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NEWSBOY PROBLEM: VIABILITY OF OPTIMAL
INITIAL SELLING PRICE AND ORDERING POLICIES
IN THE PRESENCE OF EXOGENOUS PRICE DECLINE

AND RANDOM LEAD TIME
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Abstract. Analysis of empirical sales data lead us to consider news-
boy model for four practical market conditions arising from the pres-
ence/absence of stochastic lead time and exogenous linear temporal
decline in selling price when distribution of the stochastic demand de-
pends upon initial selling price. Viability of the solutions is discussed
for three strategies of obtaining optimal initial selling price and/or or-
dering quantity. Numerical studies are conducted to assess the effects
of lead time and price decline.
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1. Introduction

The single period problem (SPP) or the newsboy problem − as addressed by [1]
has become one of the most versatile inventory models encompassing a wide va-
riety of products − such as fashion apparels, hi-tech goods etc. − that are char-
acterized by short demand season, single ordering opportunity and time indepen-
dent demand. Although this model has been extended in various directions [2–6],
rapidly evolving market conditions entail further extensions of the existing models.
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The inevitability of the presence of lead time in the markets for such goods has
been pointed out by [7]. Ordering policy for SPP with continuous price decline in
the presence of stochastic lead time has been presented by [8].

In this paper, we first present market reports and sales data from a developing
country, which motivated us to consider different pricing and/or ordering policies
in the presence of exogenous decline in selling price and random lead time. We also
consider the situation where (a) the season begins with the product being sold at
an initial selling price (ISP), which at times is the same as MRP (maximum retail
price) of the product, and affects the demand distribution (see Sect. 1.3); (b) sub-
sequently, market situations compel the retailer to offer progressive discounts that
are effective for periods with random lengths of time; (c) it is not possible to
control the salvage value. This limits the pricing policy to setting of only the ISP.

Considering the short product life cycles (market reports and data presented
in Sect. 1.1), newsboy model can be extended to one that is reflective of the cur-
rent market scenarios. Further, a theoretical optimal price/order quantity may
not be practical if it exceeds the reference price/target sales volume (Market re-
ports presented in Sect. 1.2). Thus, the SPP where both price and quantity are
set simultaneously [9–11] may not cater to the challenges posed by contemporary
markets. Hence, practical considerations make it imperative to check the viability
of the theoretical optimal values. [12] considers optimization of initial price for an-
nounced discounts For exogenous price decline at random time epochs by random
amounts, we, in this paper, extend the model of [8] to consider the important prob-
lem of optimization of ISP in addition to ordering policy. The contribution of this
paper to the existing literature is three folds (i) four different market conditions
are considered, namely, combinations of (a) replenishment with/without random
lead time and (b) selling price with/without exogenous price decline. (ii) Three
types of market dependent strategies are considered, namely, optimization of ISP
only, optimization of order quantity only and joint optimization of ISP and order
quantity. (iii) A major practical consideration is checking the viability of the opti-
mal policies. To the best of our knowledge, pricing and ordering policies for such
models with stochastic ISP dependent demand, random lead time and viability
considerations for the policies have not yet been addressed in published literature.

The remainder of this paper is organized as follows: Sections 1.1 and 1.2 pro-
vide a brief survey of market reports that enabled us to identify the factors such as
exogenous lead time, shortening of demand season and the influence of reference
price. Section 1.3 provides the empirical data collected from retail outlets of fash-
ion apparel and statistical analyses to investigate the discount pathways as well as
the price-demand curve. Section 2 presents the model, notations and assumptions.
Brief explanation of the four different market situations and three profit maxi-
mization strategies considered in this paper are presented. Section 3 deals with
the characteristics of profit function. Section 4 presents numerical examples and
managerial insights that illustrate various analyses pertaining to profit maximiza-
tion and viability of the theoretical optimal solutions under realistic circumstances.
Finally, Section 5 provides conclusions.
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1.1. Competition and innovations lead to exogenous price decline

and shortening of product life cycle

From early times, increasing the sales volume in order to outclass competitors is
the main reason for indiscriminate price cuts being indulged in by various compa-
nies [13].This trend is still evident in the current market. For example, the price of
laptops of various brands in India dropped by 20% during the span of six months
as shown below:

Brand Name RAM HDD Processor Price 6 months ago Price on 31st
July 2011

HP(MINI) 1 GB 160 GB Atom 20 500 17 000
HCL 1 GB 320 GB Celeron 25 500 21 000
COMPAQ 1 GB 320 GB Dual Core 27 500 22 500
SONY 2 GB 320 GB Dual Core 31 000 25 000

The prices are in INR and all these models have Intel processors and Windows
Operating Systems.

The rapid decline in laptop prices have been attributed to innovation in tech-
nology and cut throat competitions [14]. With the arrival of new trend/technology,
companies start offering discounts in order to sell out remaining stock of the old
items. Such trend of competition and innovation induced price decline is also ob-
served in fashion apparel markets in India. For example, companies like Koutons,
Pantaloons, Cotton County, etc. offer successive discount rates as the selling season
advances. As a result of different responses by companies in the wake of competi-
tion and obsolescence of products, the offered discounts are exogenous in nature.

1.2. Reference price

Consumers are sensitive to price deviations from prices of competing products,
at times obligating managers to fix the price of a product on the basis of reference
price. [15] pointed out that competitor pricing was the strongest determinant of
retail pricing strategies. Take a cue from the market trend for sales of iPhones in
India. The then latest 8 Gbyte 3 G iPhone from Apple was launched in India with
a price tag of Rs. 31 000 i.e., approximately $715 as per currency value of INR on
22nd August 2008 as compared to $199 in the US markets [16]. Market reports
revealed that only 1500 units of iPhones were sold in the first week of its launch in
India [17] and only 20 000 units were sold in one year despite the huge smartphone
market in India, including iPhones, estimated at 6 million units in 2009 [18]. This
poor sales performance, despite the initial hype along with the then novelty factor
of iPhone was attributed to the disproportionately high ISP in India as compared
to its US retail price which acted as reference price [19].

1.3. Data collection and analysis

In order to investigate the sales pattern of fashion apparels in the presence
of exogenously declining prices, data was collected for sales of trendy wears of
three different brands from retail outlets located at Indore (India).
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Figure 1. (a) Daily sales of trendy wears grouped into five cate-
gories as per MRPs. (b) Price pathways for two items and linear
trends fitted to the stepwise decline of selling price over time.

Figure 1a shows the daily sales for a season which approximately lasts for 74 days
wherein items are classified into five categories on the basis of their maximum
retail prices (MRPs). During the season, item specific price discounts have been
offered on random occasions. Figure 1b shows the price pathways for 2 such items.
Number of discounts offered in a season for each of the items ranged from 2 to 4.
Each new discount rate was valid for at least a week except for the last discount
rate − generally the maximum discount rate of a season − which at times was
offered for about a couple of days. Contrary to general perception, no surge in
the sales is observed from Figure 1a in any category for any discount offer. On
performing run test with mean as the cut-off point, the sample sales data in each
of the five categories is found to be random with p-values 0.45, 0.86, 0.11, 0.62
and 0.1. χ2-test of goodness of fit shows that the sales data for each category of
items follow uniform distributions (p-values: 0.1, 0.33, 0.62, 0.26 and 0.98).

Further, it is observed that the maximum realized demand rate (demand poten-
tial, say D) varies for different categories and hence the probability distributions
of the sales for different categories vary. This gives rise to the necessity of inves-
tigating the demand potential as a function of ISP (MRP in this case) which we
denote by S0. Figure 2 shows the price-demand curve i.e., S0 vs. D. Since, as
per the statistical analysis presented above, the demand for each category follows
U(0, D), where D depends upon the ISP S0, we call D as D(S0) and estimate it
from the mean of daily sales for each category. We observed that D(S0) decreases
as S0 increases, implying that sales of items decrease stochastically as S0 increases.
Three different functions − power, exponential and linear − are fitted on the price-
demand curve. On fitting the power function D(S0) = K S−a

0 , we find that for
K = 97 674 and a = 1.3 with R2 = 0.97. Similarly, on fitting the exponential func-
tion D(S0) = K Exp[ −a S0], we get K = 21.43, a = 0.0007 with R2 = 0.95 and
finally, for the linear function D(S0) = K − a S0 , we get K = 14.405, a = 0.0042
with R2 = 0.89. All the three functions reasonably explain the price demand curve.
A linear or exponential functional form of D(S0) will provide theoretically easy
functions to deal with. However, for detailed study, we have chosen the iso-elastic
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Figure 2. Price-demand curve: three functions viz. linear, ex-
ponential and power fitted to the curve with iso-elastic power
function as the best fit.

price-demand curve which is popular in empirical studies as reported by [20]. In-
cidentally the power function has the highest coefficient of determination for the
sample under consideration.

2. Model and notations

We consider a situation where retailer faces stochastic price dependent demand
from the end-customer market. The retailer places an order of q units (decision
variable) at a unit cost c before the beginning of the demand season, say at time
epoch 0 and the demand begins at time epoch t � 0. Replenishment of q units
arrives at a random time L ∈ (0, t1). If there is no lead time, demand begins at
time epoch t0 = 0. The season ends at time epoch t1. Unsold goods fetch a salvage
value of R per unit. Some of the consumers are price sensitive while others are time
sensitive. The advancing season off puts the time sensitive consumers from buying
the product, nullifying the possible surge in sales due to discounts. The stochastic
demand rate X is thus assumed to be of the commonly used multiplicative form
X = D(S0)ξ independent of t, where ξ >0 is the random component, ξ ∈ (0, 1]
and the demand potential D(S0) is a declining function of S0. Both mean and
variance of the demand function depend upon S0. Although the total demand
during the season, say Y (S0), is a random variable, we assume it to be evenly
distributed over the season such that at any epoch t, for a given value of Y (S0),
X(t) = Y (S0)/(t1 − t0) is constant.

The model assumptions are as follows:

(i) Random lead time L ∼ U(0, t1).
(ii) Selling price S(t) at epoch t
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S(t) =
{

S0 − b(t − t0)t0 � t � t1
R when t = t1; R � S(t1)

where the rate of decline b is a known constant and S0 (the decision variable) is
the selling price at t0. Unsold inventory at the end of the season i.e., at t = t1, is
sold off at a salvage price R per unit. t0, t1, b, R fixed and known to the retailer

(iii) Shortage cost p > 0 per unit (this includes pre arrival shortages, as well as
stock out shortages) and holding cost h > 0 per unit per unit time.

(iv) X demand rate at any epoch during the season, a random variable with
probability distribution U(0, D(S0)), where D(S0) decreases stochastically
with the increase in S0.

D(S0) = KS−a
0 , such that the price elasticity a > 1 and q � D(S0) Δ (the max-

imum total demand possible for a season of length Δ). For convenience, we use
the notation D and D(S0) interchangeably. As in [8], we consider four market
conditions.

M1: selling price declines during the season and lead time is present;
M2: selling price is static over time and lead time is present;
M3: selling price declines during the season and there is no lead time;
M4: selling price is static over the season and there is no lead time.

For these market conditions, in view of the influence of the reference price and
pressure to achieve target sales volume discussed in Section 1.2, we introduce
three strategies ST1, ST2 and ST3 as described below and discuss viability of the
solutions for each of them.

ST1. Find the joint optimal ISP and sales volume.
This is the conventional profit maximization strategy generally applicable in
the absence of both target sales and the influence of reference price.

ST2. Find the optimal sales volume for a fixed ISP.
This enables the practitioner to optimize his profit returns in competitive
markets wherein an external factor like reference price obligates the practi-
tioner to fix ISP of the product. Minimum values of profitable ISP are also
identified.

ST3. Find the optimal ISP for a given sales volume.

This allows practitioners to identify the viability of a target sales volume by check-
ing if it is profitable under the prevailing business constraints.

Notations.
g(L) = 1/t1; L ∈ (0, t1); pdf of L; Note1: we use the same notation for a

particular value of L.

Δ = t1 − t0: length of the season;
Δ1 = t1 − L: time over which demand is served in the absence of stock out short-

age;
x: random variate corresponding to demand rate X ;
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Figure 3. Time-inventory graph for different conditions of
stochastic lead time and demand rate.

q1 = q − xΔ: unsold items at the season end, when L <t0, q � xΔ;
q2 = q − xΔ 1: unsold items at the season end, when t0 � L � t1, q � xΔ1;
t∗0 = t0 + q/x: random time epoch at which inventory is exhausted when L <t0,

q<xΔ;
t∗1 = L + q/x: random time epoch at which inventory is exhausted when

t0 <L, q <xΔ1;
q/x: length of time for which q units of inventory last if demand rate

is x;
τ = t1 − q/D: time epoch such that inventory arriving at this epoch or later will

not result in stock out shortage.

It must be noted that Δ1, t∗0 and t∗1 are random variables while τ is a constant
depending upon the value of the decision variable q.

TEPL=0: Case without lead time. This is the case for market conditions M3
and M4. We simply use the notation TEP for the case with lead time.

j∗: With a decision variable denotes its optimal value for the market con-
dition Mj; j = 1, 2, 3 and 4.

TEP |STi: TEP calculated using strategy STi; i = 1, 2. & 3.
q|STi: q calculated using strategy STi; i = 1, 2 & 3.
TEP |v=y: TEP calculated for a given v = y; y = 0, v= any parameter.

Note 2. Since the entire amount purchased will be sold including the amount
sold at salvage price, we use the term q for both “sales volume” as well as “order
quantity”.

3. Total expected profit

Time inventory graphs for different situations based on the inventory replenish-
ment time are presented in Figure 3.

This enables us to derive the holding cost, shortage cost, selling price and hence
the net profit functions. For D constant, [8] obtained the TEP functions for the
cases with and without lead time (see Appendix E in supplementary material) and
showed that both these functions are concave w.r.t. q.

In this paper, we calculate the TEP functions when D = KS−a
0 for the market

conditions
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(a) M1 and M2 i.e., when lead time is present

TEP = −q3S2a
0 (b + h)
6K2t1

− S−a
0 KpΔ

2

+
Sa

0 q2 ((S0 − R + p)(t0 − 3t1) − Δh(2t0 + t1) + Δb(2t1 − 3t0))
4Kt1Δ

+
q(−ht20 − 2ct1 + 2pt1 + bΔ2)

2t1
−

Sa
0 q2(S0 − R + p + bt0 + ht1)Log

[
S−a

0 KΔ

q

]
2Kt1

(3.1)

(b) M3 and M4 i.e., when lead time is not present

TEPL=0 = −KpS−a
0 t1
2

− q (S0 + p − c)

− q2Sa
0

4Kt1

(
2p − 2R + S0 + bt1 + 3ht1 + 2t1 (b + h) Log

[
KS−a

0 t1
q

]
+ 2S0

)
(3.2)

We now present further properties of the two TEP functions.

Theorem 3.1. TEP is a concave function of S0 iff

f(S0) � 2t0(a + 1) − Δ(2a2 + a − 3) +
4(a − 1)Kt1

q
,

where

f(S0) = − 4a2(b + h)qSa
0

3KS0
− 4a2K2pt1Δ

q2S2a+1
0

+
2a2(p − R + bt0 + ht1)

S0
− 2(a + 1)Log

[
KΔ

qSa
0

]

Proof. Please see Appendix A1.
A practical range of the values of S0 for which Theorem 3.1 holds is given below

in Corollary 3.2. �

Corollary 3.2. TEP is a concave function of S0 in the range

(
3K(bt0 + ht1)

2q(b + h)

)1/a

� S0 �
(

4Kt1(a − 1)
q(2a2 + a − 3)

)1/a

·

Proof. Please see Appendix A2.
We now derive a range of values of S0 for which TEPL=0 is concave. �
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Theorem 3.3. TEPL=0 is a concave function of S0 iff g(S0) � (b+ h) t1, where

g(S0) = 2pK2
1 +

S0

a2
(2(a − 1)K1 + (a + 1)) ,

such that
K1 =

Kt1
qSa

0

·

Proof. Please see Appendix B1. �

Note 3. K1 = Kt1
qSa

0
� 1 since qSa

0 � Kt1.
The condition in Theorem 3.3 depends upon both the decision variables S0 and

q and hence is not of much practical use. For a specified value of S0, Theorem 3.4
enables one to obtain the range of values of q for which TEP |L=0 is a concave
function of q.

Theorem 3.4. A necessary and sufficient condition for TEPL=0 to be a concave
function of q is q � K(S0−c+p)

(b+h)Sa
0

.

Proof. Please see Appendix C1. �

The practical range of S0 for which Theorem 3.4 will hold is given by Corol-
lary 3.5 below.

Corollary 3.5. TEPL=0 is concave in q if S0 � c – p + (b + h)t1

Proof. Please see Appendix C2. �

Since TEP and TEP|L=0 are transcendental functions in the decision variables,
it is not possible to get closed form solutions for S0 and q. Hence numerical tech-
niques have to be employed for finding q∗ and S∗

0 . Corollaries 3.2, 3.5 and The-
orem 3.4 can be used for finding initial guess value(s) while obtaining the roots
for S0.

Theorem 3.6 presents a necessary and sufficient condition for joint optimality of
TEP with respect to both the decision variables, which can be verified for a given
set of parameter values.

Theorem 3.6. TEPL=0 is a concave function in (q, S0) iff g(S0, K1) � 2 where

g (S0, K1) =2a2(S0 − c + p)
K3

1

S2
0

+

(
(3a − 1)(b + h)t1S0 − (a(b + h)t1)

2
)

S2
0

+
K1

S2
0

(
S0

(
(3a − 1)(c − p) + (3a2 − 6a + 2)(b + h)t1

)
−(3a − 5)S2

0 − 3a2(b + h)(c − p)t1

)

+
2K2

1

S2
0

(−a2
(
(c − p)2 + p(b + h)t1

)
+ S0(2a2 − 3a + 1)(c − p) − S2

0(a2 + 3a − 2)
)
.

Proof. Please see Appendix D1. �
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4. Numerical illustrations and managerial insights

In this section, based on the empirical data analyzed in Section 1.3, we present
profit analysis using the strategies ST1, ST2 and ST3 where we identify optimal
and viable policies for market conditions M1, M2, M3 and M4.

Example 4.1. The empirical data discussed in Section 1.3 can be summarized as
the case where D(S0) = KS−a

0 with K = 97 674, a = 1.3 (Fig. 2) and rate of price
decline b = 35.64 (y2 of Fig. 1b), t0 = 10, t1 = 84, c = 300, R = 200 and p = 30.
This means that orders are placed 10 time units before the actual beginning of
the season and the season lasts for approximately 74 days, goods are purchased
at Rs. 300/unit and unsold units at the end of the season are disposed off at Rs.
200/unit. Penalty cost is assumed to be 10% of the purchase price per unit.

For the stated set of parameter values, Table 1 shows the values of S∗
0 , q∗ and

TEP∗ calculated using ST1 for M1, M2, M3 and M4 for different values of holding
cost.

4.1. Conducive levels of holding cost

In Table 1, we observed that, as h increases, TEPj∗ and q∗j decrease while S0j
∗

increases for each j = 1, 2, 3 & 4. The values of TEPj∗, S0j
∗ and qj∗ may be used

to decide whether a business venture should be taken up or called off for a given
level of holding cost. For example, if the target profit is above Rs. 90 000, it is
unachievable if h � 9 for M1. Alternatively, if the ISP of an item needs to be set
below Rs. 5000 due to competition, and h � 9 for the business set up, optimal ISPs
obtained for none of the market conditions are viable indicating that the business
will not be conducive in these situations.

4.2. ST1: Not viable in M1 and M3

If the fixed value of S0 for ST2 and the fixed value of q for ST3 deviate from the
respective optimal values calculated using ST1 then TEP∗|ST1 > Max(TEP∗|ST2,
TEP∗|ST3). However, in practice, ST1 may not be viable in all the market condi-
tions. Table 1 shows that S0j

∗|ST1 for M1 and M3 are much higher than viable
MRPs. For example, even at h = 1, S01∗ = 10009.09 and S03∗ = 8708.0 that
are much higher than the actual MRPs of the items under consideration which
are generally between Rs. 1000 to Rs. 5000 as per our observation. Although not
appropriate in M1 and M3, ST1 is an effective strategy for M2 and M4 e.g., S0j

∗

<5000 for any for h < 9. These ISPs are acceptable as per existing market MRPs.

4.3. Sensitivity of market conditions with unit change

in holding cost

In this section, we investigate the sensitivity of TEPj∗, qj∗ and S0j
∗ with unit

increase in the value of h i.e., from h = i to i + 1 across a range of penalty cost p.
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Table 1. TEPj∗, qj∗ and S0j
∗; j = 1, 2, 3 and 4 calculated using

ST1 for different values of h.

M1 M2 M3 M4

H TEP1* q1* S01* TEP2* q2* S02* TEP3* q3* S03* TEP4* q4* S04*

1 97771.4 40.4 10009.1 144769.1 203.1 2542.1 188235.1 60.1 7872.5 278280.7 317.6 2089.0

2 96474.7 37.6 10415.1 138902.9 168.6 2870.9 185075.2 55.5 8306.5 263271.9 248.8 2486.2

3 95271.0 35.2 10808.3 134004.8 143.7 3191.7 182161.5 51.5 8731.7 251332.4 203.1 2876.5

4 94146.8 33.1 11191.4 129813.3 124.9 3506.8 179458.2 48.0 9150.0 241482.4 170.7 3262.4

5 93091.3 31.2 11566.1 126160.3 110.3 3817.6 176937.2 45.0 9562.8 233142.0 146.6 3645.3

6 92096.1 29.6 11933.7 122930.8 98.5 4125.2 174576.0 42.4 9971.0 225939.7 128.0 4026.0

7 91154.4 28.2 12295.3 120042.9 88.8 4430.1 172356.0 40.0 10375.5 219623.8 113.3 4405.0

8 90260.6 26.8 12651.7 117435.9 80.8 4733.0 170262.0 37.8 10776.8 214016.1 101.3 4782.7

9 89409.8 25.7 13003.5 115063.9 73.9 5034.2 168280.9 35.9 11175.4 208986.1 91.4 5159.5

10 88598.2 24.6 13351.3 112891.2 68.1 5334.0 166401.8 34.2 11571.6 204435.5 83.2 5535.4

11 87822.2 23.6 13695.4 110889.3 63.0 5632.6 164615.3 32.6 11965.8 200288.3 76.1 5910.7

12 87078.8 22.6 14036.4 109035.6 58.6 5930.1 162913.1 31.1 12358.1 196485.0 70.1 6285.5

13 86365.5 21.8 14374.4 107311.3 54.7 6226.8 161288.1 29.8 12748.9 192977.9 64.9 6659.8

14 85679.9 21.0 14709.8 105701.1 51.3 6522.7 159734.2 28.5 13138.3 189728.3 60.3 7033.8

15 85020.0 20.3 15042.8 104192.1 48.2 6818.0 158245.7 27.4 13526.4 186704.3 56.3 7407.4

16 84383.9 19.6 15373.6 102773.5 45.5 7112.6 156817.7 26.3 13913.4 183879.5 52.7 7780.7

17 83770.1 18.9 15702.3 101436.0 43.0 7406.8 155445.9 25.3 14299.3 181231.8 49.5 8153.8

18 83177.1 18.3 16029.2 100171.6 40.7 7700.5 154126.4 24.4 14684.3 178742.4 46.6 8526.7

19 82603.6 17.8 16354.4 98973.5 38.7 7993.8 152855.5 23.5 15068.5 176395.1 44.0 8899.3

20 82048.4 17.2 16678.0 97835.8 36.8 8286.7 151630.2 22.7 15451.9 174176.3 41.7 9271.9

Table 2. Sensitivity of TEPj*, qj* and S0j* to the change in holding cost.

TEP1* q1∗ S01∗ TEP2∗ q2∗ S02∗ TEP3∗ q3∗ S03∗ TEP4∗ q4∗ S04∗
APC30 −0.92 −4.37 2.73 −2.04 −8.53 6.45 −1.13 −4.98 3.62 −2.43 −10.01 8.23
ACP10 −0.92 −4.39 2.74 −2.07 −8.63 6.56 −1.13 −4.98 3.62 −2.43 −10.01 8.23
APC50 −0.91 −4.36 2.72 −2.01 −8.44 6.34 −1.13 −4.98 3.62 −2.43 −10.02 8.23
APC −0.92 −4.37 2.73 −2.04 −8.53 6.45 −1.13 −4.98 3.62 −2.43 −10.01 8.23

In Table 2, for each column, APC u is the average percentage change calculated as

1
19

19∑
i=1

100 × (Uj∗|h=i+1 − Uj∗|h=i)
U∗|h=i

where U = TEP , S0 and q. APC is the average of APC u for all u. Negative
APC indicates decrease in the value with unit increase in holding cost. For inter-
pretation, we consider only the magnitude of the average. We observe that with
change in h, M4 is most sensitive with APC in TEP4∗, q∗4 , S04∗ being (2.43, 10.1,
8.23) followed by M2 (2.04, 8.53, 6.45), M3 (1.13, 4.98, 3.62) and M1 (0.92, 4.37,
2.73). On comparing APC’s in M3 and M2, it may be noted that presence of lead
time makes the business much more sensitive to change in holding cost than the
presence of price decline.
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Table 3. Sensitivity of Mj to the presence/absence of random
lead time and/or price decline.

M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

TEP1*-TEP2* TEP1*-TEP3* TEP1*-TEP4* TEP2*-TEP3* TEP2*-TEP4* TEP3*-TEP4*

AC30 −26 205.6 −78 259.6 −121 245 −52 054.1 −95 039.2 −42 985.2

AC10 −26 625.6 −78 118.2 −121 124 −51 492.6 −94 498.3 −43005.7

AC50 −25 802.6 −78 399.9 −121 365 −52 597.3 −95 562.2 −42 964.9

AC 26211.2 78259.2 121244 52048 95033.2 42985.3

S01*-S02* S01*-S03* S01*-S04* S02*-S03* S02*-S04* S03*-S04*

AC30 8000.28 1728.65 7751.205 −6271.63 −249.074 6022.553

AC10 8026.76 1650.22 7676.479 −6376.53 −350.278 6026.256

AC50 7975.53 1806.88 7825.799 −6168.66 −149.733 6018.922

AC 8000.86 1728.584 7751.161 6272.27 249.695 6022.577

q1*-q2* q1*-q3* q1*-q4* q2*-q3* q2*-q4* q3*-q4*

AC30 −56.3936 −10.4331 −82.6338 45.9605 −26.2402 −72.2

AC10 −58.2049 −10.2646 −82.519 47.94033 −24.314 −72.3

AC50 −54.6973 −10.5994 −82.7478 44.09784 −28.0505 −72.1

AC −56.4319 −10.4324 −82.6335 45.99956 −26.2016 −72.2

4.4. Sensitivity of TEP∗
, S0* and q∗ to lead time and decline

in selling price

We now segregate the effect of lead time and price decline on TEP∗, q∗ and S∗
0 .

Table 3 – provides ACp, the average change calculated using the values in Table 1

which is calculated as
20∑

k=1

(Ui∗|h=k − Uj∗|h=k) forU = TEP , S0 , or q; i = 1, 2, 3,

j = 2, 3, 4 and for penalty cost p. “AC” is the overall average across the values of p.
Negative AC indicates the decrease in the optimal values of profit, order quantity
or ISP due to the presence of either lead time or price decline. Table 3 provides
the following information. Mi-Mj reveals the effect of change from market Mi to
market Mj; i, j = 1, 2, 3, 4. For example, in the column M1-M2, we observe that
the presence of exogenous decline in selling price leads to lowering of the average
TEP∗ by Rs. 26211.2, increase in average S∗

0 by Rs. 8000.9 and lowering of the
average optimal order quantity by 56.4 units.

4.5. ST2: Sustaining business in competitive market

This strategy enables practitioners to identify optimal order quantity when ISP
needs to be set competitively. The graph of qj∗ vs. ISP is presented in Figure 4a
where qj∗; j = 1, 2, 3 & 4 for different values of ISP are calculated using parameters
in Example 4.1 with h = 10. “#” marked on each curve indicates the ISP at which
unique maximum qj∗ is obtained and decreasing ISP below this value will lead to
decreased qj∗. This shows that decreasing the ISP does not always lead to increase
in optimal sales volume. For example, for the market condition M1, the maximum
optimal sales volume q1∗ = 72.93 is achieved at S0 = 3170 and any value of ISP
below this will yield lower optimal sales volume.
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Figure 4. (a) Reducing ISP does not necessarily increase optimal
sales volume (q∗). # denotes the ISP below which q∗ will decline.
(b) Minimum values of ISPj (i.e., SLj) below which business will
incur loss. × denotes theoretical optimal ISP while + denotes the
practical ISP.

Our finding is consistent with that of the article in [22] which had also pointed
out that the general perception that lowering price will bring more consumers is
not always true.

4.6. ST2 to identify minimum ISP below which business will eat red

ink

The graph of ISP vs. TEP∗
j in Figure 4b shows the minimum value of ISP for

each market condition below which a business venture will eat red ink. We label
these minimum values as SLj (j = 1, 2, 3, 4 representing the market condition Mj)
in the graph. For M1, lowering ISP below SL1 = Rs. 1720/unit will make the
business a losing venture and so will SL2 = Rs. 620, SL4 = Rs. 1060 while SL3 =
Rs. 900.

4.7. Theoretical optimal vs. viable pricing policy

The graph of TEPj∗ against ISP in Figure 4b shows that, for M2 and M4
i.e., when there is no decline in selling price, the TEPj∗ curves are almost flat
for a long range of ISP. “×” marked on the curves denotes the optimal value of
ISP = S0j

∗|ST1 which will provide TEPj∗|ST1. “+” marked on the profit curves
indicates the viable value of ISP say

S0j
+<S0j

∗|ST1

such that difference between the optimal profit and profit at ISP = S0j+ is toler-
able say

DIFFProfit = 100 ×
(

TEPj∗|ST1 − TEPj∗|ISP=S+
0j

TEPj∗|ST1

)
� 10%
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but the difference between S∗
0 |ST1 andS0j

+is significant say

DIFF ISP = 100 ×
(

S0j
∗|ST1 − S0j

+|ISP=S+
0j

S0j∗|ST1

)
� 40%.

For example, in M4, DIFFProfit = 7.9 but S04+ = 2960 is approximately 47%
lower than S∗

04|ST1 = 5535.4, which may otherwise be non viable in competitive
market. Similarly, for M2, DIFFProfit = 7.8 and DIFF ISP = 50.1. When investi-
gated for different values of holding cost and for penalty costs p = 10, 30 and 50,
DIFFProfit and DIFFISP for j = 2 and 4 are consistent with the above findings.
This investigation shows that when there is no decline in selling price, practi-
tioners can identify a viable pricing policy without compromising much on TEP.
However, for M1 and M3, in order to bring ISP down to a practical level, one
has to compromise around 20% of the profit return obtained from ST1 (data not
shown).

4.8. ST3 to identify maximum profitable (i.e., viable target) sales

volume

We now consider the situation when a sales target is set for a season and manager
can maximize the profit only by optimizing the ISP. Each row in Table 4 shows the
values of TEP∗

j and S0j
∗ calculated for different target values of q. For each value

of the holding cost, there exists an upper cap of the profitable sales volume qmj

where j represents the market condition (last column of Tab. 4).
Procuring order quantity beyond qmj will lead to loss irrespective of the value

of ISP. For example, when h = 10, qm1 is 160 i.e., procuring more than 160 units
will result in loss, making any target above this is not viable in terms of profit.
Similarly, qm2 = 410, qm3 = 210 and qm4 = 560. The values of qmj for h = 15
and 20 are also provided in the table. This allows managers to identify the viable
target sales volumes.

4.9. Target profit: adjusting sales volume for a given S0 (<S∗
0)

If a firm enters a competitive market with a fixed ISP which is less than the
theoretical optimal value, then the theoretical optimal profit is not achievable. The
firm may then consider a target profit <TEP∗ and increase the sales volume above
its optimal value to achieve the target. For example, suppose a firm enters M4
having parameter values as provided in example 1 and h = 10 with fix S0 = Rs.
3000 (<S04∗). From Table 1, we observe that for h = 10, S04∗ = 6043, q∗4 = 84
and TEP4∗ = 225 796. Figure 5 – the graph of TEP j ; j = 1, 2, 3 & 4 vs. q for
h = 10, S0 = 3000 and other parameters of example 1– shows the range of the
values of q [qLj , qUj ]; q∗j <qLj <qUj , that need to be sold to achieve a target profit.
If the firm sets a target profit TEP4 = 200 000, Figure 5 shows that this target is
achievable for 150 � q � 190 i.e., at least 66 units more than q∗4 are required to
be sold but not more than 106 units to achieve this target profit.
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Table 4. TEPj* and S0j*; j = 1, 2, 3&4 calculated using ST3.
qmj is the maximum order quantity beyond which TEPj* < 0.
“X” denotes either loss (-ve profit) or non profitable optimal ISP.

h � q � 10 60 110 160 210 260 310 360 410 460 510 560 qmj

h = 10

TEP1* 82 956 77 754 49 417 14939 -22618 X X X X X X X 160

S01* 25104 7690 5080 3808 3089 X X X X X X X

TEP2* 89 296 112 693 109 231 99 191 85 933 70 728 54 203 36 719 18503 −290 X X 410

S02* 23 635 5889 3661 2721 2189 1843 1598 1413 1269 1153 X X

TEP3* 163 378 173 414 132 201 78 413 18 464 –45 224 X X X X X X 210

S03* 32 132 8098 5080 3808 3089 2621 X X X X X X

TEP4* 171 687 223 249 223 667 211 611 193 499 171 751 147 570 121 648 94 426 66 204 37 197 7566 560

S04* 31 667 7867 4874 3610 2894 2426 2092 1841 1644 1483 1350 1237

h = 15

TEP1* 81 381 67 647 30 516 –12 553 X X X X X X X X 110

S01* 24 937 7481 5080 3808 X X X X X X X X

TEP2* 87 761 103 568 92 640 75 247 54 749 32 416 8876 –15 509 X X X X 310

S02∗ 23 473 5723 3491 2549 2015 1666 1418 1232 X X X X

TEP3∗ 160 370 155 357 99 097 30 261 –44 735 X X X X X X X 160

S∗
03 32038 8098 5080 3808 3089 X X X X X X X

TEP4∗ 168 702 205 534 191 506 165 297 133 347 98 110 60 831 22 256 –17 108 X X X 360

S∗
04 31 547 7735 4732 3458 2730 2249 1903 1636 1422 X X X

h = 20

TEP1∗ 79 810 57 631 11 615 –40 045 X X X X X X X X 110

S01∗ 24 769 7275 5080 3808 X X X X X X X X

TEP2∗ 86 230 94 562 76 423 52 078 24 895 –3845 X X X X X X 210

S02∗ 23 310 5553 3316 2367 1828 1475 X X X X X X

TEP3∗ 157 368 137 301 65 992 –17 891 X X X X X X X X 110

S03∗ 31913 8098 5080 3808 X X X X X X X X

TEP4∗ 165 723 187 982 159 894 120 202 75 456 28 272 –19 875 X X X X X 260

S04∗ 31 425 7596 4575 3280 2529 2020 1639 X X X X X

Figure 5. The maximum achievable target profit and the range
of required sales volume qjL and qjU , where qjL/qjU denotes the
minimum/maximum sales volume that need to be sold to achieve
the target profit for market Mj.

Similarly, range of q for Mj; j = 1, 2 and 3 for revised targets are shown in the
figure. The practitioner may opt to go for qUL in order to bring market visibility
of the products.
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5. Conclusion

In this paper, empirical data analysis of price and demand shows the presence
of exogenous decline in selling price and stochastic decline in demand potential
of products with increase in ISP. Approximating the exogenous price decline by a
linear function, we extend an existing newsboy type model considering ISP and or-
der quantity as the decision variables. Profit maximization has been investigated
for markets with and without lead time/price decline by considering (i) jointly
optimal pricing and ordering policy, (ii) ordering policy for a fixed ISP and (iii)
pricing policy for a fixed order quantity. We observe that (i) may not be suitable
when lead time and/or price decline is present. Sensitivity of decision variables
due to change in holding cost, penalty cost and presence of lead time and price de-
cline have been investigated. For (ii), we have shown that indiscriminately lowering
the selling price may not lead to higher optimal sales volume and also identified
the minimum value of ISP below which the business will no longer remain prof-
itable. For (iii), we identify the upper limit of target sales volume such that order
quantity more than this value will make the business eat red ink. On the other
hand, when ISP has to be reduced below the optimal price due to competition,
we identify the number of units that need to be sold in addition to the optimal
sales volume so as to achieve a target profit. Our work assists a practitioner to
set a realistic value of ISP and target profit/sales volume in view of the existing
business constraints.

Appendix A1. Proof of Theorem 3.1.

Differentiating (1) with respect to S0, and equating to 0 and simplifying, we get

12q − 4(b + h)q3S2a−1
0

K2t1
+ 6KpS−a−1

0 Δ − 3q2Sa
0

Kt1Δ

×
(

2t0 + 3Δ − 2aΔ (p − R + S0 + bt0 + ht1)
S0

+ 2Δ Log
[
KS−a

0 Δ/q
])

=
3aq2Sa−1

0

Kt1Δ
(A∗ (2t0 + 3Δ) + Δ (3bt0 + 2ht0 − 2bt1 + ht1)

+2Δ (A∗ + bt0 + ht1) Log
[
KS−a

0 Δ/q
])

, (A1.1)

where A∗ = (p − R + S0)
Second derivative of TEP with respect to S0 is given by,

∂2TEP
∂S2

0
= 4aq3(2a−1)(b+h)

K2t1S
2(1−a)
0

− 6(a+1)aKpΔ

Sa+2
0

− 6q2Sa−2
0 aΔ(Q−2S−1

0 )
Kt1Δ

− 6aq2Sa−1
0 (2t0+3Δ−2Δ((aQ/ S0)−Log[KΔ/(qSa

0 )]))
Kt1Δ

− 3a(a−1)q2Sa−2
0 (A∗(2t0+3Δ)+Δ(3bt0+2ht0−2bt1+ht1)+2ΔQ Log[KΔ/(qSa

0 )])
Kt1Δ ,

(A1.2)

where Q = p − R + S0 + bt0 + ht1.



NEWSBOY PROBLEM 387

Substituting (A1.1) in (A1.2) and simplifying, we get,

∂2TEP
∂S2

0

=
−S−2−a

0

12K2t1Δ

⎛
⎜⎜⎝

4a2(b + h)q3S3a
0 Δ + 6(a + 1)Kq2S2a+1

0 Δ
×Log [KΔ/(qSa

0 )] + 12(a − 1)K2qSa+1
0 t1Δ

+12a2K3pt1Δ
2 + 3Kq2S2a

0

× (S0

(
2t0(a + 1) − Δ(2a2 + a − 3)

)− 2a2ΔB∗)
⎞
⎟⎟⎠

(A1.3)
where B∗ = (p − R + bt0 + ht1).
TEP is concave in S0 iff

− 4a2(b + h)q3S3a
0 Δ − 12(a− 1)K2qSa+1

0 t1Δ − 12a2K3pt1Δ
2

− 6(a + 1)Log [KΔ/(qSa
0 )]

− 3Kq2S2a
0

(
S0

(
2t0(a + 1) − Δ(2a2 + a − 3)

)− 2a2ΔB∗) � 0 (A1.4)

Dividing both side of (A1.4) by Kq2S2a+1
0 Δ, we get

− 4a2(b + h) (qSa
0/(KS0)) − 12(a − 1) (Kt1/q)

− 12
(
a2K2pt1Δ/(q2S2a+1

0 )
)

− 3
ΔS0

(
S0

(
2t0(a + 1) − Δ(2a2 + a − 3)

)
−2a2ΔB∗ − 6(a + 1)Log [KΔ/(qSa

0 )]
)

� 0

⇒ −4a2qSa
0 ((b + h)/(3KS0)) −

(
4a2K2pt1Δ/(q2S2a+1

0 )
)

+ 2a2 (B∗/S0) − 2(a + 1)Log [KΔ/(qSa
0 )]

� 2t0(a + 1) − Δ(2a2 + a − 3) + 4(a − 1)Kt1/q

⇒ f(S0) � 2t0(a + 1) − Δ(2a2 + a − 3) + 4(a − 1)Kt1/q

where

f(S0) =
(
2a2B∗/S0

)− 4a2 (((b + h)qSa
0/(3KS0))

+K2pt1Δ/(q2S2a+1
0 )

)− 2(a + 1)Log [KΔ/(qSa
0 )]

This completes the proof of Theorem 3.1.

Appendix A2. Proof of Corollary 3.2

Let us denote the negative terms and positive terms in (A1.4) by y1 and y2
respectively, where

y1 = − 4a2(b + h)q3S3a
0 Δ − 12(a− 1)K2qSa+1

0 t1Δ

− 12a2K3pt1Δ
2 − 6(a + 1)Kq2S2a+1

0 (Δ Log [KΔ/(qSa
0 )] + t0)
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and
y2 = 6a2Kq2S2a

0 ΔB∗ + 3Kq2S2a+1
0 Δ

(
2a2 + a − 3

)
TEP is concave in S0 iff

|y1| � |y2| . (A2.1)

This is true iff

3Kq2S2a+1
0 Δ(2a2 + a − 3) − 12(a− 1)K2qSa+1

0 t1Δ � 0 (A2.2)

and

6a2Kq2S2a
0 ΔB∗ − 4a2(b + h)q3S3a

0 Δ − 12a2K3pt1Δ
2 − 6(a + 1)

× Kq2S2a+1
0 (t0 + Δ Log [KΔ/(qSa

0 )]) � 0 (A2.3)

(A2.2) holds true if

−3KqSa+1
0 Δ

(
4(a − 1)Kt1 − qSa

0 (2a2 + a − 3)
)

� 0

i .e., iff 4(a − 1)Kt1 � qSa
0 (2a2 + a − 3)

i .e., iff
(

4(a − 1)Kt1
q(2a2 + a − 3)

)1/a

� S0 (A2.4)

Now, from (A2.3), compare the two components 6a2Kq2S2a
0 Δp and 12a2

K3pt1Δ
2. The inequality

6a2Kq2S2a
0 Δp − 12a2K3pt1Δ

2 � 0

i.e., q2S2a+1
0 − 2K2t1Δ � 0

is always true sinceqSa
0 � KΔ � Kt1. Thus, (A2.3) holds true if

6a2Kq2S2a
0 Δ(bt0 + ht1) − 4a2(b + h)q3S3a

0 Δ

− 6(a + 1)Kq2S2a+1
0 (t0 + Δ Log [KΔ/(qSa

0 )]) � 0

The above inequality always holds true if

6a2Kq2S2a
0 Δ(bt0 + ht1) − 4a2(b + h)q3S3a

0 Δ � 0

i .e., iff 3K(bt0 + ht1) � 2(b + h)qSa
0

i .e., iff
(

3K(bt0 + ht1)
2(b + h)q

)1/a

� S0 (A2.5)

From (A2.4) and (A2.5), it is proved that if TEP is always a concave function
of S0 in the range

(
3K(bt0 + ht1)

2(b + h)q

)1/a

� S0

(
4(a − 1)Kt1

q(2a2 + a − 3)

)1/a

·
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Appendix B1. Proof of Theorem 3.3

Differentiating Equation (3.2) with respect to S0 and equating to 0, we get

2(p − R) + t1 (b + 3h + 2(b + h)Log [Kt1/(qSa
0 )]) + 2S0 =(

4Kt1/(aq2Sa−1
0 )

) (
q +

(
aKpt1S

−a−1
0 /2

)− (q2Sa
0a(b + h)/2K

))
(B1.1)

Now, the second derivative of TEPL=0 with respect to S0 is calculated as follows

∂TEPL=0

∂S2
0

=
aS−2−a

0

4K

⎛
⎝−2(a + 1)K2pt1 − 4q2Sa

0 (at1(b + h) − S0) /t1(
(a − 1)q2Sa

0 (2(p − R)
+t1 (b + 3h + 2(b + h)Log [Kt1/(qSa

0 )]) + 2S0)) /2

⎞
⎠

Substituting the rhs of (B1.1) in (B1.2) and simplifying, we get

∂TEPL=0

∂S2
0

=
aS−2−a

0

2Kt1

(
a2(b + h)t1q2S2a

0 − 2a2K2pt21

−2(a− 1)Kt1qS
a+1
0 − (a + 1)q2S2a+1

0

)
(B1.2)

TEPL=0 is a concave function of S0 iff

a2(b + h)t1q2S2a
0 − 2a2K2pt21 − 2(a − 1)Kt1qS

a+1
0 − (a + 1)q2S2a+1

0 � 0 (B1.3)

Dividing (B1.4) by a2q2S2a
0 >1 and simplifying, we get

2p (Kt1/(qSa
0 ))2 + 2a− 2(a − 1)S0 (Kt1/(qSa

0 )) + a− 2(a + 1)S0 � (b + h)t1

which implies that TEPL=0 is a concave function of S0 iff g(S0) � (b + h) t1
where

g(S0) = 2pK2
1 + S0 a−2 (2(a − 1)K1 + a + 1) ,

such that
K1 = Kt1/(qSa

0 ) � 1

since
qSa

0 � Kt1.

Appendix C1. Proof of Theorem 3.4

Differentiating Equation 3.2 with respect to q, we get

∂TEPL=0

∂q
=S0 + p − c +

qSa
0 (b + h)
2K

− qSa
0

2Kt1
× (2(p − R) + t1 (b + 3h + 2(b + h)Log [Kt1/(qSa

0 )]) + 2S0) (C1.1)
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Equating (C1.1) to 0 and simplifying, we get

(S0 + p − c +
qSa

0 (b + h)
2K

)
2Kt1
qSa

0

= 2(p − R) + t1 (b + 3h + 2(b + h)Log [Kt1/(qSa
0 )]) + 2S0 (C1.2)

Differentiating (C1.1) with respect to q further, we get

∂2TEPL=0

∂q2
=

3(b + h)Sa
0

2K

− Sa
0 (2(p − R) + t1 (b + 3h + 2(b + h)Log [Kt1/(qSa

0 )]) + 2S0)
2Kt1

(C1.3)

Substituting the equality of (C1.2) in (C1.3) and simplifying, we get

∂2TEPL=0

∂q2
=

K(c − p) − KS0 + (b + h)qSa
0

Kq
(C1.4)

TEPL=0 is a concave function of q iff

K(c − p) − KS0 + (b + h)qSa
0 � 0

i .e., iff q � K(S0 − c + p)
(b + h)Sa

0

(C1.5)

Hence proved.

Appendix C2. Proof of Corollary 3.5

We assume that q � Kt1S
−a
0 . Thus (C1.5) holds true if

S0 − c + p

(b + h)
� t1

This implies that TEPL=0 is concave in q if S0 � c− p + (b + h)t1. Hence proved.

Appendix D1: Proof of Theorem 3.6

Differentiating (C1.1) with respect to S0 and substituting (C1.2) we get,

∂2TEPL=0

∂qS0
=

aK(c − p)t1 − (a − 1)Kt1S0 + a(b + h)t1qSa
0 − qSa+1

0

Kt1S0
(D1.1)
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Since we have already proved that TEPL=0 is a concave function in q and S0, it is
a concave function in (q, S0 ) iff the principal minor of the Hessian matrix (HSN)
is positive. Here,

HSN =
∂2TEPL=0

∂q2
× ∂2TEPL=0

∂S2
0

−
(

∂2TEPL=0

∂qS0

)2

Substituting (B1.3), (C1.4) and (D1.1) in the above expression and simplifying,
we get

HSN =C∗
(

Kt1(c − p) − Kt1S0 + (b + h)t1qSa
0

qSa
0

C#

− 2 (Kt1 (a(c − p) − (a − 1)S0) + qSa
0 (a(b + h)t1 − S0))

2

)
(D1.2)

Where
C∗ = 1/(2K2t21S

2
0)

and

C# =
((

a2(b + h)t1 − (a + 1)
)
q2S2a

0 − 2Kt1(a2pKt1 − (a − 1)qSa+1
0 )

)
Simplifying (D1.2) further, we get, HSN>0 iff

2a2(S0 − c + p)(Kt1)3 + (qSa
0 )3

×
(
(3a − 1)(b + h)t1S0 − (a(b + h)t1)

2 − 2S2
0

)
+ Kt1 (qSa

0 )2
(−3a2(b + h)(c − p)t1

+S0

(
(3a − 1)(c − p) + (3a2 − 6a + 2)(b + h)t1

)− (3a − 5)S2
0

)
+ 2 (Kt1)

2
qSa

0

(−a2
(
(c − p)2 + p(b + h)t1

)
+S0(2a2 − 3a + 1)(c − p) − S2

0(a2 + 3a− 2)
)

� 0 (D1.3)

(D1.3) still holds true if it is divided by q3S0
3a >0. That is, HSN>0 iff

2a2(S0 − c + p)K3
1 +

(
(3a − 1)(b + h)t1S0 − (a(b + h)t1)

2 − 2S2
0

)
+ K1

(−3a2(b + h)(c − p)t1
+S0

(
(3a − 1)(c − p) + (3a2 − 6a + 2)(b + h)t1

)
−(3a − 5)S2

0

)
+ 2K2

1

(−a2
(
(c − p)2 + p(b + h)t1

)
+S0(2a2 − 3a + 1)(c − p) − S2

0(a2 + 3a − 2)
)

� 0

where K1 = Kt1/(qSa
0 ) � 1 since qSa

0 � Kt1.
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Dividing the above inequality by S2
0 >0, i.e., HSN > 0 iff g(S0, K1) � 2 where

g (S0, K1) = 2a2(S0 − c + p)K3
1S− 2

0

+ S− 2
0

(
(3a − 1)(b + h)t1S0 − (a(b + h)t1)

2
)

+ K1 S−2
0 (S0 ((3a − 1)(c − p)

+(3a2 − 6a + 2)(b + h)t1
)− (3a − 5)S2

0 − 3a2(b + h)(c − p)t1
)

+ 2K2
1 S−2

0

(
p(b + h)t1 − a2

(
(c − p)2

)
+ S0(2a2 − 3a + 1)(c − p) − S2

0(a2 + 3a − 2)
)

Hence proved.

Appendix E. Mathematical expressions to calculate

total expected profits

TEP = Selling Price (SP)−(Holding Cost (HC)+Penalty Cost (SC)+cq).
From the time inventory graph (Fig. 3),

SP =
1

Dt1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0∫
0

(
q/Δ∫
0

t1∫
t0

xS (t) dtdx +
q/Δ∫
0

q1R dx +
D∫

q/Δ

t∗0∫
t0

xS (t) dtdx

)
dL+

τ∫
t0

(
q/Δ1∫
0

t1∫
L

xS (t) dtdx +
q/Δ1∫
0

q2R dx +
D∫

q/Δ1

t∗1∫
L

xS (t) dtdx

)
dL

+
t1∫
τ

(
D∫
0

t1∫
L

xS (t) dtdx +
D∫
0

q2R dx

)
dL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

HC =
h

2Dt1

×

⎛
⎜⎜⎜⎜⎝

t0∫
0

(
2Dq(t0 − L) +

q/Δ∫
0

Δ (q + q1) dx +
D∫

q/Δ

q (t∗0 − t0) dx

)
dL

+
τ∫

t0

(
q/Δ1∫
0

Δ1 (q + q2) dx +
D∫

q/Δ1

q (t∗1 − L) dx

)
dL +

t1∫
τ

D∫
0

Δ1 (q + q2) dxdL

⎞
⎟⎟⎟⎟⎠

SC =

p

Dt1

⎛
⎜⎝

t0∫
0

D∫
q/Δ

x (t1 − t∗0) dxdL +

t1∫
t0

D∫
0

x (L − t0) dxdL +

τ∫
t0

D∫
q/Δ1

x (t1 − t∗1) dxdL

⎞
⎟⎠
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On simplification, we get

TEP =

⎛
⎜⎜⎝

qS0 −
(
(b + h)q3/(6D2t1)

)− (DpΔ/2)
− (q(ht20 + 2ct1 − 2pt1 + bΔ2)/2t1

)
−q2 (4dt1Δ)−1 ((p − R + S0) (2t0 + 3Δ) + Δ (3bt0
+2ht0 − 2bt1 + ht1) + 2Δ (p − R + S0 + bt0 + ht1) Log

[
KS−a

0 Δ/q
])
⎞
⎟⎟⎠

(E.1)

For the case L = 0

TEPL=0 =

1
D

⎛
⎜⎝
⎛
⎜⎝

q/t1∫
0

t0∫
t0

xS (t) dtdx +

q/t1∫
0

(q − xt1)R dx +

D∫
q/t1

t∗0∫
t0

x (S0 − bt1) dtdx

⎞
⎟⎠

− h

2

⎛
⎜⎝

q/t1∫
0

t1 (q + q1) dx +

D∫
q/t1

q2

x
dx

⎞
⎟⎠− p

⎛
⎜⎝

D∫
q/t1

(xt1 − q)dx

⎞
⎟⎠
⎞
⎟⎠− cq

On simplification, we get

TEPL=0 = q(S0 − c + p) − Dpt1
2

+
q2

4dt1
(−2(S0 − R + p) − (b + 3h)t1 − 2t1(b + h)Log [dt1/q]) (E.2)
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