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PRODUCING THE TANGENCY PORTFOLIO
AS A CORNER PORTFOLIO

Reza Keykhaei
1

and Mohamad-Taghi Jahandideh
2

Abstract. One-fund theorem states that an efficient portfolio in a
Mean-Variance (M-V) portfolio selection problem for a set of some risky
assets and a riskless asset can be represented by a combination of a
unique risky fund (tangency portfolio) and the riskless asset. In this
paper, we introduce a method for which the tangency portfolio can
be produced as a corner portfolio. So, the tangency portfolio can be
computed easily and fast by any algorithm designed for tracing out the
M-V efficient frontier via computing the corner portfolios. Moreover,
we show that how this method can be used for tracing out the M-V
efficient frontier when problem contains a riskless asset in which the
borrowing is not allowed.
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1. Introduction

The aim of classic Mean-Variance (M-V) portfolio optimization, originated from
the seminal work of Markowitz [7], is to maximize the expected return of a portfolio
and minimize its variance as the measure of risk. Markowitz proposed his work for
a set of risky assets. M-V portfolio selection problems seek to compute efficient
portfolios. A portfolio is efficient if with respect to its location in the M-V space,
there is no obtainable portfolio with a lower variance without a lower expected
return or a greater expected return without a greater variance. The locus of all
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efficient portfolios in the M-V plane is called the efficient frontier. The idea of
riskless asset was first suggested by Tobin [16]. He included cash in his version of
portfolio selection problem and stated that any efficient portfolio is a combination
of a single risky fund and the riskless asset. This is the Tobin’s one-fund theorem. In
fact all combinations of a risky portfolio and a riskless asset can be represented by
a line, Capital Allocation Line (CAL), originating at the riskless asset and passing
through the risky portfolio, in the Mean-Standard Deviation (M-SD) plane. There
exists a CAL termed by optimal CAL, which dominates the other CALs. When
borrowing of riskless asset is allowed, the efficient frontier is the optimal CAL. The
optimal CAL has the highest possible slop and is tangent to the efficient frontier
of risky assets. We denote the risky portfolio corresponding to the tangent point
by the tangency portfolio. Indeed tangency portfolio is the efficient portfolio which
maximizes the famous Sharpe ratio [14]:

ρ − rf

σ

where, ρ and σ denotes the mean and the standard deviation of any efficient port-
folio, respectively, and rf denotes the return of the riskless asset. So, in order to
find the tangency portfolio it is enough to find efficient portfolios and recognize
the tangency portfolio which maximizes the Sharpe ratio (for example see chap-
ter seven of [3]). Markowitz [8] proposed his Critical Line Algorithm (CLA), as a
Parametric Quadratic Programming (PQP), for general portfolio selection mod-
els and developed it in his books [9–11], for computing the efficient portfolios.
Jacobs et al. [6] extended CLA to account for factor and scenario models with
realistic short positions. In addition to Markowits’s algorithm, there are other
PQP algorithms which proposed in the literature to trace out the M-V efficient
frontier, for example we can refer to Best [1], Stein et al. [15], Niedermayer and
Niedermayer [13] and Hirschberger et al. [5]. As we know, in the M-V plane, the
efficient frontier is consisting of connected parabolic segments. The portfolios cor-
responding to the end points of each segment are called corner portfolios. The
major aim of the above works is to introduce methods which calculate the cor-
ner portfolios and the efficient frontier while significantly reducing computational
time.

Todd programmed CLA algorithm in Visual Basic for Applications (VBA) and
the software is called Optimizer (see Markowitz and Todd [11]). Niedermayer
and Niedermayer [13] provide a Matlab quadratic optimization tool based on
Markowitz’s CLA. Their method computes the efficient frontier of the standard
problem with 2000 assets in less than a second.

Tütüncü [17] presented a modification of the CLA which computes the tan-
gency portfolio as a by-product during the algorithm. In this paper, we present
an algorithm, based on Tütüncü’s results, for which the tangency portfolio can be
produced as a corner portfolio. So, the tangency portfolio, as a corner portfolio,
can be calculated in a short time using CLA (or other suitable methods). More-
over, we show that how this method can be used to trace out the efficient frontier
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when portfolio contains a riskless asset and borrowing is not allowed for riskless
asset.

The paper proceeds is as follows. The M-V portfolio selection problem formu-
lation and the results of Tütüncü about the tangency portfolio are described in
Section 2. In Section 3 we describe the modified portfolio selection problem and
give the main results. in Section 4 we present our algorithm for finding the tan-
gency portfolio.

2. The tangency portfolio

Consider a portfolio consisting of n ≥ 2 risky assets with the random returns
r1, . . . , rn. Let R̄ = (r̄1, . . . , r̄n)′ and Σ be the mean vector and covariance matrix
of the asset returns, respectively. We denote each portfolio by the vector of asset
weights x := (x1, . . . , xn)′ ∈ R

n, where each xi is the weight allocated to the ith
asset. Here R̄′x and x′Σx are the expected return and the variance of the portfolio,
respectively. We assume that no asset can be represented by a linear combination
of other assets, which implies that Σ is positive definite. So, the variance is a
strictly convex function of portfolio variables. Also, we assume that not all of the
mean returns of the assets are equal. A portfolio x is feasible if it belongs to the
following set:

S = {x ∈ R
n : Ax = b,Cx ≥ d} , (2.1)

where b ∈ R
m, d ∈ R

p, A is an m × n, and C is a p × n matrix over R.
The Markowitz portfolio selection problem, as a Quadratic Programming (QP)

problem, which corresponds to expected return ρ has the following form:

Problem 2.1.

min
x

1
2
x′Σx

s.t. R̄′x = ρ,
x ∈ S.

The model for S = {x ∈ R
n : 1′x = 1,x ≥ 0} is called the standard portfolio

selection model, where 1 is a vector of ones. Merton [12] considered the unbounded
portfolio weight model, i.e. S = {x ∈ R

n : 1′x = 1}, and give an analytical solution
for the problem.

By the Karush-Kuhn-Tucker (K-K-T) conditions, X∗ = (x∗
1, . . . , x

∗
n)′ is a (pri-

mal) solution or optimal portfolio of Problem 1, if and only if, there exist vectors
λρ ∈ R, λb ∈ R

m and λd ∈ R
p such that:

Σx∗ − λρR̄ − A′λb − C′λd = 0,
R̄′x∗ = ρ, Ax∗ = b, λ′

d(Cx∗ − d) = 0,
Cx∗ ≥ d, λd ≥ 0.

(2.2)
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We denote the primal-dual solution of Problem 1 by (x∗, λρ, λb, λd) or (x∗, Λ),
where Λ := (λρ, λb, λd). Since variance is strictly convex, x∗ is unique. Let us
denote the set of all primal-dual solutions of Problem 1 by Ω(ρ).

Let ρmin be the expected return of the Global Minimum-Variance (GMV) port-
folio which has the minimum variance between all feasible portfolios. We assume
that rf < ρmin, where rf is the return of the riskless asset. Also let ρmax be the
highest obtainable expected return of feasible portfolios and ρT be the expected
return of the tangency portfolio. Actually, any efficient portfolio has expected re-
turn ρ ∈ [ρmin, ρmax]. As in [17], we define function σ : [ρmin, ρmax] → R by
σ(ρ) := (x∗′Σx∗)1/2; where (x∗, Λ) ∈ Ω(ρ). In fact σ(ρ) represents the efficient
frontier. Note that σ(ρ) is convex but not necessarily smooth. In fact the efficient
frontier might have kinks, i.e., the points of nondifferentiability (see [2, 4, 18]).
Considering this, we refer to ∂σ(ρ), as the subdifferential of σ at ρ, and

L(R) =
{

λρ

σ(ρ)
: (x∗, λρ, λb, λd) ∈ Ω(ρ)

}
,

as stated in [17]. Now the following key theorem holds:

Theorem 2.2. L(R) = ∂σ(ρ). Also, σ(ρT )/(ρT − rf ), the slope of the optimal
CAL, belongs to ∂σ(ρT ).

Proof. See Theorem 1 of [17] and the paragraph following the theorem. �

For (x∗, Λ) ∈ Ω(ρ) we define

θ(Λ) := rfλρ + b′λb + d′λd.

The next theorem states some results derived in [17].

Theorem 2.3. For any expected return ρ ∈ (ρT , ρmax], θ(Λ) < 0; and for any
expected return ρ ∈ [ρmin, ρT ), θ(Λ) > 0. Also if θ(Λ) = 0 then, ρ = ρT . Moreover
if θ(Λ) > 0 (θ(Λ) < 0) for ρ = ρmax (ρ = ρmin) then ρmax = ρT (ρmin = ρT ).

Proof. See Corollary 1 of [17] and the paragraph following the corollary. �

The assertions of Theorem 2.3 are presented with respect to corresponding
Lagrangian multiplier of any optimal portfolio. We use the above theorem to get
similar results with respect to optimal asset weights.

3. The modified problem

In this section, we introduce the modified problem that corresponds to Problem
1, which contains an additional variable xf so-called free variable. In this case the
new portfolio is x1 := (x1, . . . , xn, xf )′ ∈ R

n+1. In the following we show x1 by
(x, xf ) where x = (x1, . . . , xn)′.
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Considering Problem 1, the modified portfolio selection problem for the ex-
pected return ρ is:

Problem 3.1.
min
x1

1
2
x′

1Σ1x1

s.t. R̄′
1x1 = ρ,

x1 ∈ S1,

where

S1 =
{
x1 ∈ R

n+1 : A1x1 = b,C1x1 ≥ d, xf ≥ 0
}

, A1 =
(
A b

)
and

C1 =
(
C d

)
, R̄1 =

(
R̄
rf

)

and

Σ1 =
(

Σ 0
0 c

)

for the arbitrary constant c > 0. (The value of c can be interpreted as the variance
of the return of the asset xf which its return is uncorrelated with the returns of
the other assets and has the expected value rf ). The last two constraints in S1

can be replaced by C2x1 ≥ d1, where

C2 =
(

C d
0 1

)
and d1 =

(
d
0

)
.

x1 ∈ S1 is called a feasible portfolio. Obviously x satisfies the conditions of Prob-
lem 1, if and only if, (x, 0) satisfies the conditions of Problem 2.

Let x∗
1 = (x̂, x∗

f ) and (x̂, x∗
f , Λ̂) := (x̂, x∗

f , λ̂ρ, λ̂b, λ̂d, λ̂f ) denote the (primal)
solution and a primal-dual solution of problem 2, respectively, then

Σx̂ − λ̂ρR̄ − A′λ̂b − C′λ̂d = 0,

cx∗
f − r̄f λ̂ρ − b′λ̂b − d′λ̂d = λ̂f ,

R̄′
1x

∗
1 = ρ, A1x∗

1 = b, λ̂′
d(C1x∗

1 − d) = 0, λ̂fx∗
f = 0,

C1x∗
1 ≥ d, x∗

f ≥ 0, λ̂d ≥ 0, λ̂f ≥ 0.

(3.1)

We denote the set of all primal-dual solution of Problem 2 by Ω̂(ρ) and define

θ̂(Λ̂) := rf λ̂ρ + b′λ̂b + d′
1λ̂I ,

where (x̂, x∗
f , Λ̂) ∈ Ω̂(ρ) and λ̂I = (λ̂′

d, λ̂f )′. Note that θ̂(Λ̂) = rf λ̂ρ +b′λ̂b +d′λ̂d.
Let ρ̂max and ρ̂min be the maximum and the minimum obtainable expected

returns, respectively, and ρ̂T be the mean return of the tangency portfolio related
to Problem 2. Then the following theorem holds:

Theorem 3.2. If ρ ∈ [ρ̂T , ρ̂max] then, x∗
f = 0. Also, x∗

f > 0 for any ρ ∈
[ρ̂min, ρ̂T ).
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Figure 1. The efficient frontiers of Problem 1 and Problem 2 are
the solid curve AOC and the doted-solid curve BOC, respectively.

Proof. Let ρ = ρ̂T . Theorem 2.2 implies that there exists a primal-dual solotion
(x̂, x∗

f , λ̂ρ̂T , λ̂b, λ̂d, λ̂f ) ∈ Ω̂(ρ̂T ) such that

λ̂ρ̂T

σ̂(ρ̂T )
=

σ̂(ρ̂T )
ρ̂T − rf

,

where σ̂(ρ̂T ) is the standard deviation of tangency portfolio. Observe that

λ̂ρ̂T (ρ̂T − rf ) = x̂′Σx̂′ + cx∗
f
2 = ρ̂T λ̂ρ̂T + b′λ̂b + d′λ̂d,

where the last equation is obtained by adding the two first equations of (3.1)
multiplied by x̂′ and x∗

f , respectively. Thus, θ̂(Λ̂) = 0. Now the second equation
of (3.1) and the condition λ̂fx∗

f = 0 shows that x∗
f = λ̂f = 0.

Now let ρ ∈ (ρ̂T , ρ̂max]. By Theorem 2.3 we have θ̂(Λ̂) < 0. Again x∗
f = 0 and

λ̂f = −θ̂(Λ̂) > 0, by the second equation of (3.1) and the condition λ̂fx∗
f = 0.

If ρ ∈ [ρ̂min, ρ̂T ) then, Theorem 2.3 implies that θ̂(Λ̂) > 0 and we conclude that
x∗

f = θ̂(Λ̂)/c > 0 and λ̂f = 0. �

Note. Theorem 3.2 implies that Problems 1 and 2 are equivalent for any
ρ ∈ [ρ̂T , ρ̂max], in the sense that both problems have the same optimal port-
folio, and consequently have the same efficient frontier (see Fig. 1). Indeed, if
(x̂, 0, λ̂ρ, λ̂b, λ̂d, λ̂f ) ∈ Ω̂(ρ) then (x̂, λ̂ρ, λ̂b, λ̂d) ∈ Ω(ρ). Also, the efficient frontier
of Problem 2 strictly dominates the efficient frontier of Problem 1 when ρ < ρ̂T .
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Corollary 3.3. ρmax = ρ̂max, where both of the problems 1 and 2 have the same
optimal portfolio. Also, ρmin ≤ ρ̂T .

Proof. Since x is feasible if and only if x1 = (x, 0) is feasible, ρmax ≤ ρ̂max. On
the contrary, let ρmax < ρ̂max. Also let (x̂, x∗

f , Λ̂) ∈ Ω̂(ρ̂max). By Theorem 3.2, we
have x∗

f = 0. So R̄′x̂ = ρ̂max which contradicts the maximality of ρmax. Also, if we
let ρ̂T < ρmin and (x̂, 0, Λ̂) ∈ Ω̂(ρ̂T ) then, R̄′x̂ < ρmin which is impossible. �

Corollary 3.4. ρ̂T = ρT , where both of the problems 1 and 2 have the same
tangency portfolio (see Fig. 1).

Proof. From corollary 3.3 we conclude that ρmin ≤ ρ̂T ≤ ρmax. Since problems 1
and 2 have the same efficient frontiers on [ρ̂T , ρmax] and the efficient frontier of
Problem 2 strictly dominates the efficient frontier of Problem 1 on [ρmin, ρ̂T ), the
optimal CAL corresponding to Problem 2 which is tangent to the efficient frontier
of the problem, is also tangent to the efficient frontier of Problem 1. �

Note. The results of Theorem 3.2 and its corollaries are independent of c.

4. The tangency portfolio as a corner portfolio

In this section we discuss some advantages of applying Problem 2 and describe
our algorithm. Indeed, we can locate the expected return of the tangency portfolio
associated with Problem 1, which is also the tangency portfolio associated with
Problem 2 (Cor. 3.4), by looking at the value of free variable in the solution of
Problem 2. Similar to the first step, this method can be used to compare the
location of ρT with respect to an arbitrary expected return ρ. After finding the
optimal portfolio (x̂, x∗

f ) (obtained from any QP algorithm) for expected return ρ,
we will have:

• If x∗
f = 0 then, ρT ≤ ρ;

• If x∗
f > 0 then, ρT > ρ.

Obviously the first case inexplicitly says that, if ρ = ρmin and x∗
f = 0, then

ρT = ρmin. But, we can take more main steps to determine the exact location of
ρT as described in the following.

A M-V portfolio selection problem can be considered as a bi-objective problem
as follows:

min{x′Σx} max{R̄′x} s.t. x ∈ S. (4.1)

Here, a feasible portfolio x is efficient if there exists no feasible portfolio y such
that R̄′y ≥ R̄′x and y′Σy ≥ x′Σx with at least one strict inequality. Model (4.1)
can be operationalized as

min
x

x′Σx − λR̄′x s.t. x ∈ S (4.2)

where λ ∈ [0,∞). PQP algorithms are employed in order to solve (4.2) and com-
pute the efficient frontier as well as all corner portfolios, which will be described
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here. A linear inequality f(x) ≤ b is active at x if f(x) = b, otherwise, i.e. f(x) < b,
the constraint is inactive. Equations are considered as constraints that are always
active. The set of all active constraints at a given point is called the active set.
An efficient portfolio is said to be a corner portfolio if in its vicinity on the ef-
ficient frontier, other efficient portfolios have different active sets, see [15]. The
efficient frontier is made up by a series of connected hyperbolic segment in the
M-SD space for which corner portfolios correspond to the endpoints of each seg-
ment. The GMV portfolio, however, is included as a corner portfolio (last corner
portfolio) irrespective of its active set.

4.1. Description of the algorithm

Note that, since x∗
f = 0 for any ρ ≥ ρT and x∗

f > 0 for any ρ < ρT , the
tangency portfolio is a corner portfolio in the modified problem. Now, we may use
any relevant PQP algorithm, which produce corner portfolios, to determine the
tangency portfolio as a corner portfolio. We describe the algorithm for CLA. Our
model works as follows: First construct Problem 2 that corresponds to Problem 1
and then apply CLA. Follow the iterates of the algorithm until it admits the
first corner portfolio where x∗

f appears in the optimal portfolios following the
corner portfolio. Now this corner portfolio is the tangency portfolio. If x∗

f is zero
throughout the method, then GMV portfolio is the tangency portfolio.

Tütüncü [17] presented an algorithm using CLA to calculate the tangency port-
folio. For this, he used the Lagrangian multipliers generated by the CLA and
applied the sign of θ(Λ) during the iterations of the method. Precisely, if at the
beginning (ρ = ρmax), θ(Λ) > 0, then ρT = ρmax. Otherwise, as soon as θ(Λ) takes
nonnegative values during the iterations of the CLA, then the tangency portfolio
is a convex combination of the last and the current corner portfolios and can be
obtained by using linear interpolation. Finally, if θ(Λ) is negative throughout the
method then, ρT = ρmin.

Compared to Tütüncü’s model, our method does not require any redundant
computation such as linear interpolation; and the tangency portfolio can be ob-
tained as a corner portfolio very fast. As mentioned before, for example, the algo-
rithm of Niedermayer and Niedermayer [13] can compute the efficient frontier of
the standard problem with 2000 assets in less than a second. Besides, our model
works directly with the optimal asset weights, instead of the Lagrangian multi-
pliers, which is more clear to express, and also can employ other suitable PQP
algorithms.

Moreover, in a M-SD portfolio selection problem for risky assets and a riskless
asset, if borrowing of the riskless asset is not allowed, then the CLA (applied
to Prob. 2), generates all (totally) risky efficient portfolios beyond the tangency
portfolio (the algorithm can be stopped when it admits the tangency portfolio).
The remaining efficient portfolios lie on the optimal CAL. Now, using this method,
we can compute the efficient frontier of the problem.
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Figure 2. Efficient frontiers corresponding to Example 4.1. Black
squares denote the location of corner portfolios.

Example 4.1. Consider a portfolio selection problem for three risky assets with
expected return vector R̄ =

(
0.12 0.13 0.17

)′ and covariance matrix Σ =⎛
⎝ 0.015 0.012 0.011

0.012 0.085 0.01
0.011 0.01 0.045

⎞
⎠. We consider 0 and 0.85 to be the lower and the upper

bounds for all assets, i.e., 0 ≤ xi ≤ 0.85 for i = 1, 2, 3. We set rf = 0.09. Now the
modified problem is:

min{x′
1Σ1x1} max{R̄′

1x1} s.t. x1 ∈ S1

where S1 = {x1 ∈ R
4 : 1′x1 = 1,C1x1 ≤ d,x1 ≥ 0}, C1 =

⎛
⎝1 0 0 0.85

0 1 0 0.85
0 0 1 0.85

⎞
⎠ and

d =
(
0.85 0.85 0.85

)′. We use Optimizer to compute the corner portfolios. The
efficient frontiers are computed for c = 10−3 and 10−7 (see Fig. 2) and corner
portfolios are presented in Table 1. As it is shown in Table 1, x3

1 is the last corner
portfolio for which free variable dose not appear in corner portfolios. So x3

1 is the
tangency portfolio. Also when portfolio contains a riskless asset with rf = 0.09
and borrowing is not allowed, the efficient frontier contains x1

1,x
2
1,x

3
1 and x0

1 as
the corner portfolios, where x0

1 corresponds to the totally riskless investment, i.e.,
(0,0.09), on the mean axis. Moreover, for values of c closed to zero, GMV port-
folio acts like a totally riskless portfolio and that segment of the efficient frontier
between the tangency portfolio and the GMV portfolio, tends to a straight line.
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Table 1. Efficient extreme points corresponding to Example 4.1.

c = 10−3 c = 10−7

Corner portfolio x1 x2 x3 x4 x1 x2 x3 x4

x1
1 0.000 0.150 0.850 0.000 0.000 0.150 0.850 0.000

x2
1 0.058 0.092 0.850 0.000 0.058 0.092 0.850 0.000

x3
1 0.286 0.076 0.637 0.000 0.286 0.076 0.637 0.000

x4
1 0.056 0.002 0.007 0.935 0.000 0.000 0.000 1.000

So, the obtained efficient frontier can be consider as a good approximation for the
original efficient frontier for which the portfolio contains the three risky assets and
the riskless asset.
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