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FROM ECKART AND YOUNG APPROXIMATION
TO MOREAU ENVELOPES AND VICE VERSA
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Abstract. In matricial analysis, the theorem of Eckart and Young
provides a best approximation of an arbitrary matrix by a matrix of
rank at most r. In variational analysis or optimization, the Moreau
envelopes are appropriate ways of approximating or regularizing the
rank function. We prove here that we can go forwards and backwards
between the two procedures, thereby showing that they carry essentially
the same information.
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1. From Eckart and Young theorem to Moreau

envelopes

1.1. Eckart and Young Theorem

Let Mm,n(R) be equipped with the usual inner product

〈〈U, V 〉〉 := trace of UT V
(
tr

(
UT V

)
in short

)
,

and the associated norm

‖.‖F =
√
〈〈., .〉〉,
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sometimes called the Frobenius or Frobenius-Schur norm. If p := min(m, n), for
k ∈ {0, 1, . . . , p}, we may define

Sk := {M ∈ Mm,n(R)| rank M ≤ k} ,

Σk := {M ∈ Mm,n(R)| rank M = k} .

If max(m, n) ≥ 2, Σk is a smooth and connected manifold of dimension k(m+n−k)
([1], p. 140). Apart from the case k = 0 (where S0 = Σ0 = {0}) and the case k = p
(see below), Σk has no specific topological property. As for Sk, it enjoys some nicer
mathematical properties. Firstly, it is closed as the sublevel-set (at level k) of the
rank function, a lower-semicontinuous one; secondly, since it is characterized by
the vanishing of all (k + 1, k + 1)-minors of A, it is a solution set of polynomial
equations, thus a so-called semi-algebraic variety. The link between Sk and Σk is
made clear in the following results:

(i) Sp = Mm,n(R) and Σp is an open dense subset of Sp;
(ii) if k < p, the interior of Σk is empty while its closure is Sk.

Given A ∈ Mm,n(R) of rank r and an integer k ≤ r, what could be said about
the matrices in Sk closest to A? Observe firstly that this best approximation
problem makes sense since we have defined a distance (via the Frobenius norm)
on Mm,n(R). However, even if the existence of best approximants does not of-
fer any difficulty (remember that ‖.‖ is a continuous function and Sk is a closed
subset), the question of uniqueness as well as that of an explicit form of best ap-
proximants remain posed. It turns out that there is a beautiful theorem answering
these questions.

Before going further, we recall a technique of decomposition of matrices which is
central in numerical matricial analysis and in statistics: the so-called singular value
decomposition (SVD). Here it is: Given A ∈ Mm,n(R), there is an (m, m) orthog-
onal matrix U , an (n, n) orthogonal matrix V , a “pseudo-diagonal” matrix D2 of
the same size as A, such that A = UDV .

The matrix D is a sort of skeleton of A: all the “non-diagonal” entries of D
are zero; on the “diagonal” are the singular values σ1, σ2, . . . , σp of A, that are the
square roots of the eigenvalues of AT A (or AAT ). By definition, all the σi’s are
nonnegative, and exactly r of them (if r = rank A) are positive. By changing
the ordering in columns or rows in U and V , and without loss of generality, we
can suppose that

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0. (1.1)

U and V are orthogonal matrices of appropriate sizes (so that the product UDV
of matrices can be performed). Of course, these U and V are not unique.

2D = [dij ] “pseudo-diagonal” means that dij = 0 for i �= j. One also uses the notation
diagm,n(σ1, . . . , σp) for D.
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The best approximation problem that we consider now is as follows: Given
A ∈ Mm,n(R) of rank r and k < r,

(Ak)

{
Minimize ‖A − M‖F

M ∈ Sk.

This problem is solved in the following theorem.

Theorem 1.1 (Eckart and Young, 1936). Let 0 �= A ∈ Mm,n(R) of rank r and
let 1 ≤ k < r. Let A = UDV be a singular value decomposition of A. Then

Ak := UDkV,

(where Dk is obtained from D by keeping σ1, . . . , σk and putting 0 in the place of
σk+1, . . . , σr) is a solution of the best approximation problem (Ak). Such a solution
is unique when σk > σk+1.

The optimal value in (Ak) is

min
M∈Sk

‖A − M‖F =

√√√√ r∑
i=k+1

σ2
i .

This theorem is a classical result in numerical matricial analysis, usually bearing
the name of Eckart and Young. From the historical viewpoint, there is however
some discussion about the naming of Theorem 1.1; according to Stewart ([8]), the
mathematician E. Schmidt should be credited for having derived this approxima-
tion theorem, while studying integral equations, in a publication which dates back
to 1907. Moreover, Mirsky (1960) showed that the Ak defined in Theorem 1.1
is a minimizer in problem (Ak) for any unitary invariant norm (a norm ‖.‖ on
Mm,n(R) is called unitary invariant if ‖UAV ‖ = ‖A‖ for any orthogonal pair
of matrices U and V ). See also [2] for references and additional comments on it.
So, to be complete, we should call Theorem 1.1 the Schmidt-Eckart-Young-Mirsky
theorem. For the sake of brevity, we nevertheless stand by the usual appellation
(in papers as well as in textbooks) which is “Eckart and Young theorem”.

Let us go back to the approximation or optimization result itself. Indeed,
since ‖.‖F is derived from an inner product, the objective function in (Ak) (taking
its square actually, ‖A − M‖2

F ) is convex and smooth. However, due to the non-
convexity of the constraint set Sk, the optimization problem (Ak) is non-convex.
It is therefore surprising that one could provide (via the Eckart and Young theo-
rem) an explicit form of a solution of this problem. In short, since the Sk’s are the
sublevel-sets of the rank function, one always has at one’s disposal a “projection”
of (an arbitrary) matrix A on the sublevel-sets Sk.

Some comments are in order here to explain why (Ak) has a unique solution
when σk > σk+1. Let us denote by O(m, n)A the set of pairs (U, V ) of orthogonal
matrices appearing in a singular value decomposition Udiagm,n[σ1, . . . , σp]V of A.
Then, as stated in Theorem 1.1, one solution of the problem (Ak) is given by
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Ak = UDkV , with (U, V ) arbitrary chosen in O(m, n)A. But actually, all the
optimal solutions of (Ak) are given by matrices ŨDkṼ , where (Ũ , Ṽ ) ∈ O(m, n)A.
In short, the solution set of problem (Ak) is{

ŨDkṼ |
(
Ũ , Ṽ

)
∈ O(m, n)A

}
.

When σk > σk+1, it can easily be proved that

Ũ1DkṼ1 = Ũ2DkṼ2

whenever (Ũ1, Ṽ1) and (Ũ2, Ṽ2) are taken in O(m, n)A. Hence, in that case, all the
solutions of (Ak) coalesce to just one.

But, if σk = σk+1 for example, the problem (Ak) has infinitely many solutions.
In spite of a thorough search, we could not find the description of the whole solution
set of (Ak) in textbooks on numerical matricial analysis.

Note that all the solutions of the approximation problem (Ak) are of rank k
exactly. As a consequence, under the assumptions of Theorem 1.1, we also have
solved the problem of the projection of A on the manifold Σk. We will use a by-
product of this result in the following form: If 0 �= A ∈ Mm,n(R) is of rank r and
if 1 ≤ k < r,

dist (A, Σk) = dist (A, Sk) =

√√√√ r∑
i=k+1

σ2
i . (1.2)

1.2. Towards Moreau envelopes

We begin with some historical comments. In 1962–1963, so exactly 50 years
ago, the French mechanician-mathematician J.-J.Moreau introduced a way of reg-
ularizing and approximating a convex function, called prox-regularization ([5], [6]).
This was an example of the so-called inf-convolution or epigraphic addition of two
functions. The process has some resemblances with the (exterior) penalization of
a function with a squared norm term or with the Tikhonov regularization in ma-
tricial analysis; it is however different: starting with an arbitrary convex function,
the objective was to define, in a “variational way”, a regularized version of it which
is convex and smooth. The process has been very successful since and one cannot
count the number of works on the so called prox-methods in convex minimiza-
tion. Indeed, the date 1962–1963 marks the birth of modern convex analysis and
optimization.

In subsequent efforts by several mathematicians, the prox-regularization process
has been extended to nonconvex functions. We have to rely on this (nonconvex)
setting, since the function at stake here, the rank function, does not enjoy any
convexity property, by far.

Although the rank function is a “bumpy” one, it is lower-semicontinuous and
bounded from below; it therefore can be approximated-regularized in the so-called
Moreau and Yosida way. This technique, very much in vogue in the context of
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variational analysis or optimization, gives rise to continuous approximations of the
original function; they are called its Moreau envelopes. Surprisingly enough, the
rank function is amenable to such an approximation-regularization process, and we
get at the end explicit forms of the Moreau envelopes in terms of singular matrices.
For that purpose, Eckart and Young theorem (Sect. 1.1) will be instrumental.

Let us firstly recall what is known, as a general rule, for the Moreau-Yosida
approximation-regularization technique in a non-convex context (see [7], Sect. 1.G
for example).

Let (E, ‖.‖) be an Euclidean space, let f : E −→ R be a lower-semicontinuous
function, bounded from below on E. For a parameter value ε > 0, the Moreau
envelope (or Moreau-Yosida approximate) function fε and the (so-called) proximal
set-valued mapping Proxεf are defined by:

fε(x) := inf
u∈E

{
f(u) +

1
ε
‖x − u‖2

}
,

Proxεf(x) :=
{

u ∈ E| f(u) +
1
ε
‖x − u‖2 = fε(x)

}
.

Then:

(i) fε is a finite-valued continuous function on E, minimizing f on E;
(ii) the sequence of functions (fε)ε>0 increases when ε decreases, and fε(x) −→

f(x) for all x ∈ E;
(iii) the set Proxεf(x) is nonempty and compact for all x ∈ E;
(iv) the lower bounds of f and fε on E are equal:

inf
x∈E

f(x) = inf
x∈E

fε(x).

We now apply this process to the rank function. The context is therefore as follow-
ing: E = Mm,n(R), the norm is the Frobenius norm ‖.‖F and f : Mm,n(R) −→ R

is the rank function. By definition,

(rank)ε (A) = inf
M∈Mm,n(R)

{
rank M +

1
ε
‖A − M‖2

F

}
, (1.3)

Proxε (rank) (A) =
{

M ∈ Mm,n(R)| rank M

+
1
ε
‖A − M‖2

F = (rank)ε(A)
}

. (1.4)

Here is the main theorem in this subsection. It was announced in our concomi-
tent survey paper [3], Section 8.2.
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Theorem 1.2. Let 0 �= A ∈ Mm,n(R) of rank r and ε > 0. Then:

(i)

(rank)ε(A) =
1
ε
‖A‖2

F − 1
ε

r∑
i=1

[
σ2

i (A) − ε
]+

. (1.5)

(ii) One minimizer in (1.3), i.e. one element in Proxε(rank)(A), is provided by
B := ŨΣBṼ , where
• (Ũ , Ṽ ) ∈ O(m, n)A, i.e. Ũ and Ṽ are orthogonal matrices such that A =

ŨΣAṼ , with ΣA = diagm,n[σ1(A), . . . , σr(A), 0, . . . , 0] (a singular value
decomposition of A with σ1(A)≥ . . .≥σr(A)>σr+1(A)= . . .=σp(A)=0);

•

ΣB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
if maxi σi(A) = σ1(A) ≤ √

ε,

ΣA

if min{i|σi(A)>0} σi(A) = σr(A) ≥ √
ε,

diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]
if there is an integer k
such that σk(A) ≥ √

ε > σk+1(A).

If A = 0, which amounts to having r = 0, (rank)ε(A) = 0, so that the formula (1.5)
is still valid (with the usual rule that summing over the empty set gets at 0).

We may complete the result (ii) in the theorem above by determining
the whole set Proxε(rank)(A). Indeed, we have four cases to consider:

• If maxi σi(A) = σ1(A) <
√

ε, then Proxε(rank)(A) = {0}.
• If min{i|σi(A)>0} σi(A) = σr(A) >

√
ε, then Proxε(rank)(A) = {A}.

• If there is an integer k such that σk(A) >
√

ε > σk+1(A), then

Proxε(rank)(A) =
{
Udiagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V

}
.

In all the three cases above, Proxε(rank) is single-valued at A.
• Suppose there is an integer k such that σk(A) =

√
ε. We define

k0 := min{k| σk(A) =
√

ε},
k1 := max{k| σk(A) =

√
ε}.

Then, Proxε(rank)(A) is the set of matrices of the form Ũdiagm,n(τ1, . . . , τp)Ṽ ,
where (Ũ , Ṽ ) ∈ O(m, n)A and

τi =
{

σi(A) if i ≤ k
0 otherwise ,

where k is an integer between k0 and k1.
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Before going into the proof of Theorem 1.2, a couple of comments are in order.
Comment 1. There are other ways to express (rank)ε(A), different from (although
equivalent to) the one in (1.5). For example, taking into account the relation
‖A‖2

F =
∑r

i=1 σ2
i (A), we get at

(rank)ε(A) =
r∑

i=1

min
[
1,

σ2
i (A)
ε

]
. (1.6)

Suppose now that one wishes to express (rank)ε(A) in terms of traces of matrices,
without any (explicit) reference to the singular values of A. Indeed, AT A − εIn is
a symmetric matrix whose eigenvalues are σ2

1(A) − ε, . . . , σ2
r(A) − ε,−ε, . . . ,−ε.

Its projection on the closed convex cone S+
n (R) of positive semidefinite symmetric

matrices has eigenvalues

[
σ2

1(A) − ε
]+

, . . . ,
[
σ2

r(A) − ε
]+

, 0, . . . , 0 (see [2] or [4]).

Thus, an alternate expression for (rank)ε(A) is:

(rank)ε(A) =
1
ε
tr

(
AT A

) − 1
ε
tr

[
PS+

n (R)

(
AT A − εIn

)]
. (1.7)

Comment 2. If ε is small enough, say if ε ≤ σ2
r (A), then

(rank)ε(A) = rank A. (1.8)

This easily comes from (1.5) since, in that case, σ2
i (A)−ε ≥ 0 for all i = 1, 2, . . . , r

and
∑r

i=1 σ2
i (A) = ‖A‖2

F . Therefore, the general convergence result that is known
for the Moreau envelopes fε of f (recalled at the beginning of Sect. 1.2) is made
much stronger here: fε(A) = f(A) for ε small enough!
It may be destabilizing to accept that, for ε small enough, the formulas (1.5)
or (1.7) for (rank)ε(A) produce an integer!
Let us end this comment with a trap in which one could fall: Yes, σr is a continuous
function of A; but one cannot secure that, for ε small enough, (rank)ε(B) = rank B
for B in a neighborhood of A; this is due to the fact that, in the required threshold,
ε ≤ σ2

r (A), the quantity r (=rank of A) depends also on A.

Proof. (of Theorem 1.2)
To find the lower bound over the whole space Mm,n(R) in (1.3), we divide

Mm,n(R) into the “strata” Σk, and calculate the individual lower bounds

inf
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}



306 JEAN-BAPTISTE HIRIART-URRUTY AND HAI YEN LE

over Σk, for k = 0, 1, . . . , p. We therefore have three different situations to consider:
when k = r(= rank A), when k > r, and when k < r. Here are the corresponding
results:

• Let k = r(= rank A). Since A ∈ Σk, we get immediately

min
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}
= rank A = r. (1.9)

• Let k > r. Then

rank M +
1
ε
‖M − A‖2

F ≥ k > r for all M ∈ Σk,

so that

min
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}
≥ k > r. (1.10)

• Let k < r. Then

min
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}
= k +

1
ε

[dist (A, Σk)]2 .

But, in that case, we have observed that [dist(A, Σk)]2 =
∑r

i=k+1 σ2
i (A)

(cf. (1.2) and the comment preceding it). In short,

min
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}
= k +

1
ε

r∑
i=k+1

σ2
i (A). (1.11)

By collecting the results (1.9), (1.10) and (1.11), we get at

(rank)ε(A) = min
k=0,...,p

min
M∈Σk

{
rank M +

1
ε
‖M − A‖2

F

}

= min
k=0,...,r

{
k +

r∑
i=k+1

σ2
i (A)
ε

}

= min
k=0,...,r

{
‖A‖2

F

ε
+

k∑
i=1

1
ε

[
ε − σ2

i (A)
]}

(1.12)

(with the convention that
∑r

i=r+1
σ2

i (A)
ε = 0).

Three cases are now to be considered:

• Case 1: σ2
i (A) ≤ ε for all i = 1, . . . , r. Then k∗ = 0 is a solution in the

minimization problem (1.12) and the value in (1.12) is
r∑

i=1

σ2
i (A)
ε

=
1
ε
‖A‖2

F .

Therefore, the matrix B = 0 is a minimizer in (1.3), i.e., one element in
Proxε(rank)(A).
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• Case 2: σ2
i (A) ≥ ε for all i = 1, . . . , r. Then k∗ = r is a solution in the

minimization problem (1.12) and the optimal value in (1.12) is r. Therefore,
the matrix B = A is a minimizer in (1.3), i.e. one element in Proxε(rank)(A).

• Case 3 (the standard one): There is an integer k0 ∈ {1, . . . , r − 1} such that
σ2

k0
(A) > ε > σ2

k0+1(A). Then k∗ = k0 is a solution in the minimization
problem (1.12) and the optimal value in (1.12) is

k0 +
r∑

i=k0+1

σ2
i (A)
ε

·

A matrix B is a minimizer in (1.3), i.e. is an element of Proxε(rank)(A), when

rank B +
1
ε
‖A − B‖2

F = k0 +
1
ε

r∑
i=k0+1

σ2
i (A)
ε

·

The theorem of Eckart and Young tells us that such a B is provided by a
“projection” of A on Sk0 .
To summarize all the cases, the optimal value in (1.12) is

(rank)ε(A) =
r∑

i=1

min
[
1,

σ2
i (A)
ε

]
,

the alternate form (1.6) of the expression (1.5), while a solution B in (1.3) is
as announced in the statement (ii) of Theorem 1.2.

The case of multiple solutions k∗ in the minimization problem (1.12) is handled
similarly to the Case 3 above. If there is a k such that σ2

k(A) = ε, then the solution
set in the minimization problem (1.12) is {k0 − 1, . . . , k1}, where

k0 = min
{
k| σ2

k(A) = ε
}

,

k1 = max
{
k| σ2

k(A) = ε
}

.

Then, again by using the Eckart and Young theorem, all the minimizing matrices B
in (1.3) are those described in the comments following Theorem 1.2. �

2. From Moreau envelopes to Eckart and Young

theorem

Here we start with the (unconstrained) minimization problem

(Pε)

{
Minimize

{
rank M + 1

ε‖A − M‖2
F

}
M ∈ Mm,n(R)

.

The rank function is lower-semicontinuous and bounded from below, the function
‖A − M‖2

F goes to infinity as ‖M‖F goes to infinity, thus (Pε) indeed has solu-
tions. The question is: How does this minimization process help to solve our best
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approximation problem (Ak)? Said otherwise: If Mε is a minimizer in (Pε), what
do we know about its rank? Could we tune the parameter ε so that Mε be of a
prescribed rank k? We answer these questions by following the return path of the
one followed in Section 1.

To begin with, we prove an easy technical lemma concerning Moreau envelopes
(cf. beginning of Sect. 1.2). The result we are going to present is known in the
convex case (i.e. when f is convex); it also holds true for non-convex f .

Lemma 2.1. Let fε be the Moreau envelope of f obtained with the parameter
ε > 0. Let x ∈ E and let u be an element of Proxεf(x). Then u is a “projection”
of x on the sublevel-set of f at level f(u). In other words,

‖x − u‖ ≤ ‖x − u‖ for all u satisfying f(u) ≤ f(u).

Proof. By definition of Proxεf(x), to have u ∈ Proxεf(x) means

f(u) +
1
ε
‖x − u‖2 ≤ f(u) +

1
ε
‖x − u‖2 for all u ∈ E. (2.1)

Choose u satisfying f(u) ≤ f(u). The above inequality then yields

‖x − u‖ ≤ ‖x − u‖.
Thus, the announced result is proved. �

We now go back to our initial problem (Ak); we wish to prove Eckart and Young
theorem with the help of Moreau envelopes. Let therefore 0 �= A ∈ Mm,n(R) of
rank r and let 1 ≤ k < r. With this integer k given, how to choose the tuning
parameter ε? We distinguish two cases.

Theorem 2.2. Suppose that σk(A) > σk+1(A). Choose ε such that

σk(A) >
√

ε > σk+1(A).

Then, (Pε) has a unique solution Mε. This matrix Mε is of rank k, it is the
“projection” of A on Sk, that is the unique solution of (Ak). Moreover

‖A − Mε‖2
F =

r∑
i=k+1

σ2
i (A).

Proof. We read the proof of Theorem 1.2 backwards. We have

(rank)ε(A) = rank Mε +
1
ε
‖Mε − A‖2

F (2.2)

= min
l=0,...,r

{
l +

1
ε

r∑
i=l+1

σ2
i (A)

}
. (2.3)

With the choice of ε that we have made, k is the unique solution in (2.3). So,
in (2.2),
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• rank Mε = k and ‖Mε − A‖2
F =

∑r
i=k+1 σ2

i (A);
• according to Lemma 2.1, Mε is a “projection” of A on the sublevel-set of the

rank function at level rank Mε = k (i.e., a solution of (Ak)). �

The case where σk(A) = σk+1(A) is a little more subtle to treat; indeed, in that
case, there are several integers which solve (2.3) and the corresponding matrix
solutions in (2.2) all do not have the same rank.

Theorem 2.3. Suppose that σk(A) = σk+1(A) and choose
√

ε as its common
value. Denote

k0 = min
{
i| σi(A) =

√
ε
}

,

k1 = max
{
i| σi(A) =

√
ε
}

.

Then, any integer between k0 and k1 is a solution of (2.3), so that the solution
matrices Mε in (2.2) have a rank between k0 and k1.

For k ∈ {k0, . . . , k1}, the solution matrix Mε of rank k in (2.2) is a “projection”
of A on Sk, that is to say, a solution of (Ak).

Proof. The same, mutatis mutandis, as that of Theorem 2.2. �

3. By way of conclusion

The Eckart and Young theorem allowed us to calculate explicity the Moreau
envelopes of the rank function, an objective which was not obvious at all, due to
bumpy behavior of this function; various expressions of these Moreau envelopes
have been provided (formulas (1.5), (1.6), (1.7), Theorem 1.2).

Conversely, if we want to get a best approximation of A of rank at most k, we
could get at it by solving the unconstrained minimization problem

MinimizeM

{
rank M +

1
ε
‖A − M‖2

F

}
,

where the parameter ε > 0 is tuned in function of k (Theorem 2.2, Theorem 2.3).
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