

Min z; (4.15)
s.t. z ≥ ui · (b − g(y)) + f(y) ∀i = 1 . . . k; (4.14). (4.16)

In Benders Decomposition, cuts are iteratively added in the master problem
until the difference between the lower bound given by the master problem and
the upper bound given by the sub-problem are under a certain fixed ε. Benders
Decomposition is considered among the “most successful solution approaches” for
network design problem with fixed costs [4].

This approach has been applied to SND-SLSC problem. One of the advantages
is that the sub-problem can be decomposed into several smaller sub-problems
since when the design variables are fixed (yh, yfct, yfht, yhct), the flow problem
can be regarded separately for each period and for each product. Moreover, other
constraints have been integrated in the master problem in order to avoid poor
quality solutions in the sub-problem.∑

f∈F

yfhm ≤ |F | · yh ∀h ∈ H, t ∈ T (4.17)

∑
c∈C

yfcm ≤ |C| · yh ∀h ∈ H, t ∈ T (4.18)

Constraints (4.17) and (4.18) ensure a service between a farmer (or client) and a
hub is opened only if the hub is open. Moreover, if not enough services are opened
in the master problem, only a few part of the demand can be satisfied in the sub-
problems, hence there is a huge shortage penalty cost. These constraints in the
master problem permit not to spend time on very suboptimal solutions. Moreover,
the advantage of Benders Decomposition is that the hub location problem can be
handled directly in the master problem; and the master problem gives a lower
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bound for the problem so for each solution there is a guaranty on the gap with an
optimal solution.

This method has also the advantage to be general, and fixed opening costs fh

for hubs can be easily considered. The master problem should be modified adding
the term

∑
h∈H fh · yh in the objective function and removing the constraint (3.8).

4.3. Dynamic slope scaling procedure (DSSP)

DSSP is an original technique first proposed in [9] in order to solve FCNFP. The
objective is to decrease solving time and memory usage for large scale instances of
the problem. The basic idea is to iteratively solve Linear Programs (LP), updating
the objective function without changing constraints. The FCNFP studied in [9] is
formulated as follows:

Min f(x) =
n∑

j=1

fj(xj); (4.19)

s.t. A · x = b; (4.20)
0 ≤ x ≤ u; (4.21)

where fj(xj) =
{

0 if xj = 0;
sj + cj · xj ; sj ≥ 0 if xj > 0.

(4.22)

sj is the fixed cost associated with the opening of the arc j and cj is the unit
cost associated with the level of activity of the arc j.

The idea is to find a linear factor which integrates the fixed and unit costs. The
objective function for each vector x̂ is rewritten as:

f̄(x̂) =
n∑

j=1

f̄j(x̂j) =
n∑

j=1

c̄j(x̂j) · x̂j ; (4.23)

where c̄j(x̂j) =
{

M if x̂j = 0;
cj + sj

x̂j
if x̂j > 0; (4.24)

where M is a large number.

This reformulation considers c̄j(x̂j) is the slope between the origin point (0; 0)
and the point (x̂j ; f̄j(x̂j)) like shown in Figure 2. The aim of the reformulation is
to find a LP formulation with the same optimal solution than the original problem.
Hence costs have to be updated at each iteration. Once the solution x̄k of iteration
k is obtained, costs for iteration k + 1 are defined as follows:

c̄j(x̄j)k+1 =

{
cj + sj

x̄k
j

if x̄k
j > 0;

c̄k
j if x̄k

j = 0.
(4.25)

The procedure ends when the solutions of two consecutive iterations of the LP
problem are the same (x̄k−1

j = x̄k
j ∀j). It is also possible to define a maximal
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Figure 2. Slope for the point (x̂j ; f̄j(x̂j)) [9].

number of iteration and then to use a heuristic procedure in order to obtain a
feasible solution for the original problem. However, DSSP do not guarantee the
solution found is the optimal solution. But results of [9] indicate this method can
give rather good results.

DSSP needs to be adapted to the SND-SLSC problem for two reasons: (1) deci-
sions for hub location cannot be considered since there are no associated costs, (2)
the network flow is multi-commodity. We consider that if the number of potential
hub location is not too big, it is possible to test the different combinations. The
number of combinations is

( |H|
Hmax

)
. In other cases, it should be possible to use a

heuristic procedure in order to first define a set of good solutions for the hub open-
ing (based on a p-median formulation), and then to apply DSSP for each element
of this solution set. Since SND-SLSC is multi-commodity, initial slopes are defined
as follows.

c̄fipt(x̄
p
fit)

0 =

⎧⎨
⎩

0 if Sp
ft = 0;

Cfi∑
p′∈P Sp′

ft

if Sp
ft > 0; ∀f ∈ F, i ∈ C ∪ H, p ∈ P, t ∈ T. (4.26)

c̄hipt(x̄
p
hit)

0 = chi ∀h ∈ H, i ∈ C ∪ H, p ∈ P, t ∈ T. (4.27)

The updating scheme is:

c̄fipt(x̄
p
fit)

k+1 =

⎧⎨
⎩

Cp
fi∑

p′∈P (x̄p′
fit)

k
if (x̄p

fit)
k > 0;

c̄k
fipt if (x̄p

fit)
k = 0;

(4.28)

∀f ∈ F, i ∈ C ∪ H, p ∈ P, t ∈ T.

c̄hcpt(x̄
p
hct)

k+1 =

⎧⎨
⎩

chc + Cp
hc∑

p′∈P (x̄p
hct)

k if (x̄p
hct)

k > 0;

c̄k
hcpt if (x̄p

hct)
k = 0;

(4.29)
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∀h ∈ H, c ∈ C, p ∈ P, t ∈ T.

c̄hh′pt(x̄
p
hh′t)

k+1 = chh′ ∀h, h′ ∈ H, p ∈ P, t ∈ T. (4.30)

Moreover, the LP formulation can be decomposed by period and by product in
order to solve several smaller LP. This permits to solve large scale problems.

This method is specific to the proposed formulation of the problem. Hence fixed
opening cost fh for hubs cannot be taken into consideration in a direct way. Indeed,
it would necessitate to test all the values of Hmax ∈ {0; ...; |H |}, and for each value
to test the different combinations of open hubs, leading to

∑|H|
k=0

(|H|
k

)
= 2|H|

possibilities. For each possibility, the cost of open hubs is added to the flow cost
calculated with DSSP. Even though DSSP is an heuristic method, this does not
seem reasonable to generate all 2|H| combinations. The previous idea proposed to
solve a p-median problem (with the costs fh) to generate a reduced set of potential
solutions could be more interesting in this case.

5. Experimental results

Computational tests have been conducted in order to compare the methods ex-
posed in Section 4. Two sets of instances are considered3. The first one (Set 1)
permits to evaluate the methods on different sizes of instances with different geo-
graphical repartition of the actors. The second one (Set 2) contains instances with
more hubs. This will allow to test the impact of the constraints on the maximum
number of transshipments.

For Set 1, three sizes of instances are considered, and described in Table 1. We
have considered that the set of products can be separated into two categories (of
the same size): fruits and vegetables. One half of the farmers produce only fruits
while the other half produce only vegetables. Since the study is on a local supply
chain, clients and hubs are randomly located on a restricted area of 100 km by
50 km. Spatial repartition of the farmers can also be randomly generated (R) or
clustered (C) on sub-areas with high density. Moreover the spatial repartition of
fruits farmers and vegetables farmers can be mixed (M) or partitioned (P), i.e.
areas are dedicated to fruits or to vegetables. Hence 12 instances are considered,
and named with three letters stating respectively the size, the spatial repartition
of actors and the spatial repartition of fruits and vegetables farmers. For each
instance it is assumed there are 4 deliveries a month (Nt = 4), and the the maximal
number of hubs to open is Hmax = 2. For each instance, assuming U(a; b) is the
uniform distribution between a and b, farmers supply (for fruits or vegetables) is
Sp

ft = U(200; 300) · sp
t where sp

t represents the seasonality of product p in period t
and is equal to 0 or 1. Clients’ demand is Dp

ct = U(100; 150) · sp
t . Since each

product p is produced by only a half of the farmers, supply and demands are equal

3Instances are available at
http://www.g-scop.grenoble-inp.fr/recherche/resources-537901.kjsp

http://www.g-scop.grenoble-inp.fr/recherche/resources-537901.kjsp
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Table 1. Instance sizes description for Set 1.

Instance type |F | |C| |H | |P | |T |
Small (S) 20 20 5 4 12
Medium (M) 50 50 5 10 12
Large (L) 50 100 5 16 12

Table 2. CPU time (in seconds) for Set 1.

Instance
B&C B&C Benders

DSSP
(CPLEX 2%) (CPLEX 5%) decomposition (5%)

S-CP 29.63 30.10 10544.27 81.55
S-CM 53.44 50.08 5.42 66.54
S-RP 31.28 34.78 3.55 71.77
S-RM 35.59 34.23 4.18 79.92
M-CP 1 691.00 1 757.76 11108.06 2 406.87
M-CM 3 084.05 3 225.31 33.61 1 972.07
M-RP 2 033.59 1 986.58 10806.20 2 218.38
M-RM 904.07 919.77 162.17 2 549.91
L-CP 3 260.97 3 312.11 185.17 7 241.53
L-CM 6 241.31 5 801.11 293.97 6 060.13
L-RP 5 065.45 5 025.09 107.51 7 960.56
L-RM 5 591.98 5 383.32 76.58 6 518.57

in average. Let dfi be the distance between farmer f and client or hub i. Fixed costs
for farmers are Cfi = 0.8 ·2 ·dfi. For hubs, Chc = 4 and chi = 0.18 and lpct = 10 ·Dp

ct.
These costs (in Euro) are similar to the ones observed in field studies conducted by
French local associations. The high value of the penalty costs makes satisfaction
of the demands a key issue, especially concerning large clients. Moreover, a scope
of action of 20 km is set for the direct shipments from farmers to clients. The
variables yfct and xp

fct are defined in the model if and only if dfc ≤ 20.
Benders Decomposition and DSSP have been implemented in Java using

CPLEX 12.2 (callable library) for solving LP and MIP problems. The original
problem has been modelled with OPL Studio and has been solved with CPLEX
12.2. The processor is an Intel Xeon 2.5 GHz with 10 Gbytes of RAM. The stop-
ping criterion for B&C with CPLEX is a gap (zUB−zLB

zLB
) less than k%. Two gap

values have been experimented: 2% and 5%. The stopping criterion for Benders
Decomposition is a gap less than 5% and a computational time less than 3 hours.
Other tests not presented here have shown several hours of solving time for small
instances when the gap for Benders Decomposition is 2%. For DSSP there is no
gap to calculate, so the stopping criterion is only the finding of a same solution
for two consecutive iterations of the method. CPU time results are presented in
Table 2.

The results show the very good performance of Benders Decomposition on solv-
ing time criterion, except on 3 instances (S-CP, M-CP, M-RP) where the gap of
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Table 3. Gap with CPLEX lower bound (in %) for Set 1.

Instance
B&C Benders

DSSP
(CPLEX 2% & 5%) Decomposition (5%)

S-CP 1.26 3.96 0.81
S-CM 0.90 2.45 0.49
S-RP 0.86 1.68 0.53
S-RM 1.08 2.67 0.56
M-CP 1.03 3.62 0.66
M-CM 1.13 2.85 0.53
M-RP 1.04 3.13 0.55
M-RM 1.41 4.10 0.62
L-CP 0.01 0.06 0.01
L-CM 0.02 2.30 0.01
L-RP 0.01 0.03 0.01
L-RM 0.02 0.97 0.01

5% has not been reached after 3 hours. The solving times for DSSP are often larger
than solving times for B&C with CPLEX. It can be noticed that for clustered and
mixed farmers’ instances (M-CM and L-CM), the solving times are lower for DSSP
than for B&C with a 2% gap. The performance of DSSP can be improved if all
the combinations of open hubs are not solved. Indeed, for each instance, a DSSP
problem is solved

( |H|
Hmax

)
=

(
5
2

)
= 10 times. A pre-processing based on a p-median

problem could permit to only evaluate the most interesting subsets of hubs reduc-
ing the computational time. Though p-median problem is NP-hard, the instance
considered are easier since we can omit products and periods. The B&C method
has been tested with two gap values, but the difference on the solving time is really
small. Most of the computational time is spent in generating solutions with a very
high gap, but at the end of the resolution, the B&C method uses to finish with
solutions of gap less than 2% even if the stopping criterion is fixed at 5%.

Performance results are presented in Table 3 for the gap with the lower bound
given by CPLEX in the B&C. The B&C with the two gap values gives the same re-
sults for lower and upper bounds. Hence only the B&C with a 2% gap is considered
from here. For each method m ∈ {B&C; Benders; DSSP}, the gap is zm

UB−zB&C
LB

zB&C
LB

,
where zm

UB is the objective function of the solution of the method m. For the B&C
with CPLEX, the gap is under 2% since it is the stopping criterion.

These results show the very good quality of the solutions given by the DSSP
method. Indeed, the gap is always lower than 1%, and better than the gap of the
B&C with CPLEX. Though DSSP requires more computational time than B&C, it
gives better solutions. Moreover, Benders Decomposition gives quite good results,
especially for large instances. More detailed results, with lower bounds of Benders
Decomposition are presented in Table 7 of the Appendix. Compared to B&C with
CPLEX, Benders Decomposition has rather good lower bounds since they are close
to the ones provided by CPLEX and the average gap between the lower bounds
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Table 4. Hubs parameters for Set 2.

Instance
M-CP5

2 M-CP5
3 M-CP7

3 M-CP7
5 M-CP10

3 M-CP10
5name

|H | 5 5 7 7 10 10
Hmax 2 3 3 5 3 5

zBenders
LB −zB&C

LB
zB&C
LB

is −1.06%. We note that for the 3 instances where computational
time reached 3 hours with Benders Decomposition (S-CP, M-CP and M-RP), both
lower and upper bounds are far from the lower bounds given by B&C.

A second set of instances named Set 2 is generated based on the instance M-CP.
This instance has been chosen because of its characteristics which are similar to
the ones of the French local associations. This set of instances permit to test the
influence of the number of hubs and maximal open hubs on the solving methods.
Hence 6 configurations are proposed in Table 4. Starting from the configuration
with the minimum number of hubs, the other ones are generated by inserting only
additional new hub locations. The farmers and clients have the same locations in
all the configurations, and the demands and costs are the same as well. This set of
instances should also permit to evaluate the solving methods when the constraints
on the restriction on the number of transshipments (constraints (3.16) and (3.17))
have an influence on the solution. Because of the cost structure, transshipment
is expensive since the variable cost chi is paid for each transshipment. Hence we
propose to limit the scope of actions of the hubs in order to favour the use of
transshipment. For each configuration, three instances are built with a scope of
actions for hubs dmax ∈ {25; 35;∞}. This second set of instances has 18 instances
with parameters Hmax, |H | and dmax named M-CP|H|

Hmax -dmax from Table 5.
Processor, memory and stopping criterion are the same as for Set 1, with only a

2% gap as stopping criterion for the B&C method. CPU time results are presented
in Table 5.

Results show that with B&C the CPU time is decreasing with the scope of action
of the hubs, except for instances with maximal number of open hubs Hmax = 5.
Benders Decomposition is not competitive for these instances since the stopping
criterion of 3 hours CPU time is always reached before the 5% gap stopping cri-
terion. In the results of Set 1, M-CP was one of the instances for which results
of Benders Decomposition were not good. The computational time of DSSP is
not so good neither for two reasons. First, introducing scope of actions will not
reduce significantly the computational time since there is the same number of
combination of open hubs to evaluate. Secondly, increasing the number of hubs
or the maximal number of hubs to open increases the computational time since
there are more combinations of open hubs to evaluate. Hence the computation of
a subset of combinations of hubs to open remains a good prospect for decreasing
the computational time of the DSSP method.

Results about the gap with the lower bound of the B&C are presented in Table 6,
and more detailed results with the lower bounds of the Benders Decomposition
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Table 5. CPU time (in seconds) for Set 2.

Instance
B&C Benders

DSSP
(CPLEX 2%) decomposition (5%)

M-CP5
2-∞ 2 317.50 11 103.99 1 877.64

M-CP5
2-35 449.69 10 812.16 2 379.74

M-CP5
2-25 147.16 10 848.92 2 648.68

M-CP5
3-∞ 790.74 10 829.28 2 211.89

M-CP5
3-35 554.41 10 949.07 1 692.73

M-CP5
3-25 302.94 10 815.23 2 769.15

M-CP7
3-∞ 2 092.43 10 908.02 8 742.84

M-CP7
3-35 1 077.80 10 900.69 9 619.28

M-CP7
3-25 362.69 11 083.41 10 340.01

M-CP7
5-∞ 515.01 11 063.83 11 804.77

M-CP7
5-35 1 114.08 11 559.28 6 605.28

M-CP7
5-25 2 602.05 10 861.30 6 726.62

M-CP10
3 -∞ 4 135.85 10 875.44 33 820.94

M-CP10
3 -35 2 971.53 11 635.56 37 133.93

M-CP10
3 -25 1 819.71 11 618.24 41 353.47

M-CP10
5 -∞ 1 315.07 10 852.35 89 766.92

M-CP10
5 -35 2 855.53 10 952.36 112 424.00

M-CP10
5 -25 2 050.98 11 207.96 105 775.99

are presented in Table 8 of the Appendix. Again, these results show the very
good quality of the DSSP method. The solutions of DSSP are better than the
solutions given by CPLEX for 17 instances out of 18. So the high computational
time of DSSP is balanced with the very good solutions given by this method.
For Benders Decomposition, when there are no scope of actions for the hubs, the
solutions are quite good (but not as good as with the B&C). When a scope of
actions is considered, and transshipments between hubs are used, upper and lower
bounds are of poor quality. Benders Decomposition is not really efficient for these
instances, and should be improved adding cuts in the master problem in order to
capture the flow between hubs in the sub-problem.

Hence these experimental results show the pros and cons of Benders Decompo-
sition and DSSP when compared to B&C using CPLEX in solving the SND-SLSC
problem. The solving time can be very short with Benders Decomposition, at least
for Set 1 except 3 instances. The solutions are of high quality with DSSP. Further-
more, both methods have the advantage of using a decomposition of the problem
(by periods and by products), hence to require less memory space, specially for
DSSP which only solves LP without any branching tree.

6. Conclusion and prospects

This paper has proposed a study on the service network design for short and
local fresh food supply chain. The problem has original constraints: the num-
ber of transshipments for a product is restricted. A Mixed Integer Programming
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Table 6. Gap with CPLEX lower bound (in %) for Set 2.

Instance
B&C Benders

DSSP
(CPLEX 2%) Decomposition (5%)

M-CP5
2-∞ 1.20 3.23 0.60

M-CP5
2-35 0.31 63.59 0.16

M-CP5
2-25 0.07 52.09 0.04

M-CP5
3-∞ 1.44 3.46 0.62

M-CP5
3-35 0.44 90.68 0.23

M-CP5
3-25 0.16 66.59 0.08

M-CP7
3-∞ 1.30 3.48 0.62

M-CP7
3-35 0.48 86.42 0.23

M-CP7
3-25 0.15 72.71 0.09

M-CP7
5-∞ 1.01 3.59 0.66

M-CP7
5-35 0.45 88.17 0.29

M-CP7
5-25 0.09 66.88 0.13

M-CP10
3 -∞ 1.29 3.48 0.62

M-CP10
3 -35 0.44 80.83 0.23

M-CP10
3 -25 0.19 83.28 0.10

M-CP10
5 -∞ 0.92 3.60 0.67

M-CP10
5 -35 0.43 84.08 0.27

M-CP10
5 -25 0.46 84.76 0.22

formulation has been proposed. In order to efficiently solve this problem, we have
proposed to adapt two approaches used for multi-commodity flow problems with
fixed costs: Benders Decomposition and Dynamic Slope Scaling Procedure (DSSP).
Experimental results have been conducted with several instance structures. The
results show the relevance of the proposed methods to tackle large-scale instances
of the problem. However, the methods can still be improved both in terms of solv-
ing time for DSSP and Benders Decomposition, and in terms of solution quality
for Benders Decomposition.

Hence, the first prospect is to strengthen the two proposed approaches, by
adding other constraints in the master problem of the Benders Decomposition, and
by combining the DSSP methods with heuristic techniques to reduce the subsets
of open hubs. An other prospect is to conduct other experiments with larger size
instances, where the use of Branch and Cut would become an issue because of the
limitation of memory space.
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Appendices

Table 7. Detailed results for Set 1.

Instance
B&C (CPLEX 2%) Benders Decomposition (5%) DSSP
LB UB LB UB UB

S-CP 1 238 254 1 253 911 1 208 748 1 289 362 1 248 364
S-CM 2 060 689 2 079 202 2 033 832 2 112 495 2 070 739
S-RP 2 543 262 2 565 079 2 505 223 2 586 700 2 556 741
S-RM 1 884 738 1 905 152 1 857 062 1 936 416 1 895 418
M-CP 5 362 040 5 417 131 5 230 614 5 563 482 5 397 545
M-CM 8 701 466 8 799 556 8 604 862 8 956 347 8 747 667
M-RP 7 683 182 7 762 708 7 545 125 7 931 132 7 725 420
M-RM 7 311 774 7 415 003 7 265 418 7 624 619 7 357 353
L-CP 824 676 000 824 774 000 824 464 338 825 153 059 824 730 379
L-CM 832 606 000 832 751 000 832 525 556 852 194 941 832 691 191
L-RP 825 024 000 825 127 000 824 784 920 825 298 010 825 099 027
L-RM 822 827 000 822 977 000 822 683 749 830 893 689 822 918 689

Table 8. Detailed results for Set 2.

Instance
B&C (CPLEX 2%) Benders Decomposition (5%) DSSP
LB UB LB UB UB

M-CP5
2-∞ 5 355 283 5 419 476 5 212 069 5 534 151 5 387 785

M-CP5
2-35 24 363 000 24 439 300 17 322 439 66 911 945 24 402 971

M-CP5
2-25 88 772 400 88 833 400 37 829 139 185 297 605 88 804 206

M-CP5
3-∞ 5 353 213 5 430 303 5 210 202 5 545 172 5 386 705

M-CP5
3-35 17 501 500 17 578 100 17 282 646 187 847 317 17 541 190

M-CP5
3-25 45 362 800 45 437 000 35 153 774 135 795 283 45 401 359

M-CP7
3-∞ 5 352 409 5 422 106 5 209 437 5 545 172 5 385 875

M-CP7
3-35 17 501 600 17 584 800 17 276 430 128 836 106 17 541 190

M-CP7
3-25 45 362 600 45 431 200 35 140 143 166 235 633 45 401 359

M-CP7
5-∞ 5 352 042 5 406 364 5 208 813 5 551 352 5 387 707

M-CP7
5-35 17 496 900 17 575 200 17 278 499 147 905 786 17 548 079

M-CP7
5-25 35 357 100 35 388 600 35 138 921 106 747 795 35 403 961

M-CP10
3 -∞ 5 352 323 5 421 109 5 209 129 5 545 172 5 385 875

M-CP10
3 -35 17 501 600 17 578 700 17 275 172 91 280 422 17 541 190

M-CP10
3 -25 40 390 800 40 468 000 20 733 170 241 582 674 40 430 851

M-CP10
5 -∞ 5 351 538 5 400 697 5 208 507 5 551 352 5 387 707

M-CP10
5 -35 17 496 600 17 572 100 17 274 953 109 888 501 17 544 329

M-CP10
5 -25 20 974 300 21 070 000 20 731 817 137 642 051 21 021 367
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