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Abstract. We consider multistage bidding models where two types of
risky assets (shares) are traded between two agents that have different
information on the liquidation prices of traded assets. These prices are
random integer variables that are determined by the initial chance move
according to a probability distribution p over the two-dimensional in-
teger lattice that is known to both players. Player 1 is informed on the
prices of both types of shares, but Player 2 is not. The bids may take
any integer values. The model of n-stage bidding is reduced to a zero-
sum repeated game with lack of information on one side. We show that,
if liquidation prices of shares have finite variances, then the sequence of
values of n-step games is bounded. This makes it reasonable to consider
the bidding of unlimited duration that is reduced to the infinite game
G∞(p). We give the solutions for these games. Optimal strategies of
Player 1 generate random walks of transaction prices. But unlike the
case of one-type assets, the symmetry of these random walks is broken
at the final stages of the game.
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1. Introduction. Modeling financial markets
by repeated games

Regular random fluctuations in stock market prices are usually explained by
effects from multiple exogenous factors subjected to accidental variations. The
work of De Meyer and Saley [4] proposes a different strategic motivation for these
phenomena. The authors assert that the Brownian component in the evolution
of prices on the stock market may originate from the asymmetric information of
stockbrokers on events determining market prices. “Insiders” are not interested
in the immediate revelation of their private information. This forces them to ran-
domize their actions and results in the appearance of an oscillatory component in
price evolution.

De Meyer and Saley demonstrate this idea on a model of multistage bidding be-
tween two agents for risky assets (shares). The liquidation price of a share depends
on a random “state of nature”. Before the bidding starts a chance move determines
the “state of nature” and therefore the liquidation price of a share once and for
all. Player 1 is informed on the “state of nature”, but Player 2 is not. Both players
know the probability of a chance move. Player 2 knows that Player 1 is an insider.

At each subsequent step t = 1, 2, . . . , n both players simultaneously propose
their prices for one share. The maximal bid wins and one share is transacted
at this price. If the bids are equal, no transaction occurs. Each player aims to
maximize the value of his final portfolio (money plus liquidation value of obtained
shares).

In this model Player 2 should use the history of Player 1’s moves to update
his beliefs about the state of nature. Thus Player 1 must maintain a delicate
balance between taking advantage of his private information and concealing it
from Player 2.

De Meyer and Saley consider a model where a share’s liquidation price takes
only two values and players may make arbitrary bids. They reduce this model to
a zero-sum repeated game with lack of information on one side, as introduced by
Aumann and Maschler [1], but with continual action sets. De Meyer and Saley show
that these n-stage games have the values (i.e. the guaranteed gains of Player 1 are
equal to the guaranteed losses of Player 2). They find these values and the optimal
strategies of players. As n tends to infinity, the values infinitely grow up with rate√
n. It is shown that Brownian Motion appears in the asymptotics of transaction

prices generated by these strategies.
The same result was demonstrated in De Meyer [2] for models with perfectly

general trading mechanisms. The thesis of Gensbittel [9] contains analogous results
for a model with two risky assets and with arbitrary bids.

It is more natural to assume that players may assign only discrete bids pro-
portional to a minimal currency unit. De Meyer and Marino [3], Domansky and
Kreps [7], Domansky [5] analyze a bidding model with the same mechanism of
the game as in the model of De Meyer and Moussa-Saley [4], and where market
makers have to post prices within a discrete grid. The n-stage games Gmn (p) are
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considered with two possible values of liquidation price, 1 with probability p and
0 with probability 1 − p, and with admissible bids being multiples of 1/m.

The works [3, 5, 7] show that, unlike the model of De Meyer and Saley, the
sequence of values V mn (p) of the gamesGmn (p) is bounded from above and converges
as n tends to ∞. The authors calculate its limit Hm, that is a continuous, concave,
and piecewise linear function with m domains of linearity [k/m, (k + 1)/m], k =
0, . . . ,m− 1, and the values at peak points Hm(k/m) = k(m− k)/2m.

The proof in [3] differs in essential ways from the proof in [5]. The last proof is
more concise due to exploiting a “reasonable” strategy of Player 2. In fact, this is
his optimal strategy for the game with infinite number of steps.

As the sequence V mn (p) is bounded from above, it is reasonable to consider the
games Gm∞(p) with infinite number of steps. We do this in [7] and in [5]. The
games Gm∞(p) are infinitely repeated, non-discounted games with non-averaged
payoffs that differs from the classical model of Aumann and Maschler [1].

We believe that the model is consistent and tractable with an endogenous ran-
dom time for information disclosure that happens when a posterior probability
takes the value 0 or 1. But the model with infinite number of steps does not allow
to determine an exogenous time for information disclosure that is a base for the
notion of liquidation value in the works of De Meyer. At time T, each player should
be able to sell his shares of the risky asset at this liquidation price.

The infinite game may be reinterpreted in the following way, that allows us to
conserve the exogenous time of disclosure T . The sequential stages tn, n = 1, 2, . . .
of the game occur on the interval [0, T ) having an accumulation point at the point
T . This means that transactions become more and more frequent as the disclosure
of information approaches. For example, one can take tn = T (1 − αn) for some
α ∈ (0, 1).

Unlike the case of n < ∞, the existence of a value for the games Gm∞(p) has
to be proved. We prove it by constructing explicitly the optimal strategies. We
show that the value V m∞ is equal to Hm, that is the limit of the sequence of values
V mn (p).

We construct the optimal strategy of Player 1 that provides him the maximal
possible expected gain 1/2m per step (the fastest optimal strategy). For this strat-
egy the posterior probabilities perform a simple symmetric random walk over the
admissible bids l/m, l = 0, . . . ,m, with absorbing extreme points 0 and 1. The
absorption of posterior probabilities means revealing of the true value of share by
Player 2. For the initial probability k/m, the expected duration of this random
walk before absorption is k(m− k). The bidding terminates almost surely in a fi-
nite number of steps, and the expected number of steps is also finite. This random
time of absorption is a time for disclosure of information. The game terminates
naturally when the posterior expectation of liquidation price coincide with its real
value.

The set of all optimal strategies of Player 1 for Gm∞(p) consists of the described
fastest strategy obtained in [5] and its slower modifications. It can be shown that
the constructed fastest optimal strategy of Player 1 for the infinitely repeated game
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Gm∞(p) is an ε-optimal strategy of Player 1 for any finitely repeated game Gmn (p)
of length n, where ε = O(cosn π/m). This is not so for slower optimal strategies
of Player 1.

The results of [5] cannot be extended to a general transaction mechanism in-
troduced by De Meyer [2]. As mentioned in [2], the discretized mechanism does
not satisfy axioms of shift- and scale-invariance. Note that in practice a grid of
possible bids is not shift- and scale-invariant simultaneously.

A more realistic model is studied in [10]. It is analogous to the model considered
in [5], but equipped with a more general transaction mechanism. Namely, the
agents fix different stakes for buying and selling a share.

In Domansky and Kreps [8] we consider a model where the share liquidation
price may take any integer values according to a probability distribution p. Any
integer bids are admissible. This n-stage model is reduced to a zero-sum repeated
game Ḡn(p) with countable state and action spaces. The games considered in
Domansky [5] can be presented as particular cases of these games corresponding
to probability distributions with two-point supports and with payoffs rescaling
(the payoff for the game Gmn (p) is multplied by m).

We show that if the liquidation price of a share has a finite expectation, then
the values of n-stage games exist. If its variance is finite, then, as n tends to
∞, the sequence of values is bounded from above and converges. The limit H̄ is a
continuous, concave, piecewise linear function with a countable number of domains
of linearity. For distributions with integer mean values the function H̄ is equal to
the half of the liquidation price variance.

As the sequence of n-stage game values is bounded from above, it is reasonable
to consider the games Ḡ∞(p) with an infinite number of steps. We show that the
value V̄∞(p) is equal to H̄(p). We explicitly construct the optimal strategies for
these games. To construct the optimal strategies of Player 1 we exploit symmetric
representations of univariate probability distributions with given mean values as
convex combinations of extreme points of corresponding sets, i.e. distributions
with the same mean values and with supports containing at most two points.

The insider optimal strategy generates a symmetric random walk of posterior
expectations over the one-dimensional integer lattice with absorption. For distri-
butions with integer mean values the expected duration of this random walk is
equal to the variance of the liquidation price of a share. The value of infinite game
is equal to the expected duration of this random walk multiplied by the constant
one-step gain 1/2 of informed Player 1.

In the present paper we consider multistage bidding models where two types
of risky assets are traded. We show that, if expectations of share prices are finite,
then the values Vn(p) of n-stage bidding games Gn(p) exist. The value of such a
game does not exceed the sum of values of games modeling the bidding with one-
type shares. This means that the simultaneous bidding of two types of risky assets
is at most so profitable for the insider as the separate bidding of one-type shares.
It is explained by the fact that the simultaneous bidding leads to revealing more
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insider information, because the bids for shares of each type provide information
on shares of the other type.

We show that, if both share prices have finite variances, then the values of
n-stage bidding games do not exceed the function H(p) that is the smallest piece-
wise linear function equal to the one half of the sum of share price variances for
distributions with integer expectations of both share prices.

This makes it reasonable to consider bidding models of unlimited duration, that
are reduced to infinite games G∞(p). We get the solutions for games G∞(p) with
arbitrary probability distributions over a two-dimensional integer lattice having
finite component variances. We show that their values V∞(p) coincide with H(p),
i.e. they are equal to the sum of values of corresponding games with one-type risky
assets. Thus, the profit that Player 2 gets under simultaneous n-step bidding in
comparison with separate bidding for each type of shares disappears in a game of
unbounded duration.

The optimal strategies of Player 1 generate random walks of transaction prices.
But unlike the case of one-type assets, the symmetry of these random walks is
broken at the final stages of the game.

2. Repeated games modeling multistage bidding
with two types of risky assets. Main results

We consider repeated games Gn(p) with incomplete information on one side
(see [1]) modeling the bidding with two types of risky assets.

Two players with opposite interests have money and shares of two types. The
liquidation prices of both share types may take any integer values, s1 for the first
type and s2 for the second one.

At stage 0 a chance move determines the “state of nature” s = (s1, s2) and
therefore the liquidation prices of shares s1 and s2 for the whole period of bidding n
according to the probability distribution p over the two-dimensional integer lattice
known to both Players. Player 1 is informed about the result of chance move s,
Player 2 is not. Player 2 knows that Player 1 is an insider.

At each subsequent stage t = 1, . . . , n both Players simultaneously propose
their bids, meaning prices for one share of each type, (i1t , i2t ) ∈ Z

2 for Player 1
and (j1t , j2t ) ∈ Z

2 for Player 2. The bids are announced to both Players before
proceeding to the next stage. The maximal bid wins and one share is transacted
at this price. Therefore, if iet > jet , Player 1 gets one share of type e = 1, 2 from
Player 2 and Player 2 receives the sum of money iet from Player 1. If iet < jet ,
Player 2 gets one share of type e from Player 1 and Player 1 receives the sum
jet from Player 2. If iet = jet , then no transaction of shares of type e occurs. Each
player aims to maximize the value of his final portfolio (money plus the liquidation
value of obtained shares).

This n-stage model is described by a zero-sum repeated game Gn(p) with in-
complete information for Player 2, with countable state space S = Z

2, and with
countable action spaces I = Z

2, J = Z
2. The one-step gain a(s, i, j) of Player 1
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corresponding to the state s = (s1, s2) and the actions i = (i1, i2), j = (j1, j2) is
given with the sum

∑2
e=1 a

e(se, ie, je), where

ae(se, ie, je) =

⎧⎪⎨
⎪⎩
je − se, for ie < je;
0, for ie = je;
−ie + se, for ie > je.

At the end of the game Player 2 pays to Player 1 the sum

n∑
t=1

a(s, it, jt),

where s is the result of a chance move. This description is a common knowledge
of both Players.

At the step t it is enough for both Players to take into account the sequence
(i1, . . . , it−1) of Player 1’s previous actions only. Thus a mixed behavioral strategy
σ for Player 1 who is informed on the state is a sequence of moves

σ = (σ1, . . . , σt, . . .),

where the move σt = (σt(s))s∈S and σt(s) : It−1 → Δ(I) is the probability
distribution used by Player 1 to select his action at stage t, given the state s and
previous observations. Here Δ(·) is the set of probability distributions over (·).

A strategy τ for uninformed Player 2 is a sequence of moves

τ = (τ1, . . . , τt, . . .),

where τt : It−1 → Δ(J).
Note that here we define infinite strategies fitting for games of arbitrary du-

ration. A pair of strategies (σ, τ) creates a probability distribution Π(σ,τ) over
(I × J)∞. The payoff function of the game Gn(p) is

Kn(p, σ, τ) =
∑
s∈S

p(s)hsn(σ, τ), (2.1)

where

hsn(σ, τ) = E(σ,τ)

[
n∑
t=1

a(s, it, jt)

]
(2.2)

is the s-component of the n-step vector payoff hn(σ, τ) for the pair of strategies
(σ, τ). Here the expectation is taken with respect to the probability distribution
Π(σ,τ). Thus we consider n-step games Gn(p) with total (non-averaged) payoffs
which differs from the classical model of Aumann and Maschler [1].

We also consider the infinite games G∞(p). For certain pairs of strategies (σ, τ),
the payoff function K∞(p, σ, τ), given by the infinite series (2.1),(2.2) with n = ∞,
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may be indefinite. If we restrict the set of Player 1’s admissible strategies to strate-
gies with positive one-step gains∑

s∈S
p(s)E(σ1(s),j)a(s, i, j)

against any action j of Player 2, then the payoff function of the game G∞(p) be-
comes completely definite (may be infinite). Player 1 has many strategies, ensuring
him a positive one-step gain against any action of Player 2. In fact, any reasonable
strategy of Player 1 should possess this property.

For the initial probability p, the strategy σ ensures the n-step payoff

wn(p, σ) = inf
τ
Kn(p, σ, τ).

The strategy τ ensures the n-step vector payoff hn(τ) with components

hsn(τ) = sup
σ(s)

hsn(σ(s), τ).

Now we describe the recursive structure of Gn+1(p). A strategy σ may be re-
garded as a pair (σ1, (σ(i))i∈I), where σ1(i|s) is a probability over I depending on
s, and σ(i) is a strategy depending on the first action i1 = i.

Analogously, a strategy τ may be regarded as a pair (τ1, (τ(i))i∈I ), where τ1 is
a probability over J .

A pair (p, σ1) induces the probability distribution π over S × I, π(s, i) =
p(s)σ1(i|s). Let

q ∈ Δ(I), q(i) =
∑
S

p(s)σ1(i|s),

be the marginal distribution of π on I (total probabilities of actions), and let

p(·|i) ∈ Δ(S), p(s|i) = p(s)σ1(i|s)/q(i),

be the conditional probability on S given i1 = i (a posterior probability).
Conversely, any set of total probabilities of actions q ∈ Δ(I) and posterior

probabilities (p(·|i) ∈ Δ(S))i∈I , satisfying the equality∑
i∈I

q(i)p(·|i) = p,

define a certain random move of Player 1 for the current probability p. The poste-
rior probabilities contain all information about the previous history of the game,
that is essential for Player 1. Thus, to define a strategy of Player 1 it is sufficient
to define the random move of Player 1 for any current posterior probability.

The following recursive representation for the payoff function corresponds to
the recursive representation of strategies:

Kn+1(p, σ, τ) = K1(p, σ1, τ1) +
∑
i∈I

q(i)Kn(p(·|i), σ(i), τ(i)).
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Let, for all i ∈ I, the strategy σ(i) ensure the payoff wn(p(·|i), σ(i)) in the game
Gn(p(·|i)). Then the strategy σ = (σ1, (σ(i))i∈I) ensures the payoff

wn+1(p, σ) = min
j∈J

∑
i∈I

[∑
s∈S

p(s)σ1(i|s)a(s, i, j) + q(i)wn(p(·|i), σ(i))

]
.

Let, for all i ∈ I, the strategy τ(i) ensure the vector payoff hn(τ(i)). Then the
strategy τ = (τ1, (τn(i))i∈I) ensures the vector payoff hn+1(τ) with the compo-
nents

hsn+1(τ) = max
i∈I

∑
j∈J

τ1(j)(a(s, i, j) + hsn(τ(i)) ∀s ∈ S.

The game Gn(p), where n ∈ N ∪ {∞}, has a value Vn(p) if

inf
τ

sup
σ
Kn(p, σ, τ) = sup

σ
inf
τ
Kn(p, σ, τ) = Vn(p).

Players have optimal strategies σ∗ and τ∗ if

Vn(p) = inf
τ
Kn(p, σ∗, τ) = sup

σ
Kn(p, σ, τ∗),

or, as in the notation introduced above,

Vn(p) = wn(p, σ∗) =
∑
s∈S

p(s)hsn(τ∗).

For n ∈ N the values Vn(p) should satisfy Bellman optimality equations:

Vn+1(p) = inf
τ1

sup
σ1

[K1(p, σ1, τ1) +
∑
i∈I

q(i)Vn(p(·|i))].)

The value V∞(p) should satisfy Bellman optimality equation:

V∞(p) = inf
τ1

sup
σ1

[K1(p, σ1, τ1) +
∑
i∈I

q(i)V∞(p(·|i))].

For probability distributions p with finite supports, the games Gn(p), being
games with finite state and action spaces, have values Vn(p). The functions Vn
are continuous and concave in p. Both players have optimal strategies σ∗

n(p) and
τ∗n(p). The value of such game does not exceed the sum

Vn(p1) + Vn(p2)

of values of games modeling the bidding with one-type shares, where p1 and p2

are the marginal distributions of the distribution p. This follows from the fact that
Player 2 can guarantee himself the loss that does not exceed this sum exploiting
the direct combination of optimal strategies τ∗n(p1) and τ∗n(p2) for the single asset
games Gn(p1) and Gn(p2) as a strategy for the two asset game Gn(p).
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Let M1(Z2) be the set of probability distributions p over the two-dimension
integer lattice Z

2 with finite first moments

m1
1[p] =

∑
s∈Z2

s1 · p(s1, s2) <∞; m2
1[p] =

∑
s∈Z2

s2 · p(s1, s2) <∞.

For p ∈ M1(Z2), the liquidation prices of both assets have finite expectations
Ep[s1] = m1

1[p], Ep[s2] = m2
1[p]. The set M1 is a convex subset of the Banach

space L1(Z2, {1 + |s1| + |s2|}) of mappings l : Z
2 → R1 with the norm

||l||1{1+|s1|+|s2|} =
∑
s∈Z2

l(s1, s2) · (1 + |s1| + |s2|).

The payoff of the game Gn(p) with p ∈M1 can be approximated using the payoffs
of games Gn(pk) with probability distributions pk having finite support. The next
theorem follows immediately from this fact.

Theorem 2.1. If p ∈ M1, then the games Gn(p) have values Vn(p). The values
Vn(p) are positive and do not decrease, as the number of steps n increases.

Let M2(Z2) be the set of probability distributions p over the two-dimension
integer lattice Z

2 with finite second moments

m1
2[p] =

∑
s∈Z2

(s1)2 · p(s1, s2) <∞; m2
2[p] =

∑
s∈Z2

(s2)2 · p(s1, s2) <∞.

For p ∈M2(Z2), the random variables s1 and s2, determining the prices of shares,
belong to L2 and have finite variances

Dp[s1] = m1
2[p] − (m1

1[p])2, Dp[s2] = m2
2[p] − (m2

1[p])2.

We show that, if p ∈M2(Z2), then Player 2 has strategies that guarantee him
losses not exceeding the function H(p) in the n-stage games Gn(p). Here H is the
smallest piecewise linear function equal to 1

2 (Dp[s1] + Dp[s2]), for distributions
with integer expectations of both share prices.

This makes it reasonable to consider infinite games G∞(p) where p ∈M2(Z2).
We begin with constructing Player 1’s strategies that ensure the gains H(p) for

games G∞(p) with distributions p having two- and three-point supports respec-
tively. It follows that these games have the values V∞(p) = H(p) and constructed
Player 1’s strategies are optimal ones.

For two-point distributions p the optimal strategies of Player 1 generate asym-
metric random walks of posterior probabilities by adjacent points of the lattice
formed with those probabilities where at least one of the price expectations has
an integer value. The probabilities of jumps provide martingale characteristics of
posterior probabilities and with absorption at extreme points.

The martingales of posterior expectations generated by optimal strategies of
Player 1 for games with three-point support distributions p represent symmetric
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random walks over points of integer lattice lying within the triangle spanned across
the support points of distribution. The symmetry is broken at the step when the
walk hits the triangle boundary. From this step on the game turns into one of
games with distributions having two-point supports.

Using obtained in [6] symmetric decompositions of bivariate probability distri-
butions p into probability mixtures of distributions with the same mean values
and with supports containing at most three points, we build the strategies of
Player 1 that ensure the gains H(p), for bidding games G∞(p) with distributions
p ∈M2(Z2), as convex combinations of his optimal strategies for such games with
distributions having two- and three-point supports. Thus we obtain the following
result:

Theorem 2.2. For any distribution p ∈ M2(Z2), the infinite game G∞(p) has
the value V∞(p) = H(p).

3. Upper bounds for values Vn(p)

The main result of this section is that, for p ∈ M2(Z2), the sequence Vn(p) of
values remains bounded as n→ ∞.

To prove this, we define the set of infinite strategies τ (k,l) of Player 2, suitable
for the games Gn(p) with arbitrary n.

Definition 3.1. The first move τ (k,l)
1 is the action (k, l). For t > 1, the eth com-

ponent of the move τ
(k,l)
t , e = 1, 2, depends on the last observed pair of eth

components of actions (iet−1, j
e
t−1) for both players:

jet =

⎧⎪⎨
⎪⎩
jet−1 − 1, if iet−1 < jet−1 ;
jet−1, if iet−1 = jet−1;
jet−1 + 1, if iet−1 > jet−1.

Proposition 3.2. For the state s = (u, v) ∈ Z
2 the strategy τ (k,l) ensures the

payoff

max
σ

hu,vn (σ, τ (k,l)) ≤ (u− k)(u − k − 1)/2 + (v − l)(v − l − 1)/2. (3.1)

Proof. According to the strategy τ (k,l) Player 2 operates separately with each of
the assets. Hence Player 1 can do the same. Therefore the assertion follows from
Proposition 1 of Domansky and Kreps [8]. This proves Proposition 3.2. �

Set

H(p) = 1/2 · (Dp[u] + Dp[v] − α(p)(1 − α(p)) − β(p)(1 − β(p))) (3.2)

where α(p) = Ep[u]− ent[Ep[u]], β(p) = Ep[v]− ent[Ep[v]] and ent[x], x ∈ R1 is
the integer part of x.
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H(p) is a continuous, concave, and piecewise linear function over M2(Z2). The
domains of linearity of function H(p) are

L(k, l) = {p : Ep[u] ∈ [k, k + 1],Ep[v] ∈ [l, l + 1]}, (k, l) ∈ Z
2.

Its peak points are

Θ(k, l) = {p : Ep[u] = k,Ep[v] = l}.
Theorem 3.3. For p ∈M2(Z2), the values Vn(p) are bounded from above by the
function H(p).

For p ∈ L(k, l) the upper bound H is ensured with the strategy τ (k,l). For p ∈
Θ(k, l) the upper bound H is ensured with the strategies τ (k,l), τ (k−1,l), τ (k,l−1),
and τ (k−1,l−1).

Proof. It follows from Proposition 3.2 that there is the following not depending
on n upper bound for Vn(p):

Vn(p) ≤ min
(k,l)

1
2

∞∑
u,v=−∞

((u − k)(u− k − 1) + (v − l)(v − l − 1)) · p(u, v). (3.3)

Observe that, if Ep[u] − k = α, Ep[v] − l = β, then

1
2

∞∑
u,v=−∞

((u − k)(u− k − 1) + (v − l)(v − l − 1)) · p(u, v)

=
1
2
(Dp[u] + Dp[v] − α(p)(1 − α(p)) − β(p)(1 − β(p))).

Consequently, for p ∈ L(k, l) the minimum in formula (3.3) is attained on (k, l),
and the equality (3.2) holds. In particular, for p ∈ Θ(k, l), this minimum is attained
on (k, l), (k − 1, l), (k, l − 1), and (k − 1, l− 1). �

Corollary 3.4. The strategies τk,l guarantee the same upper bound H(p) for the
upper value of the infinite game G∞(p).

4. Solutions for games G∞(p) with two states

In this section we show that, for games G∞(p) with supports of distributions
p containing two states z1, z2 ∈ Z

2, the values V∞(p) are equal to H(p). Observe
that later on we use the notation z = (x, y) ∈ Z

2 instead of s = (s1, s2) ∈ Z
2.

A distribution with the support z1 = (x1, y1), z2 = (x2, y2) is uniquely deter-
mined with expectations for coordinates. For any point w = (u, v) = p1z1 + p2z2,
pi ∈ [0, 1], p1 + p2 = 1, the distribution pwz1,z2 such that Epwz1,z2

[x] = u,
Epwz1,z2

[y] = v, is given with probabilities pwz1,z2(zi) = pi.
Without loss of generality we assume that one of these points is (0, 0). Thus

there are two states 0 = (0, 0) and z = (x, y), where x and y are integers and



262 V. DOMANSKY AND V. KREPS

x > 0. The distribution ppzz,0 can be depicted with a scalar parameter p ∈ [0, 1] –
the probability of state z. For definiteness set y > 0.

Observe that the function H(p) is equal to the sum of values

H(p) = V x∞(p) + V y∞(p) (4.1)

of one asset games Gx∞(p) and Gy∞(p) considered in Domansky [5].
The function V m∞ (p) is a piecewise linear continuous concave function of p ∈

[0, 1]. The set of its break points is the regular lattice {k/m, k = 0, . . . ,m} with
values Vm∞ (k/m) = k(m− k)/2. Therefore, for p ∈ [k/m, (k + 1)/m],

Vm∞ (p) = (pm− k)(k + 1)(m− k − 1)/2 + (1 − pm+ k)k(m− k)/2

= k(m− k)/2 + (pm− k)(m− 2k − 1)/2. (4.2)

For p ∈ [(k − 1)/m, k/m],

V m∞ (p) = k(m− k)/2 − (k − pm)(m− 2k + 1)/2. (4.3)

Thus the function H(p) is a piecewise linear continuous concave function of
p ∈ [0, 1]. The set of its break points is the irregular lattice D(x, y) ⊂ [0, 1]:

D(x, y) = {k/x, k = 0, . . . , x} ∪ {l/y, l = 0, . . . , y}.
Further we enumerate the points of the latticeD(x, y) in ascending orderD(x, y) =
{pi}, i = 0, 1, . . . , I, p0 = 0, pI = 1, pi < pi+1.

According to Corollary 3.4 the optimal strategy τ∗ guarantees to Player 2 the
loss not exceeding the function H(p). Therefore it is sufficient to show that there
is an optimal strategy σ∗ for Player 1 that guarantees him this gain at the break
points of function H(p), i.e. for the initial probability p belonging to the lattice
D(x, y).

Now we present a definition of first moves for the strategy σ∗ for pi ∈ D(x, y).

Definition 4.1. For any initial probability pi the first move of the strategy σ∗

makes use of two actions a−i and a+
i .

For pi = k/x 
= l/y, these actions are a−i = (k − 1, l) and a+
i = (k, l), where

l = ent(ypi) and ent(z) is the integral part of z.
For pi = l/y 
= k/x, these actions are a−i = (k, l − 1) and a+

i = (k, l), where
k = ent(xpi).
For pi = k/x = l/y, these actions are a−i = (k − 1, l − 1) and a+

i = (k, l).
The posterior probabilities p(z|a−i ) and p(z|a+

i ) are the left and right adjacent
points pi−1 and pi+1 of the lattice D(x, y) correspondingly.
Consequently the total probabilities of actions are

q(a−i ) =
pi+1 − pi
pi+1 − pi−1

, q(a+
i ) =

pi − pi−1

pi+1 − pi−1
·

This first move is realized with the following conditional probabilities of action a+
i :

f∗(a+
i |z) =

(pi − pi−1)pi+1

(pi+1 − pi−1)pi
, f∗(a+

i |0) =
(pi − pi−1)(1 − pi+1)
(pi+1 − pi−1)(1 − pi)

·
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As the posterior probabilities also belong to the lattice D(x, y) this set of moves
defines the infinite strategy σ∗. The defined strategy σ∗ of Player 1 generates the
asymmetric random walk of posterior probabilities for state z by adjacent points
of the irregular lattice D(x, y) with the probabilities of jumps that provide the
martingale characteristics for posterior probabilities and with absorption at the
extreme points p0 = 0 and pI = 1.

Theorem 4.2. The value V∞(p) of the game G∞(p) with two states 0 and z =
(x, y), and with the probability p of the state z is equal to the function H(p). Both
players have optimal strategies.
For the initial probability pi ∈ D(x, y), one of optimal strategies of Player 1 is the
strategy σ∗ of Definition 4.1.
For the initial probability p ∈ (k/x, (k + 1)/x) ∩ (l/y, (l + 1)/y) a unique optimal
strategy of Player 2 is the strategy τ∗ = τk,l, defined in Definition 3.1. Any optimal
strategy for adjacent intervals is also optimal for points of the lattice D(x, y).

Proof. At first we show that Bellman optimality equations are satisfied with the
one-step gain of Player 1 corresponding to the first move σ∗

1 combined with the
optimal gain H at the points of posterior probabilities generated by this move and
weighted by total probabilities of actions.

For pi = k/x 
= l/y, the one-step gain of Player 1 corresponding to the first
move σ∗

1 in the game G∞(0, z, p) is equal to his gain in the one-asset game Gx∞(p)

min
(k′,l′)

K1(σ∗
1 , (k

′, l′)|0, z, pi) = min
k′

Km1
1 (σ∗

1 , k
′|pi)

=
x(pi+1 − pi)(pi − pi−1)

pi+1 − pi−1
· (4.4)

Here the minimum in the left part is attained at (k′, l′) = (k− 1, l) and (k, l), and
the minimum in the right part is attained at k′ = k − 1 è k.

For this move, taking into account (4.2), (4.3), (4.4), we get

min
k′

Kx
1 (σx,y1 , k′|pi) + q(k − 1)V x∞(pi−1) + q(k)V x∞(pi+1)

=
x(pi+1 − pi)(pi − pi−1)

pi+1 − pi−1

+
pi+1 − pi
pi+1 − pi−1

(k(x− k)/2 − x(pi − pi−1)(x− 2k + 1)/2)

+
pi − pi−1

pi+1 − pi−1
(k(x− k)/2 + x(pi+1 − pi)(x − 2k − 1)/2)

= k(x− k)/2 = V x∞(pi). (4.5)

Thus the Bellman optimality equation is fulfilled for a one-asset game. On the other
hand, three points pi−1, pi and pi+1 are situated on the same linearity interval of
function V y∞(p), i.e.

q(k − 1)V y∞(pi−1) + q(k)V y∞(pi+1) = V y∞(pi). (4.6)
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Summing (4.5) and (4.6), and also taking into account (4.1) we obtain

min
(k′,l′)

K1(σ∗
1 , (k

′, l′)|0, z, pi) + q(k − 1, l)H(pi−1) + q(k, l)H(pi+1) = H(pi),

i.e., for pi = k/x 
= l/y and for the move σ∗
1 in the game G∞(0, z, p), function H

satisfies the Bellman optimality equation.
For pi = l/y 
= k/x, the proof of this fact is analogous with replacement of x

and y.
For pi = k/x = l/y, the Bellman optimality equations (4.5) are fulfilled for both

one-asset games Gx∞(p) and Gy∞(p). Summarizing these optimality equations we
obtain the optimality equation for the two-asset game G∞(p).

Thus function H satisfies the Bellman optimality equation for all initial prob-
abilities pi ∈ D(x, y). Iterating this optimality equation and taking into account
the fact that a random walk of posterior probabilities generated by the strategy σ∗

terminates in a finite mean number of steps, we see that, for the initial probability
pi ∈ D(x, y), the strategy σ∗ guarantees Player 1 the gain of H(pi). �

Remark 4.3. Observe all first moves of Player 1 for the one-asset game Gm∞(p)
that satisfy Bellman optimality equation (4.5). For the initial probability p = k/m
these are the moves m(k, a, b) that use only two actions, k−1 and k with posterior
probabilities a = p(·|k − 1) ∈ [(k − 1)/m, k/m] and b = p(·|k) ∈ [k/m, (k + 1)/m],
and only these moves.

For the initial probability p = δ·k/m+(1−δ)·(k+1)/m, 0 < δ < 1, these are any
moves δ·m(k, a1, b1)+(1−δ)·m(k+1, a2, b2) that use three actions, k−1, k and k+1,
and jumps which stay in an area on which the function is linear. These jumps are
of two types: the first type use the actions k− 1 and k with posterior probabilities
p(·|k−1) = k/m and p(·|k) ∈ [p, (k+1)/m]; the second type use the actions k and
k + 1 with posterior probabilities p(·|k) ∈ [k/m, p] and p(·|k + 1) = (k + 1)/m. In
both cases a boundary point of the interval [k/m, (k + 1)/m] appears among the
posteriors.

A jump with two loose end points is impossible in the univariate case, but it
is possible for one coordinate process in the bivariate case, because this jump is
realized by means of two different bids for the other asset, but with the same bids
for the asset under consideration.

For the games with two-type risky assets it follows that, if the integer high
price of one asset is a multiple of the integer high price of the other asset, then the
constructed optimal strategy of Player 1 provides the fastest possible convergence
of n-step gains for Player 1 to the value V∞(p) among all optimal strategies of
Player 1 for the two-asset game G∞(p).

5. Solutions for games G∞(p) with three states

In this section we show that, for games G∞(p) with the support of distribution
p containing three states z1, z2, z3 ∈ Z

2, the value V∞(p) coincides with H(p).



MODELING FINANCIAL MARKETS BY REPEATED GAMES 265

We assume that three points

z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3), z1, z2, z3 ∈ Z
2

are enumerated counterclockwise. It follows that, for w ∈ �(z1, z2, z3), det[zi −
w, zi+1 −w] ≥ 0, where det[zi, zi+1] = xi · yi+1 − yi ·xi+1. Notice that arithmetical
operations with subscripts are fulfilled modulo 3.

A distribution with the support z1, z2, z3 is uniquely determined with expec-
tations of coordinates. For any point w = (u, v) ∈ �(z1, z2, z3) the distribution
pwz1,z2,z3 such that

Epwz1,z2,z3
[x] = u, Epwz1,z2,z3

[y] = v,

is given with probabilities

pwz1,z2,z3(zi) =
det[zi+1 − w, zi+2 − w]∑3
j=1 det[zj − w, zj+1 − w]

· (5.1)

Observe that
∑3

j=1 det[zj − w, zj+1 − w] = det[z1 − z3, z2 − z3] does not depend
on w.

By Corollary 3.4 the optimal strategy τ∗ guarantees Player 2 the loss not ex-
ceeding H(p). It follows from Theorem 3.2 that, for pwz1,z2,z3 with w = (u, v) be-
longing to the boundary of the triangle �(z1, z2, z3), the equality V∞(pwz1,z2,z3) =
H(pwz1,z2,z3) holds. For other points w = (u, v) ∈ �(z1, z2, z3), the function
H(pwz1,z2,z3) is the least concave majorant of its values at the points pwz1,z2,z3 with
w = (u, v) ∈ Z

2 and at the boundary of �(z1, z2, z3). Therefore this is sufficient
to show that there is a strategy σ∗ of Player 1 that guarantees him H(pwz1,z2,z3),
for w = (u, v) ∈ Z

2.
For the point w = (u, v) ∈ Z

2 that belongs to the triangle �(z1, z2, z3)

H(pwz1,z2,z3) =
1
2

(
3∑
i=1

(x2
i + y2

i )p
w
z1,z2,z3(zi) − (u2 + v2)

)
. (5.2)

For pwz1,z2,z3 with w = (u, v) ∈ Z
2, the first step of strategy σ∗ may efficiently use

the actions (u − 1, v − 1), (u, v − 1), (u − 1, v) and (u, v). With the help of these
actions Player 1 can perform moves such that the modulus of difference between
posterior expectations of each coordinate and its initial expectation is not more
than one.

There are several types of optimal first moves of Player 1, in particular, the
first moves σNE−SW

1 (north-east – south-west), σNW−SE
1 , and their probabilistic

mixtures. Denote e = (1, 1), ē = (1,−1). The first move σNE−SW
1 exploits only

two actions w − e and w with posterior expectations w − b · e and w + a · e. The
first move σNW−SE

1 makes use of actions (u − 1, v) and (u, v − 1) with posterior
expectations w − bē and w + aē.

Further we define the first move σNE−SW
1 both in terms of posterior expecta-

tions and in terms of conditional probabilities of actions. We assume w.l.o.g. that
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w = 0 ∈ �(z1, z2, z3). The span of this move is defined with a mutual disposition
of the points −e, e and the triangle �(z1, z2, z3). If zi = k · e for some i = 1, 2, 3,
k > 0, then put a = 1. If zi = k · −e for some i = 1, 2, 3, k > 0, then put b = 1.

If zi 
= k · e, i = 1, 2, 3, k > 0, then there is a unique i = i+ such that the
half-line starting at 0 and passing through e crosses the side zi+ , zi++1 of the
triangle �(z1, z2, z3). If zi 
= k · −e, i = 1, 2, 3, k > 0, then there is a unique
i = i− 
= i+ such that the half-line starting at 0 and passing through −e crosses
the side zi− , zi−+1. Put

a = min
(

det[zi+ , zi++1]
det[e, zi++1 − zi+ ]

, 1
)
, b = min

(
det[zi− , zi−+1]

det[−e, zi−+1 − zi− ]
, 1
)
·

Definition 5.1. The first move σNE−SW
1 for the game G∞(p0

z1,z2,z3) makes use
of actions −e and 0. The posterior expectations are

Ep[z| − e] = −b · e, Ep[z|0] = a · e.

The total probabilities of actions are

q(e) = a/(b+ a), q(0) = b/(b+ a).

This move is realized with the conditional probabilities of actions:

f∗(−e|zi) =
a det[zi+1 + b · e, zi+2 + b · e]

(b+ a) det[zi+1, zi+2]
, i = 1, 2, 3;

f∗(0|zi) =
b det[zi+1 − a · e, zi+2 − a · e]

(b + a) det[zi+1, zi+2]
, i = 1, 2, 3.

Remark 5.2. The martingale of posterior expectations generated by the optimal
strategy of Player 1 is a symmetric random walk over the adjacent points of the
lattice Z

2 disposed inside the triangle �(z1, z2, z3). The symmetry of this ran-
dom walk is broken at the moment when it hits the triangle boundary. Beginning
from this moment the game degenerates into one of two-point games with the
distribution support being either zi+ , zi++1, or zi− , zi−+1.

If a < 1, then after observing the action 0 the next game is G∞(paezi+ ,zi++1
) with

the probabilities of states

p(zi+) =
det[e, zi++1]

det[e, zi++1 − zi+ ]
, p(zi++1) =

det[zi+ , e]
det[e, zi++1 − zi+ ]

·

If b < 1, then after observing the action −e the next game is G∞(p−be
zi− ,zi−+1

) with
the probabilities of states

p(zi−) =
det[e, zi−+1]

det[e, zi−+1 − zi− ]
, p(zi−+1) =

det[zi− , e]
det[e, zi−+1 − zi− ]

·
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Theorem 5.3. The value V∞(p0
z1,z2,z3) of the game G∞(p0

z1,z2,z3) is equal to the
function H(p) given by (5.2). Both players have optimal strategies.
The optimal strategy of Player 2 is given by Definition 3.1.
For w = (u, v) ∈ Z

2, one of optimal strategies of Player 1 is the strategy σ∗ of
Definition 5.1.

Proof. Taking into account Corollary 3.4 and Theorem 4.2 this is sufficient to show
that the one-step gain corresponding to the first move σNE−SW

1 of optimal strategy
of Player 1 combined with the gain H(p) at the points of posterior probabilities
generated by this move and weighted by the total probabilities of actions satisfies
Bellman optimality equations.

The best replies of Player 2 to the first move σNE−SW
1 are actions 0, −e, (−1, 0),

and (0,−1). Corresponding one-step gain of Player 1 is equal to 2ab/(b + a). In
fact,

K1(σNE−SW
1 , 0|p0

z1,z2,z3) = −q(−e)Ep[x+ y| − e] = 2ab/(b+ a);

K1(σNE−SW
1 ,−e|p0

z1,z2,z3) = q(0)Ep[x+ y|0] = 2ab/(b+ a).

For actions (0,−1) and (−1, 0) of Player 2 the proof is analogous.
It follows from (5.1) and (5.2) that

H(p0
z1,z2,z3) =

∑3
i=1(x

2
i + y2

i ) det[zi+1, zi+2]
2 det[z1 − z3, z2 − z3]

;

H(paez1,z2,z3) = H(p0
z1,z2,z3) − a

∑3
i=1(x

2
i + y2

i ) det[zi+1 − zi+2, e]
2 det[z1 − z3, z2 − z3]

− a;

H(p−be
z1,z2,z3) = H(p0

z1,z2,z3) + b

∑3
i=1(x

2
i + y2

i ) det[zi+1 − zi+2, e]
2 det[z1 − z3, z2 − z3]

− b.

We get

2ab/(b+ a) + q(−e)H(p−be
z1,z2,z3) + q(0)H(paez1,z2,z3) = H(p0

z1,z2,z3),

i.e., for p0
z1,z2,z3 and for the move σNE−SW

1 in the game G∞(p0
z1,z2,z3), function

H satisfies Bellman optimality equation. �

6. Decomposition of bivariate distributions

Further we consider games G∞(p) with prices given by arbitrary probability
distributions p ∈ Δ(Z2). We get solutions for the games G∞(p) as combinations
of the solutions of games with two and three states that were obtained in sections
4 and 5. To realize this idea we use symmetric representations of distributions over
R

2 with given mean values as convex combinations of distributions with the same
mean values and with supports containing at most three points. (For a developed
presentation and proofs see [6]).
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As a pattern we take the symmetric representation of one-dimensional proba-
bility distributions that was exploited in [8] in order to reduce solving models with
prices of assets given by arbitrary probability distributions over Z

1 to solving such
models with two-point distributions. Let p be a probability distribution over R

1

with zero mean value. Then

p = p(0)δ0 +
∫ ∞

x=0+
p(dx)

∫ ∞

y=0+

x+ y∫∞
t=0

t · p(dt)
· p0

x,−y · p(−dy),

where δx is the one-point distribution with the support {x}, and for x, y > 0, the
distributions p0

x,−y = (x · δ−y + y · δx)/(x+ y).
Consider the set P(R2) of probability distributions p over the plane R

2 =
{z = (x, y)} with finite first absolute moments. We denote mean values of the
distribution p by Ep[x] and Ep[y]. We construct symmetric representations of
convex sets of distributions with given mean values

Θ(u, v) = {p ∈ P(R2) : Ep[x] = u,Ep[y] = v},

as convex hulls of their extreme points, i.e. distributions with supports with the
same mean values and containing at most three points. For extreme points of
convex sets of distributions with given moments see [11]. This is sufficient to give
such a decomposition for the set Θ(0, 0) of centered distributions.

The distribution p0
z1,z2 ∈ Θ(0, 0) with the two-point support {z1, z2} such that

(0, 0) belongs to the interval (z1, z2), i.e. z1 = aeψ, z2 = −beψ where eψ is a unit
vector with arg eψ = ψ, a, b ∈ R

1
+, is given by

p0
aeψ ,−beψ =

b · δaeψ + a · δ−beψ
a+ b

·

The distribution p0
z1,z2,z3 ∈ Θ(0, 0) with the support {z1, z2, z3} such that (0, 0)

belongs to the interior of the triangle �(z1, z2, z3) is given by

p0
z1,z2,z3 =

∑3
i=1 det[zi+1, zi+2] · δzi∑3

j=1 det[zj, zj+1]
,

where det[zi, zi+1] = xi ·yi+1−yi ·xi+1. All arithmetical operations with subscripts
are fulfilled in modulo 3.

Consider the set Δ0 of non-ordered triples (z1, z2, z3) that form triangles con-
taining the point (0, 0):

Δ0 = {(z1, z2, z3), zi 
= (0, 0) : (0, 0) ∈ �(z1, z2, z3)}.

The set Δ0 is a manifold with a boundary. Its interior IntΔ0 is the set of triples
(z1, z2, z3) ∈ Δ0 such that (0, 0) belongs to the interior of the �(z1, z2, z3). Its
boundary ∂Δ0 is the set of triples (z1, z2, z3) ∈ Δ0 such that (0, 0) belongs to the
boundary of the �(z1, z2, z3).
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If (z1, z2, z3) ∈ ∂Δ0, then there is an index i such that det[zi, zi+1] = 0. In this
case arg zi+1 = arg zi+π(mod 2π), the point (0, 0) ∈ [zi, zi+1] and the distribution
p0
z1,z2,z3 degenerates into the distribution p0

zi,zi+1
with the support {zi, zi+1}.

For ψ ∈ [0, 2π), let Rψ be the half-line Rψ = {z : arg z = ψ(mod 2π)}. With
each value ψ ∈ [0, 2π) we associate the set Δ0(ψ) of non-ordered couples

Δ0(ψ) = {(z1, z2), zi 
= (0, 0) : ∀z ∈ Rψ (0, 0) ∈ �(z1, z2, z)}.
Let IntΔ0(ψ) and ∂Δ0(ψ) be the sets of non-ordered couples (z1, z2) such that, for
z ∈ Rψ, the triple (z1, z2, z) belongs to IntΔ0 and to ∂Δ0 respectively. We accept
that points (z1, z2) are indexed counterclockwise. This implies det[z1, z2] ≥ 0.

Now we introduce the value that plays the role of
∫∞
t=0

t · p(dt), for symmetric
representations of distributions over R

2. Set

Φ(p, ψ) =
∫

IntΔ0(ψ)

det[z1, z2]p(dz1)p(dz2) + 1/2
∫
∂Δ0(ψ)

det[z1, z2]p(dz1)p(dz2).

(6.1)
The next fact produces a base for constructing symmetric representations of dis-
tributions over R

2.

Theorem 6.1. For any distribution p ∈ Θ(0, 0) the quantity Φ(p, ψ) does not
depend on ψ, i.e. this is an invariant Φ(p) of the distribution p ∈ Θ(0, 0).

Remark 6.2. This theorem is a two-dimensional analog of the equality∫ ∞

t=0

t · p(dt) =
∫ ∞

t=0

t · p(−dt)

that holds for p ∈ Θ(0) ⊂ P(R1).
In order that the distribution p0

zi,zi+1
with the two-point support (zi, zi+1),

where zi ∈ Rψ and zi+1 ∈ Rψ+π, could appear in the decomposition of distribution
p with nonzero probability, it is necessary that the measure p(Rψ) and the measure
p(Rψ+π) be more than zero. This is possible for at most a countable set Ψ(p) of
values ψ.

Now we formulate the decomposition theorem for bivariate distributions.

Theorem 6.2. Any probability distribution p ∈ Θ(0, 0) has the following symmet-
ric representation as a convex combination of distributions with one-, two-, and
three-point supports:

p = p(0, 0) · δ0 +
∫
IntΔ0

∑3
j=1 det[zj, zj+1]

Φ(p)
p0
z1,z2,z3p(dz1)p(dz2)p(dz3)

+
∑
Ψ(p)

∂Φ(p, ψ)
Φ(p)

∫
Rψ

∫
Rψ+π

r1 + r2∫
Rψ+π

tp(dt)
p0

(r1,ψ),(r2,ψ+π)p(dr2)p(dr1), (6.2)

where Φ(p) is given by (6.1) and ∂Φ(p, ψ) = 1/2
∫
∂Δ0(ψ) det[z1, z2]p(dz1)p(dz2).
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7. Constructing optimal strategies for Player 1

In this section we construct optimal strategies for Player 1 for bidding games for
shares of two types with arbitrary distribution with an integer expectation vector
(k, l), as a convex combination of his optimal strategies for such games with distri-
butions having at most three-point supports by making use of the decomposition
for the initial distribution p developed above. Further we assume that Ep[x] = u,
Ep[y] = 0.

If the state chosen by chance move is (0, 0), then Player 1 stops the game. In
this case he cannot get any profit from his informational advantage.

If the state chosen by chance move is (x, y) 
= (0, 0), then he chooses one or two
complementary points by means of a lottery with the conditional probabilities of
these complements. Further he plays his optimal strategy for the state (x, y) in
the game with a distribution having two- or three-point support that is the state
(x, y) and the chosen complement.

Half-lines Rψ and Rψ+π contain points from Z
2 iff tanψ = u/v with (u, v)

being a relatively prime pair of integers. Here wψ = (u, v) and −wψ = wψ+π are
the nearest to (0, 0) lattice points on these half-lines. Any lattice point of the half-
line z ∈ Z

2∩Rψ has the form z = wψ ·k with k ∈ N. Consequently, for distribution
p over the lattice Z

2

∫
Rψ

t · p(dt) =
∞∑
t=1

|wψ |t · p(wψ · t).

For distributions p ∈ Θ(0, 0) with supports in Z
2 formula (6.2) indicates proba-

bilities Pp(p0
z1,z2,z3) and Pp(p0

z1,z2) of appearance of distributions with two-, and
three-point supports in their symmetric representations:

Pp(p0
z1,z2,z3) =

∑3
j=1 det[zj , zj+1]

Φ(p)
p(z1)p(z2)p(z3);

Pp(p0
(r1,ϕ),(r2,ϕ+π)) =

∂Φ(p, ϕ)
Φ(p)

r1 + r2∑∞
t=1 |wϕ|t · p(−wϕ · t)p(r1, ϕ)p(r2, ϕ+ π)

=
∂Φ(p, ϕ+ π)

Φ(p)
r1 + r2∑∞

t=1 |wϕ|t · p(wϕ · t)p(r1, ϕ)p(r2, ϕ+ π).

It follows that, given one point z = k ·wϕ in the support of extreme distribution,
the conditional probabilities Pp(2|z) and Pp(3|z) of two or three points in it are

Pp(2|z) =
∂Φ(p, ϕ)
Φ(p)

, Pp(3|z) = 1 − ∂Φ(p, ϕ)
Φ(p)

=
IntΦ(p, ϕ)
Φ(p)

· (7.1)

The conditional probabilities Pp(z2|z, 2) and Pp(z2, z3|z, 3) of complementary
points in the support of extreme distribution given the point z = k · wϕ in it
and the number of points are

Pp(−l · wϕ|z, 2) =
l · p(−l · wϕ)∑∞
t=1 t · p(−t · wϕ)

; (7.2)
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Pp(z2, z3|z, 3) =
det[z2, z3]p(z2)p(z3)

IntΦ(p, ϕ)
· (7.3)

Consequently, the optimal strategy of Player 1 is given by the following
algorithm:

1. If the state chosen by chance move is (0, 0), then Player 1 stops the game.
2. Let the state chosen by chance move be z = k · wϕ 
= (0, 0). Then Player 1

realizes the Bernoulli trial with probabilities (7.1) to choose between two-point
and three-point distributions.

3. If two-point distributions are chosen, then Player 1 chooses a point z2 = −lw
by means of the lottery with probabilities (7.2) and plays the optimal strategy
σ∗(·|z) for the state z = kw in the two-point game G(p0

kw,−lw).
4. If three-point distributions are chosen, then Player 1 chooses a pair of points
z2, z3 by means of the lottery with probabilities (7.3) and plays the optimal
strategy σ∗(·|z) for the state z = z1 in the three-point game G(p0

z1,z2,z3).
As the optimal strategies σ∗ ensure Player 1 the gains equal to one half of the
sum of component variances Dp[u] + Dp[v] in the two and three-point games
with p ∈ Θ(k, l), and as the sum of component variances is a linear function over
Θ(k, l) ∩M2, where M2 is the class of distributions with finite second moment,
we obtain the following result:

Theorem 7.1. For any distribution p ∈ Θ(k, l)∩M2 the compound strategy depic-
ted above ensures that Player 1 will gain 1/2 · (Dp[u]+Dp[v]) in the game G∞(p).

8. Concluding remarks. Games with m risky assets, m > 2.

For games with m risky assets, m > 2, it can be shown that if all share prices
have finite variances, then values of n-stage games do not exceed the piecewise
linear function H , equal to the one half of the sum of share price variances for
distributions with integer mean values of all share prices. This makes it reasonable
to consider games of unlimited duration.

The extension of represented approach to games with m risky assets requires
resolving two problems:

1) constructing symmetric representations of distributions over R
m with given

mean values as convex combinations of distributions with the same mean values
and with supports containing at most m+ 1 points;

2) constructing strategies of Player 1 that ensure H for games G(p) with distri-
butions p over Z

m with supports that contain at most m+ 1 points.

The solution of the first problem is straightforward for centered distributions over
R
m, m > 2, that do not include distributions with less than m-point supports in

their decomposition. These are distributions, such that for any m− k-dimensional
linear subspace of non-zero measure, k > 1, there is a half-subspace of zero
measure.

Thus to construct the decomposition of a centered distribution p over R
m we

represent it as a sum p =
∑m

k=1 αkp
k, where for k < m a distribution pk is
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represented as a convex combination of k-point distributions, and pm is represented
as a convex combination of m and m + 1-point distributions. In particular, a
coefficient α1 = p(0) and a distribution p1 = δ0, the characteristic property of a
distribution p2 is that its part disposed on any straight line crossing the origin is
a centered substochastic distribution, and so on.

In particular, to construct the decomposition of a centered distribution p over
R

3 we have to exclude the possibility of one- and two-point distributions. So we
eliminate an atom at the origin (if there is one). After this elimination there is
no more than a countable number of straight lines crossing the origin that have
a non-zero measure p. For each of these lines we select a centered substochastic
distribution so that on a half-line the whole of distribution is selected. Normalizing
the join of selected distributions we get p2, and normalizing the residual we get p3.

Constructing optimal strategies of Player 1 for games G∞(p) with distributions
p over Z

m with supports that contain m + 1 points can be realized in the same
way as it was done for games G∞(p) with three states. The martingale of posterior
expectations generated by the optimal strategy of Player 1 for the game with the
m+ 1-point support distribution represents a symmetric random walk over points
of integer lattice lying within the simplex spanned across the support points of
distribution. The symmetry is broken at the moment that the walk hits the simplex
boundary. From this moment, the game turns into one of games with distributions
having m-point supports.
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