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Abstract. The paper addresses a multi-item, multi-plant lot-sizing
problem with transfer costs and capacity constraints. The problem is
reformulated according to a multi-commodity flow formalism, and de-
composed, through Lagrangean relaxation, into a master facility loca-
tion problem and a slave minimal cost multi-commodity flow problem.
The decomposition framework gives rise in a natural way to design-
ing a Lagrangean based heuristic. Numerical experiments showing the
efficiency of the proposed approach are reported.
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1. Introduction

Lot-sizing models are production planning models which involve clustering ef-
fects: demands may be produced together as part of lots or batches while sharing
some kinds of fixed cost resources. This class of problems may be set at both oper-
ational and tactical levels. Models may be dynamic or static, and involve assembly
processes (multi-level), one or several plants (multi-plant), one or several kinds
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of products (multi-item). Performance criteria may be related to production cost
minimization, delay or shortage minimization.

One of the major difficulties in solving lot-sizing problems arises from capacity
restrictions in each time period. Problems are polynomially solvable when capac-
ities are not considered, as well as when production capacities are constant over
the planning horizon [4]. When capacities are allowed to vary over the planning
horizon, the problem becomes NP-Hard [3].

Real lot-sizing problems are usually constrained by tight capacity restrictions,
high setup times and specific industrial constraints. The classical Multi-item Ca-
pacitated Lot-Sizing problem (MCLS) is widely the most basic big-bucket model
studied in the context of multi-item capacitated lot-sizing [7]. Nevertheless, obtain-
ing optimal and sometimes even feasible solutions remains challenging. Chen and
Thizy [3] prove that the MCLS problem is strongly NP-Hard. Florian et al. [5] and
Bitran and Yanasse [2] show that the single-item capacitated lot-sizing problem is
NP-hard in the ordinary sense. There are some extensions of the basic lot-sizing
problem that can be used to model a variety of industrial problems. We refer to
the extensive literature review of Jans and Degraeve [6] for an overview of the
latest modeling developments in lot-sizing field.

The problem addressed in this paper is a multi-plant multi-item capacitated
lot-sizing problem where transferring some productions between plants is allowed.
The items can be directly sent to the customers from the plant where they are
produced. A plant can get the items from other plants and keep them in a storage
area. The problem is clearly an NP-hard problem. We can refer to the work of
Sambivasan and Yahya [9] that describes some Lagrangean based heuristics to
solve a relaxed version of the addressed problem and to the work of Nascimento
et al. [8] that develop a greedy randomized adaptive search heuristic as well as
a path-relinking intensification procedure to find cost-effective solutions for the
same relaxed version of the problem.

The contribution of the present work is to present a new decomposition scheme
of the problem into a master facility location problem and a slave minimum cost
multi-commodity flow problem. Since both problems have been widely studied,
with many applications to the design of telecommunication networks or to VLSI
conception, this kind of decomposition framework open the way to faster generic
software development. Part of the difficulty consists in designing the projection
part of the decomposition scheme, in such a way that it ensures the feasibility
of both capacity and demand constraints. The rest of the paper describes the
algorithms which implement the decomposition scheme and tackle the feasibil-
ity problem in a Lagrangean relaxation framework. Numerical experiments are
reported.

The structure of the paper is the following. Section 2 describes an aggregated
formulation of the problem. A reformulation follows in Section 3 based on multi-
commodity flows. Section 4 provides the description of the Lagrangean based
heuristic to solve the problem that requires solving a facility location problem.
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Computational experiments are reported in Section 5 before a concluding part in
Section 6.

2. Problem definition and mathematical formulation

We consider a set K of K items (products) that must be produced at I plants
over a discrete planning horizon of T periods. We denote by I, the set of plants
and T the set of time periods. A plant i in I may be at the same time a producer
plant when some items are produced at i and a customer plant if i requires some
items to meet a given demand. A plant i may also be used as an inventory place for
the transfer of items from some producer sites to some customer sites. Moreover,
we have to satisfy a demand dk

it for each period t in T , item k in K, and plant i
in I. We assume that the productions and transfers are performed within a time
period. Indeed, if an item is produced at plant i at period t and transferred to a
plant j, j �= i, the transfer occurs at period t. However, if the item has to be stored
in plant j, we consider that this storage transition takes place between period t
and period t + 1.

The production of an item k at plant i at period t induces a unit production
cost pk

it as well as a fixed setup cost qk
it. A unit holding (storage) cost hk

it is induced
when one unit of item k is stored at plant i at period t. A cost ck

ijt is induced for
each unit of item k transferred from plant i to plant j at period t. The objective
is to minimize the total cost, i.e. production, setup, transfer and storage costs to
satisfy the demands over the planning horizon.

Capacity constraints are considered on both production, transfer and storage
resources. We denote by αk

it the amount of production capacity consumed per
unit of item k at plant i at period t. Similarly, βk

it is the fixed (setup) production
capacity consumed for producing item k at plant i at period t. For each unit of
item k, γk

it denotes the unit storage consumption at plant i for period t. We assume
that the available production (resp. storage) capacity at plant i at period t is Ait

(resp. Bit). The transfer operations must respect capacity restrictions. Each unit
of item k transferred from plant i to plant j at period t consumes τk

ijt. The total
consumption induced by the transfer of items from plant i to plant j at period t
must not exceed BTijt.

The problem consists in integrating both production planning decisions and
transfer/storage operations. To this end, we propose a Mixed Integer Programming
(MIP) model. The decision variables are defined for every i, j in I, k in K, and t
in T as follows:

• variable xk
it represents the (positive) quantity of item k produced at plant i at

period t;
• variable zk

it is a binary variable equal to 1 if item k is produced at plant i at
period t or 0 otherwise;
• sk

it represents the (positive) quantity of item k stored in plant i at the end of
period t (we assume that sk

i0 = 0);
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• yk
ijt gives the (positive) quantity of item k transferred from plant i to plant j

at period t.

The multi-item Multi-plant Lot-sizing problem under Storage, Transfer and Pro-
duction Capacity constraints (MLS-STPC problem) can be formulated as follows:

min
∑

i∈I
∑

k∈K
∑

t∈T (pk
itx

k
itq

k
itz

k
it + hk

its
k
it)

+
∑

i,j∈I
∑

k∈K
∑

t∈T ck
ijty

k
ijt (2.1)
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xk
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∑
j∈I yk
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it + sk

it +
∑

j∈I yk
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k∈K αk

itx
k
it + βk

itz
k
it ≤ Ait, ∀i, t (2.3)

∑
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its
k
it ≤ Bit, ∀i, t (2.4)

∑
k∈K,i∈I τk

ijty
k
ijt ≤ BTijt, ∀j, t (2.5)

xk
it ≤

∑N
l=1

∑T
r=t dk

lrz
k
it, ∀i, k, t (2.6)

xk
it, s

k
it, y

k
ijt ≥ 0, ∀i, j, k, t (2.7)

zk
it ∈ {0, 1} , ∀i, k, t. (2.8)

The objective function (2.1) minimizes the total production (fixed and variable),
transfer and storage costs. The inventory balance of the quantity of item k during
period t at plant j is given by Constraints (2.2). The production (resp. storage)
capacity constraint at plant i for period t is given by (2.3) (resp. (2.4)). Similarly,
the transfer capacity constraint when transferring items from plant i to plant j at
period t is given by (2.5). Finally, Constraints (2.6) are the linking constraints.

In the following section, we propose a different formulation of the MLS-STPC
problem based on a multi-commodity reformulation.

3. Multi-commodity flow reformulation

of the MLS-STPC problem

The MLS-STPC problem can be formulated as a fixed charge network flow
problem. A classical way to tighten this kind of formulation for standard lot-sizing
problems is to decompose the flow along each arc of the network as a function of
its destination. This defined a so-called multi-commodity formulation assigning a
different commodity to each destination node. The decomposition by commodity
allows to tighten the formulation by decreasing the upper bounds in the variable
upper bound constraints.

Several works in the literature deal with the multi-commodity version of the
classical multi-item capacitated lot-sizing problem, we quote the work of Barany
et al. [1] that proposes exact methods based on the multi-commodity formula-
tion for the problem without setup times. Wu and Golbasi [15] propose a survey
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paper for multi-item, multi-facility supply chain planning. They propose multi-
commodity flow formulations where each commodity is related to the product.

We define a reformulation of the MLS-STPC problem based on network and
multi-commodity flows, which will be useful to propose a decomposition of the
problem. A commodity will be related to an item in our formulation. We first
describe the overall network structure.

We consider a network G = (V, A) associated to the MLS-STPC problem such
that the set of nodes is defined by V = {(i, t), i ∈ I, t ∈ T } ∪ {T + 1, 0} where 0
and T + 1 are two dummy nodes that represent respectively a sink and a source
node. The set of arcs will consist in what will be defined as the storage, production,
transfer and customer arcs. We define the following set of arcs:

• the set As of storage arcs ((i, t), (i, t + 1)) that define the total inventory at
plant i at the end of period t, for i = 1, . . . , N, t = 1, . . . , T − 1;
• the set At of transfer arcs defined by ((i, t), (j, t)), t ∈ T , i, j ∈ I, i �= j, that

represent the transferred quantities between plants i and j;
• the set Ap of production arcs defined by (0, (i, t)), i ∈ I, t ∈ T , that define the

produced quantities at plant i at period t;
• the set Ac of customer arcs defined by ((i, t), T + 1), i ∈ I, t ∈ T , that define

the quantities consumed at plant i at period t;
• an additional arc (T + 1, 0) called the equilibrium arc will be also defined.

The set of arcs A of G is thus defined as follows:

A = As ∪At ∪Ap ∪Ac ∪ {(T + 1, 0)} .

We now characterize arc labels in the multi-commodity network. Each arc a of
A is characterized by a flow, a cost structure and a capacity. Two cost components
will be defined for each arc a: a fixed cost FCk(a) and a variable cost V Ck(a) for
each item k ∈ K as follows:

• if a = ((i, t), (i, t + 1)) is a storage arc, then FCk(a) = 0 and V Ck(a) = hk
it;

• if a = ((i, t), (j, t)) is a transfer arc, then FCk(a) = 0 and V Ck(a) = ck
ijt;

• if a = (0, (i, t)) is a production arc, then FCk(a) = qk
it and V Ck(a) = pk

it;
• if a = ((i, t), T + 1)) is a customer arc, then FCk(a) = 0 and V Ck(a) = 0;
• if a = (T + 1, 0), then FCk(a) = 0 and V Ck(a) = 0.

Similarly, we define a fixed FCP k(a) and variable V CP k(a) capacity consump-
tion for each arc a of A regarding each item k as follows:

• if a = ((i, t), (i, t+1)) is a storage arc, then FCP k(a) = 0 and V CP k(a) = γk
it;

• if a = ((i, t), (j, t)) is a transfer arc, then FCP k(a) = 0 and V CP k(a) = τk
ijt;

• if a = (0, (i, t)) is a production arc, then FCP k(a) = βk
it and V CP k(a) = αk

it;
• if a = ((i, t), T + 1) is a customer arc, then FCP k(a) = 0 and V CP k(a) = 0;
• if a = (T + 1, 0), then FCP k(a) = 0 and V CP k(a) = 0.
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Figure 1. An example of the MLS-STPC problem with two
plants and two time periods.

The capacity CA(a) of an arc a can be defined as follows:

• if a = ((i, t), (i, t + 1)) is a storage arc, then CA(a) = Bit;
• if a = ((i, t), (j, t)) is a transfer arc, then CA(a) = BTijt;
• if a = (0, (i, t)) is a production arc, then CA(a) = Ait;
• if a = ((i, t), T + 1) is a customer arc, then CA(a) = +∞;
• if a = (T + 1, 0), then CA(a) = +∞.

In the sequel, we will denote dk
it by Dk(a) if a = ((i, t), T + 1), i.e. a is a

customer arc.

Figure 1 illustrates an instance of the problem for a single commodity k with
two plants i and i + 1 and a planning horizon consisting in periods t and t + 1.
The values between parenthesis represent the demands all the other values are the
cost parameters. The zero values are omitted.

In the sequel, we will denote by f a multi-commodity flow and Ind(f) the
boolean vector indexed on the arcs where for a ∈ A, Ind(f(a)) = 1 if f(a) > 0 and
0 otherwise. Moreover, we will denote by (a−, a+) each arc a, where a− and a+
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represent the endvertices of a, and by Apst (resp. Ast) the set Ap ∪As ∪At (resp
As ∪At).

The reformulation of the MLS-STPC problem is:

min
∑

k∈K,a∈Ap
FCk(a)Ind(fk(a)) +

∑
k∈K,a∈Apst

V Ck(a)fk(a) (3.1)
∑

k∈K(V CP k(a)fk(a) + FCP k(a)Ind(fk(a))) ≤ CA(a) ∀a ∈ Apst (3.2)

fk(a) = Dk(a) ∀a ∈ Ac, k ∈ K (3.3)
∑

b fk((b, a−)) =
∑

b fk((a+, b)) ∀a ∈ A, k ∈ K. (3.4)

Constraints (3.2) are the capacity constraints. Satisfying the demand for each
item is imposed by Constraints (3.3). Finally, Constraints (3.4) represent the clas-
sical flow conservation constraints.

It comes that the MLS-STPC problem reduces to solving the fixed charge
minimum cost multi-commodity flow problem for G, that is finding the multi-
commodity flow f∗ that minimizes the total cost.

4. Solving method for the MLS-STPC problem

by Lagrangean relaxation

As mentioned in Section 1, the MLS-STPC problem is NP-hard. We propose
in the following a Lagrangean heuristic approach based on the decomposition of
the problem into a facility location and a minimum cost multi-commodity flow
problem.

The Lagrangean heuristic is based on the relaxation of the capacity con-
straints, i.e. Constraints (3.2) in the MIP formulation presented in Section 3. The
Lagrangean multiplier vector is an indexed vector λ on the set Apst of positive
values. The Lagrangean function L(f, λ) will thus be defined as follows:

L(f, λ) =
∑

k∈K,a∈Ap

FCk(a)Ind(fk(a))

+
∑

k∈K,a∈Apst

V Ck(a)fk(a)

+
∑

a∈Apst

λ(a)
∑

k

FCP k(a)Ind(fk(a))

+
∑

a∈Apst

λ(a)
∑

k

V CP k(a)fk(a)

−
∑

a∈Apst

λ(a)CA(a).

Therefore, the Lagrangean problem consists in minλ,f L(f, λ) such that Con-
straints (3.3) and (3.4) are satisfied.
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Let us suppose that we are provided with a Lagrangean multiplier vector λ =
(λ(a), a ∈ Apst) ≥ 0 then, for every pair of nodes (v, w) in V \{0, T + 1}, we may
set:

• P k
λ (v) = FCk((0, v)) + λ((0, v))FCP k((0, v));

• Qk
λ(v, w) = V Ck((0, v)) + λ((0, v))V CP k(0, v) + Distkλ(v, w))dk

w,T+1;
where Distk

λ(v, w) is the length of a shortest path from v to w in the net-
work G, computed while considering every arc a ∈ Ast with length V Ck(a) +
λ(a)V CP k(a).

Before stating a property that will be useful for solving the problem, we recall
briefly the definition of the standard (uncapacitated) facility location problem that
will be useful to solve the MLS-STPC problem (cf. [10–12]). Given a (location) set
of nodes X , a function g from X to the set of the non negative rational numbers,
and a function l from X×X to the set of the non negative rational numbers, such
that l(x, x) = 0 for any x in X . The facility location problem aims at finding a
subset Y of X which minimizes the quantity:

∑
x∈Y g(x) +

∑
x∈X miny∈Y l(x, y).

We get the following property:

Theorem 4.1. Minimizing L(f, λ) on the set of multi-commodity flows f which
satisfy the demand constraints (3.3), reduces to solving, for every k in K, an
instance of a facility location problem denoted by FLk

λ on X = V \{0, T + 1}
with g = P k

λ and l = Qk
λ. The related optimal value minf L(f, λ) is then equal to

W k
λ −

∑
a∈Apst

λ(a)CA(a) where W k
λ is the optimal value of the facility location

instance FLk
λ.

Proof. Solving optimally an instance of FLk
λ provides a set of nodes Y ∗ that

minimizes
∑

v P k
λ (v) +

∑
v minw Qk

λ(v, w). Moreover, by construction, each node
v ∈ Y ∗ will be related to a production arc (0, v) and the demand of the customer
arc (w, T + 1) will be satisfied by using the shortest path between v and w, i.e.
the one that minimizes the total cost V Ck(a) + λ(a)V CP k(a) over all the arcs of
the path. Moreover, the value

∑
v∈Y P k

λ (v) is minimized, which corresponds to the
minimization of the total fixed cost components in the Lagrangean function, i.e.
FCk((0, v))+λ((0, v))FCP k((0, v)). If we fix all the active production arcs as the
set of arcs (0, v) such that v ∈ Y ∗, then every customer node w is going to get the
whole demand dk

w,T+1 from the node v in Y ∗ that induces the best total cost. �

We describe in the following a Lagrangean based heuristic for the MLS-STPC
problem which requires solving instances of the facility location problem. We in-
troduce the following notations that will be useful for the description of the solving
approach. We will assume that a solving method called FACLOC, that uses param-
eter N which is the replication number, will be used to solve the instances of the
facility location problem. The FACLOC solving methods used will be specified in
Section 5. Two alternative algorithms will be considered. The first one will consist
in using a standard MIP solver CPLEX. The second one will be based on a heuris-
tic described in Section 5. Computing the maximal value maxλ≥0 minf L(f, λ),
may be done according to the following procedure LAG-LOT-SIZING:
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LAG-LOT-SIZING(N: Integer)
λ← 0; W ← 0; λmax ← 0; n← 0;
While (W is improved in less than N iterations) do

Compute Wλ by applying FACLOC procedure to FLk
λ;

If Wλ > W then W ←Wλ; λmax ← λ; Update Aλ
p ;

Update λ so that the sequence (λn) satisfies convergence conditions of the
sub-gradient method (n→ +∞, λn → 0 and

∑
i λi → +∞);

Update the Distkλ matrices;
n← n + 1;

EndWhile

The set Aλ
p corresponds to the active production arcs related to the final solu-

tion. Several formulas can be used to compute the sequence (λn) [14], which allow
efficient updating of the Lagrangean multipliers.

LAG-LOT-SIZING ends while yielding some value W , together with some mul-
tiplier vector λmax and a subset Aλ

p of active production arcs, i.e. the arcs with
a strictly positive flow. However, since the capacity constraints are relaxed, the
feasibility of the solution is not guaranteed. Therefore, a heuristic called PRO-
JECTION is proposed in the following, to try to get a feasible solution.

The PROJECTION heuristic is based on solving a relaxation of the MLS-STPC
problem based on the solution obtained with LAG-LOT-SIZING algorithm. The
main steps of the PROJECTION algorithm are the following:
1. Solve a classical minimum cost multi-flow problem for G′ = (V ′, A′) where

A′ = Aλ
p ∪ Astc ∪ {(T + 1, 0)} and S′ is the subset of S induced by A′ and

where all the fixed parameters are set to 0. The solution obtained at this step
is denoted by f̄k(a).

2. Solve the following instance of the MLS-STPC problem using LAG-LOT-
SIZING for G = (V, A):
• for each arc a ∈ Ac, Dk(a)← Dk(a)− f̄k(a) (residual demands);
• for each arc a ∈ Aλ

p ; CA(a) ← CA(a) −
∑

k∈K V CP k(a)f̄k(a) −∑
k∈K FCP k(a) (residual capacities);

• for each arc a ∈ Ast; CA(a) ← CA(a) −
∑

k∈K V CP k(a)f̄k(a) (residual
capacities).

The first step of the PROJECTION algorithm consists in solving a classical min-
imum cost multi-flow problem with a standard linear programming solver. The
second step of the PROJECTION algorithm will provide a set of active produc-
tion arcs denoted by Āλ

p . The drawback of the PROJECTION procedure is that
the obtained solution is not guaranteed to be feasible, therefore we propose to
iterate the procedure in a solving approach called MLS-STPC-ALG that aims at
producing a feasible solution for the problem, i.e. a solution that meets the de-
mand of the customers while respecting all the capacity restrictions. The solving
method is described in the following:
MLS-STPC-ALG

Stop ← 0; Aλ
p , Āλ

p ← ∅;



438 S. DELEPLANQUE ET AL.

Initialize N, Initialize an MLS-STPC instance IG with the original parameters
of the problem;

While Non Stop do
Apply LAG-LOT-SIZING(N) on instance IG; Update Aλ

p ;
If Aλ

p = ∅ then Stop ← 0 (no feasible solution);
Else

Compute f̄ using PROJECTION given Aλ
p ;

If f̄ is null then Stop ← 0 (no feasible solution);
Else

Update IG with residual demands and capacities;
If (Dk(a) = 0) for all a ∈ Ac then Stop ← 0 (feasible solution);

EndIf
EndIf

EndWhile

The MLS-STPC-ALG procedure terminates providing at least a lower bound on
the objective value of the MLS-STPC problem. When the constraints are satisfied,
a feasible solution is obtained.

5. Experimental analysis

We performed experiments on a PC AMD opteron 2.1 GHz. The MIP solver
used to solve the minimum cost multi-flow problem is CPLEX. Facility location in-
stances were alternatively handled through CPLEX and for large instances through
FACLOC heuristics. We tried several instance packages based on the ones de-
scribed in [9]. The generated instances correspond to the following parameters
where UD means Uniform Distribution:

• number of plants: I = 2, 3, 4, 5, 8, 10;
• number of items: K = 2, 3, 5, 10, 15;
• number of periods: T = 3, 5, 6, 10, 15;
• variable production cost is generated using UD[0,8];
• unitary inventory (storage) cost is generated using UD[0, 2];
• variable transfer cost is generated using UD[0, 2];
• fixed setup cost is generated using UD[5, 15];
• demand is generated using UD[0, 50].

The size of an instance is defined by the triplet (I, K, T ).
Capacities were generated as follows, a first flow f was randomly generated, in

such a way it satisfies the demand constraints. A value of a covering parameter α
was chosen in UD[0, 100], and the capacity values for the arcs were computed in
order to make possible an increase of f on the equilibrium arc by α%.

We denote by RCP (k) the ratio used to measure the capacity tightness of a
production plant of item k. We used the same capacity tightness average for all the
instances but not the same distribution on all the couples (i, t). First, we generated
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instances with RCP (k) = 30%, k ∈ K for the experiments of Sections 5.1 and 5.2.
The instances generated in Section 5.3 are such that RCP (k) = 0, which means
that the production capacity distribution is nearly the same for all the producer
plants.

We handled the facility location instances in an exact way, using CPLEX, Ta-
ble 1 describes the obtained gaps in percentage. The following notations are used:

• Ite: number of iterations of the MLS-STPC-ALG procedure;
• Gap: given by W−WOpt

WOpt
∗ 100 which is the gap between the value W produced

by MLS-STPC-ALG and the optimal value WOpt obtained using the CPLEX
library;
• GLg: given by W−WLag

WLag
∗ 100 which is the gap between W and the value WLag

produced by the LAG-LOT-SIZING algorithm;
• GLP: given by W−WLP

WLP
∗ 100 which is the gap between W and WLP produced

by the LP relaxation of the MLS-STPC problem;
• GPr: given by Wopt−Wopt1

Wopt1
∗100 which is the gap between Wopt and the optimal

value Wopt1 of the problem obtained by only taking into account production
capacity constraints;
• GFr: given by Wopt−Wopt·free

Wopt·free
∗ 100 which is the gap between Wopt and Wopt·free

related to the uncapacitated version of the problem;
• Def: percentage of the whole demand which could not be satisfied after the 1st

iteration of the MLS-STPC-ALG algorithm.

5.1. Experiments with facility location handled through CPLEX

library − part 1

Table 1 reports the results obtained when solving the facility location instances
in an exact way (through CPLEX). Lagrangean relaxation yields good lower
bounds. Indeed, if we compare the Gap values with the ones obtained with the LP
relaxation, i.e. GLP, we can see that the lower bounds are close to the optimal
values. The mean Gap value is equal to 0,68% while its value is 17,41% for the
GLP mean value. The projection mechanism, though it usually fails in meeting
the demands at the end of the first iteration, still gets close to those demands and
usually meets them fast.

5.2. Experiments with facility location handled through FACLOC

heuristic

When large size instances are considered, heuristic procedures are used to han-
dle the facility location problem. It is interesting to study in such a case, the way
the solution induced by the application of such a heuristic procedure is going to im-
pact the final result. In order to understand it, we used the instances described in
Table 1, and, for every instance, we computed the mean error (in percentage) per-
formed by the FACLOC procedure used, and compared it with the final error. The
FACLOC like heuristic which we used is based on designing a randomized GRASP
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Table 1. Gap analysis.

Size Ite Gap (%) GLg (%) GLP (%) GPr (%) GFr (%) Def (%)
(3,5,3) 1 0 5.4 15.6 0.8 85 0
(3,5,3) 1 0 7.5 12.7 0.6 54 0
(3,5,3) 1 0 0.8 15.9 5.8 32.5 0
(4,10,6) 1 1.7 0.2 15.6 2.9 21.5 0
(4,10,6) 1 0 0.2 20.3 3.8 9.2 0
(4,10,6) 2 1.0 5.4 13.8 20.0 25.4 3.5
(5,10,10) 1 0.7 0.6 19.7 5.2 20.2 0
(5,10,10) 1 0.7 1.5 15.3 6.7 19.1 0
(5,10,10) 1 0.1 0.4 20.2 5.5 14.7 0
(8,10,15) 1 0 0.9 13.5 2.6 23.6 0
(8,10,15) 1 0.8 3.4 12.8 3.7 49.0 0
(8,10,15) 2 1.5 4.5 19.4 7.5 58.3 2.2
(10,15,15) 1 1.2 2.6 23.7 3.4 37.2 0
(10,15,15) 1 0 0.9 14.5 3.5 29.6 0
(10,15,15) 3 2.5 6.5 28.2 11.8 82.0 4.8

greedy and descent scheme to construct a solution. An initial solution is obtained
by considering that each demand for a plant related to a given customer is pro-
duced at the same plant. A shortest path computation between plants follows and
allows to transfer some demands between plants, thus leading to the improvement
of the initial solution. It can be interesting to use a more sophisticated algorithm
such as the one described in [13].

The following parameters are used:

• Ite-Approx (resp. Def-Approx) represents parameter Ite (resp. Def) defined in
Section 5.1, for the case where the facility location problem is handled through
a heuristic way;
• Gap-Approx and GLg-Approx are the increase rate (in %) with relation respec-

tively with Gap and GLg of the experiments conducted in Section 5.1, for the
case where the facility location problem is handled through a heuristic way;
• Gap-Loc-Approx is the mean error (in %) induced by the use of the FACLOC

heuristic instead of a MIP solver when solving the facility location sub-problem.

A sensibility analysis is conducted. Table 2 provides the obtained results.

We can see that GLg-Approx increase closely follows the gap between the op-
timal solution and the result produced by the heuristic. Still, impact on the final
Gap value was more difficult to predict, due to the dependency of the behaviour of
the projection mechanism on the characteristics of the arc production set obtained
at the end of the LAG-LOT-SIZING procedure.
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Table 2. Sensibility analysis: heuristic vs. exact method for FACLOC.

Size Ite-Approx Gap-Approx GLg-Approx Gap-Loc-Approx Def-Approx

(%) (%) (%) (%)

(3,5,3) 2 10.8 6.7 6.5 2.3

(3,5,3) 1 2.0 2.0 2.1 0

(3,5,3) 1 12.6 12.8 12.5 0

(4,10,6) 2 9.9 5.1 3.8 1.8

(4,10,6) 1 6.8 6.7 6.4 0

(4,10,6) 1 0.1 1.5 1.9 0

(5,10,10) 2 11.0 9.6 8.5 5.2

(5,10,10) 2 20.7 15.0 13.4 2.1

(5,10,10) 1 8.4 6.9 7.7 0

(8,10,15) 1 5.0 5.1 4.8 0

(8,10,15) 1 14.5 16.4 15.2 0

(8,10,15) 3 10.2 4.5 3.9 6.2

(10,15,15) 1 12.5 14.9 10.6 0

(10,15,15) 1 7.0 6.8 7.3 0

(10,15,15) 2 3.2 7.6 5.5 2.8

Table 3. Gap analysis.

Size Ite Gap (in %) GLg (in %) GLP (in %) GFr (in %)
(3.5.6) 2 2.01 4.90 3.54 52.16
(3.5.6) 2 1.29 3.94 3.93 30.16
(3.5.6) 2 0.85 6.45 2.28 34.47
(3.5.6) 2 1.42 3.70 3.70 48.22
(3.5.6) 2 0.00 10.51 1.28 62.46
(3.3.10) 1 2.13 5.76 6.50 57.02
(3.3.10) 2 0.00 6.56 5.08 62.74
(3.3.10) 2 0.98 6.37 6.29 94.34
(3.3.10) 2 1.69 18.57 6.22 112.65
(3.3.10) 2 0.11 8.04 3.63 65.13
(5.5.15) 2 4.40 6.41 18.16 16.71
(5.5.15) 2 2.71 4.25 12.34 18.49
(5.5.15) 2 5.04 6.20 18.88 16.71
(5.5.15) 2 4.38 5.69 15.35 20.19
(5.5.15) 2 2.44 3.71 13.00 20.63

5.3. Experiments with facility location handled through CPLEX

libraries − part 2

As shown in Section 5.1, we solved the facility location problem in exact way
but we generated other kind of instances with Rcp(k) = 0, k ∈ K and other sizes.
Table 3 reports the results of three sets of five instances.

In Table 3, we can notice that even if the capacity repartition seems to lead
to more difficult instances, the proposed procedure solves efficiently the problem.
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We can notice that the optimal solution is reached for some instances. However,
the gap values increase in comparison to the results observed in Table 1, but are at
most equal to 5,04%. The impact of the capacity constraints can also be measured
by the high increase of the GFr gap values.

The CPU times for instances of size (5, 10, 10) are less than one minute in av-
erage for the FACLOC heuristic while they reach 10 min for instances of size
(10, 15, 15). The CPU times of the FACLOC heuristic greatly depend on the pa-
rameters of the method such as the number of iterations of the GRASP heuristic.
The CPU times reach 60 min in average when using CPLEX for instances of size
(10, 15, 15).

A more detailed analysis on the computation times should be conducted on
more dedicated heuristic and specialized flow algorithms. The contribution of the
paper here was to test if the decomposition principle for solving the problem was
accurate and could lead to good solutions. It should be pursued by tuning fast
solving methods to tackle large instances of the problem.

6. Conclusion

In this paper, we address an NP-hard multi-item multi-plant lot-sizing problem
with production, transfer and storage capacity constraints. This work generalizes
the problem considered by Sambivasan and Yahya [9]. We described the way the
problem might be decomposed, into facility location and network multi-commodity
flow problems. Since both problems have been widely studied, casting lot-sizing
problems into such a decomposition framework opens the way to design generic
software components. An efficient Lagrangean heuristic is proposed. The maximum
deviation from the optimal value does not exceed 5% when the facility location
is solved to optimality for all the instances of the test-bed. Several research per-
spectives arose from this study. We can extend the model by considering fixed
parameters for the storage and the transfer aspects. We can also allow some laten-
cies on the transfer operations. Moreover, specific algorithms should be used for
FACLOC procedure instead of a MIP solver. This is also the case for the minimum
cost multi-flow problem. Other subgradient techniques could also be used to speed
up the Lagrangean algorithm. Finally, the good quality of the solutions suggests
the implementation of a branch-and-bound algorithm to find optimal solutions to
the problem.
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