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HOW TO ELIMINATE NON-POSITIVE CIRCUITS
IN PERIODIC SCHEDULING: A PROACTIVE STRATEGY

BASED ON SHORTEST PATH EQUATIONS
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Abstract. Usual periodic scheduling problems deal with precedence
constraints having non-negative latencies. This seems a natural way
for modelling scheduling problems, since task delays are generally non-
negative quantities. However, in some cases, we need to consider edges
latencies that do not only model task latencies, but model other prece-
dence constraints. For instance in register optimisation problems de-
voted to optimising compilation, a generic machine or processor model
can allow considering access delays into/from registers. Edge latencies
may be then non-positive leading to a difficult scheduling problem in
presence of resources constraints. This research result is related to the
problem of periodic scheduling with storage requirement optimisation;
its aims is to solve the practical problem of register optimisation in opti-
mising compilation. We show that pre-conditioning a data dependence
graph (DDG) to satisfy register constraints before periodic scheduling
under resources constraints may create circuits with non-positive dis-
tances, resulted from the acceptance of non-positive edge latencies. As
a compiler construction strategy, it is forbidden to allow the creation
of circuits with non-positive distances during the compilation flow, be-
cause such DDG circuits do not guarantee the existence of a valid in-
struction schedule under resource constraints. We study two solutions
to avoid the creation of these problematic circuits. A first solution is
reactive, it tolerates the creation of non-positive circuit in a first step,
and if detected in a further check step, makes a backtrack to elimi-
nate them. A second solution is proactive, it prevents the creation of
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2 Université de Versailles Saint-Quentin-en-Yvelines, France
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non-positive circuits in the DDG during the register optimisation pro-
cess. It is based on shortest path equations which define a necessary and
sufficient condition to free any DDG from these problematic circuits.
Then we deduce a linear program accordingly. We have implemented
our solutions and we present successful experimental results.

Keywords. Periodic scheduling, linear programming, storage con-
straints, register constraints, code optimisation.

Mathematics Subject Classification. 68 computer science, 90
operational research.

1. Introduction

In an optimising compilation process for instruction level parallelism, we may
be faced to the opportunity of bounding the register pressure before instruction
scheduling. A typical problem, that we solve in this article, arises for all strategies
handling registers before instruction scheduling. Indeed, when we have a target
processor with architecturally visible delays to access registers (such as in VLIW,
DSP, EPIC and transport triggered architectures), the model of register require-
ment offers more opportunities to reduce the register pressure than in a regular
sequential/superscalar processor. Such architectures are also called NUAL (non-
unit-assumed-latencies).

Unfortunately, the opportunities offered by NUAL architectures are not fully or
optimally exploited in existing register allocators. Two main reasons:
1. Periodic instruction (task) scheduling uses a model based on data dependence

graph (DDG), that represents the periodic precedence constraints between the
instructions of a loop (to be defined later). The exploitation of register access
delay means the usage of non-positive edges latencies in a DDG. As far as we
know, current instruction schedulers do not exploit yet these sort of edges, and
consider them as positive edges latencies.

2. If the register constraints are handled before instruction scheduling, an open
problem arises regarding the possible creation of circuits with non-positive
distances.

This article studies the latter point. That is, we show that minimising the number
of registers (storage) in a loop program may prohibit the compiler from generating
a code. That is, in theory, if registers are optimised before instructions scheduling
as done in some optimising compilers, we may be faced to the problem of impossible
instructions scheduling. This situation is not acceptable in optimising compilation,
because when a programer writes a correct code, the compiler must be able to
generate a executable low-level code.

We follow a formal methodology to deal with the above problem. We use a
graph theoretical framework to define the exact problem and to prove a necessary
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and sufficient condition for its existence. We provide solutions based on graphs
and linear programming. This article demonstrates the following points:

• The DDG circuits with non-positive distances may prohibit periodic instruc-
tion scheduling under resource constraints from finding a solution, making the
compilation process to fail.

• DDG circuits with non-positive distances are not rare in practice, so the prob-
lem is not marginal.

• We show how to avoid the creation of non-positive circuits with two strategies:
a reactive strategy (tolerate the problem then fix it if detected) and a proactive
strategy (prevent the problem).

While the problem of non-positive circuits may arise in theory for any register
optimisation method performing before periodic scheduling, this article shows how
to avoid the problem in the SIRA framework [22]. As far as we know, the SIRA
framework is the only existing formal method that handles registers constraints
before periodic instruction scheduling with multiple register types and delayed
access to registers. The upcoming related work section will give more details on
the litterature.

Our article is organised as follows. We start with describing some related work
in Section 2. Section 3 recalls our notations for data dependence graphs (DDG)
and periodic instruction scheduling. This section also recalls our previous results
on bounding the register need in DDG. If the reader is familiar with our previous
articles on the topic, he may skip reading Section 3. Section 4 defines the problem
that is resulted if we insert non-positive edges inside DDG (which in turns create
non-positive circuits). Section 5 studies a sufficient and necessary condition that
defines a DDG without non-positive circuits. This mathematical characteristic is
used to propose a linear program in Section 6.1, which is the core of our proactive
method. Section 7 summarises our experimental results, and compare between the
efficiency of the reactive and the proactive methods.

The article size limitation imposes us to put the formal proof in an external
research report, publicly accessible in [4]. Concerning the reproducibility of the
experimental part by any third party, our implemented software and experimental
data are released as an open source code in [4].

2. Related work

Register optimisation is a broad research topic in optimising compilation since
long time. We must distinguish three possible phase orderings between register
optimisation and instruction scheduling:

1. Register constraints are handled after instruction scheduling. This topic is
called register allocation, and is well studied mathematically in [1–3] for acyclic



226 S.-A.-A. TOUATI ET AL.

scheduling, and in [7] for periodic scheduling. Our article does not treat a regis-
ter allocation problem, since we apply register optimisation before instruction
scheduling and not after.

2. Register constraints are handled in combination with periodic instruction
scheduling . This is the most studied topic. Exact and formal methods are
published using integer linear programming [9,10,12,17,18,20], not all are im-
plemented in real compilers because they do not scale to large loops. Almost all
these articles treat UAL code semantics, except in [12]. In [12], the target pro-
cessor architecture is special, called TTA (transport triggered architectures).
The problem of non-positive circuits have not been addressed in [12], and the
code generation is allowed to fail in theory for TTA processor. Many ad-hoc
heuristics that work well in practice for superscalar and VLIW processors are
already present and presented in some computer engineering conferences, that
we do not discuss here because they are not always formally defined with clear
algorithmic complexity.
Our article does not consider resource constraints, since we are faced to a
compilation strategy that asks to firstly satisfy the register constraints (to
guarantee the absence of spilling) before satisfying resource constraints. The
separation between register and resource constraints is an old debate in the
community, recent arguments are presented in [21]. Furthermore, a recent ef-
ficient heuristic on this topic has been published in [8]. In this recent article
the problem of non-positive circuits were not solved. We dedicate the current
article to clearly explain the problem, prove a necessary an sufficient condition
for it, and propose solutions with experimental evaluation.

3. Register constraints are handled before instruction scheduling. In this situation,
most of the published literature is devoted to acyclic scheduling in UAL code
semantics [11] with a single register type. In this context, the problem of non-
positive circuits is not present. As far as we know, the unique study in computer
science devoted to register optimisation before SWP, in the context of periodic
scheduling with multiple register types and NUAL code semantics, is the SIRA
framework that we discussed in Section 3.3.

The problem of non-positive circuits that we are solving in this article have al-
ready been highlighted in [22]. In that time, we provided a necessary and sufficient
condition to eliminate non-positive circuits based on circuit retiming [15]. Unfor-
tunately, that preliminary solution is not satisfactory because it imposes the usage
of integer linear programming: in practice, with multiple register types, we are not
able to solve real life instances using circuit retiming. A full comparison between
the presented solution in this article and the circuit retiming method can ben found
in [4]. The current article is a major improvement compared to [22] in two ways: 1)
for the formal study, we provide a new necessary and sufficient condition to avoid
non-positive circuits, that may be implemented with linear programming; 2) we
show how it can be integrated to SIRALINA in an iterative process; 3) in practice,
the proactive method is implemented and tested on a large set of representative
benchmarks, even on very large DDG (multiple thousands of nodes and edges).



HOW TO ELIMINATE NON-POSITIVE CIRCUITS IN PERIODIC SCHEDULING 227

3. Data dependence graphs and periodic register

constraints

We consider an innermost program loop devoted to code optimisation. Such
loop is analysed by the compiler to deduce the data dependences between the
instructions (producer/consumer relationship between loop statements). A data
dependence graph (DDG) is a directed multi-graph G = (V, E) where V is a set
of vertices (also called instructions, statements, nodes, operations), E is a set of
edges (data dependencies and serial constraints). A DDG is a multi-graph because
it is possible to have multiple edges between two vertices.

The modelled processor may have several register types: we note T the set
of available register types. For instance, T = {BR, GR, FP} for branch, general
purpose, and floating point registers respectively. The number of available registers
of type t is noted Rt: Rt may be the full number of architectural registers of type
t, or may be a subset of it if some architectural registers are reserved for other
purposes.

We make a difference between tasks and precedence constraints depending
whether they refer to data to be stored into registers or not. For a given reg-
ister type t ∈ T , we note V R,t ⊆ V the set of statements u ∈ V that produce
values to be stored inside registers of type t. The superscript R means Registers.
We write ut the value of type t created by the instruction u ∈ V R,t. Our theo-
retical model assumes that a statement u can produce multiple values of distinct
types (but a single value per type), which is sufficient to model numerous processor
architectures.

Concerning the set of edges E, we distinguish between flow edges of type t –
noted ER,t– from the remaining edges. A flow edge e = (u, v) of type t represents
the producer-consumer relationship between the two statements u and v: u creates
a value ut read by the statement v. The set of consumers of a value u ∈ V R,t is
defined as

Cons(ut) = {tgt(e) | e ∈ ER,t ∧ src(e) = u}
where src(e) and tgt(e) are the notations used for the source and target of the
edge e. When we consider a register type t, the set E − ER,t of remaining edges
are simply called serial edges: E −ER,t contains non-flow edges and flow edges of
other register types t′ �= t.

If a value ut ∈ V R,t is not read inside the considered code scope (Cons(ut) = ∅),
it means that either u can be eliminated from the DDG as a dead code, or can be
kept by introducing a dummy node reading it.

When we consider an innermost loop, the DDG G = (V, E) may contain circuits.
Each edge e ∈ E is labelled by a pair of values (δ(e), λ(e)). δ : E → Z defines
the latency of edges and λ : E → Z defines the distance in terms of number
of iterations. The latency δ(e) of an edge e = (u, v) expresses the minimal time
(processor clock cycle, steps) that must separate the execution dates of the two
instructions u and v. The distance λ(e) defines which instruction instances are
connected with the arc e, detailed below.
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Since we are dealing with a loop, there may be multiple instances of each in-
struction, since the instruction is executed at each loop iteration. In order to dis-
tinguish between the multiple instances of the same instruction, we speak about
operations of the same instruction. If the loop iteration count is n, it means that
every instruction is executed n times. In this case, every instruction u ∈ V has n
copies that we number from u(0) to u(n − 1). The distance λ(e), with e = (u, v),
defines the fact that the edge e connects between the operation u(i) and v(i+λ(e),
0 < i < n−λ(e). The latency δ(e) models the fact that the execution dates of u(i)
and v(i + λ(e) must be separated by at least δ(e) steps or processor clock cycles.

3.1. NUAL and UAL code semantics

Processor architectures can be decomposed into many families. One of the used
classifications is related to the instruction set semantics [19]:

UAL code semantic : These processors have Unit-Assumed-Latencies at the
architectural level. Sequential and superscalar processors belong to this fam-
ily. In UAL, the assembly code has a sequential semantic, even if the micro-
architectural implementation executes instructions of longer latencies, in par-
allel, out of order or with speculation. The compiler instruction scheduler can
always generate a valid code if it considers that all operations have a unit
latency.

NUAL code semantic : These processors have Non-Unit-Assumed-Latencies at
the architectural level. VLIW, EPIC and some DSP processors belong to this
family. In NUAL, the hardware pipeline steps (latencies, structural hazards,
resource conflicts) may be visible at the architectural level. Consequently, the
compiler has to know about the instructions latencies, and sometimes with the
underlying micro-architecture. The compiler instruction scheduler has to take
care of these latencies to generate a correct code that does not violate data
dependences.

Our processor model considers both UAL and NUAL semantics. Given a register
type t ∈ T , we model possible delays when reading from or writing into registers
of type t. We define two delay functions δr,t : V �→ N and δw,t : V R,t �→ N.
These delay functions model NUAL semantics. Thus, the statement u reads from
a register δr,t(u) steps after the schedule date of u. Also, u writes into a register
δw,t(u) steps after the schedule date of u. In UAL code semantic, these delays are
not visible to the compiler, so we have δw,t = δr,t = 0.

3.2. Periodic instruction scheduling

In order to exploit the parallelism between the instructions belonging to different
loop iterations, we rely on periodic scheduling.

One of the most used periodic scheduling methods is called software pipelining
(SWP). SWP is defined by a periodic schedule function σ : V → Z and an initiation
interval II. The operation u of the ith loop iteration is noted u(i), it is scheduled
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at time σ(u)+ i×II. Here, the schedule time σ(u) represents the execution date of
u(0) (i = 0 is the first iteration). A good schedule is the one that has minimal II.

The schedule function σ is valid iff it satisfies the usual precedence constraints
in periodic scheduling

∀e = (u, v) ∈ E : σ(u) + δ(e) ≤ σ(v) + λ(e) × II (1)

If G contains a circuit, a well known necessary condition for a valid SWP sched-
ule to exist is that

II ≥ max
c is a circuit

∑
e∈c

δ(e)∑
e∈c

λ(e)
= MII

MII is called the minimum initiation interval defined by data dependences.

Any circuit c such that

∑
e∈c

δ(e)∑
e∈c

λ(e) = MII is called a critical circuit. If G does not

contain a circuit, we define MII = 1 and not MII = 0. This is because no code
generation is possible in compilation with MII = 0: the reason is that MII = 0
models infinite instruction level parallelism, not possible to implement with a loop.

In our paper, we may use the term periodic scheduling instead of software
pipelining.

3.3. Periodic register constraints

Depending on the compilation strategy, periodic instruction scheduling may be
constrained by the number of registers available in the processors. The instruction
schedule may be asked to either minimise or to bound the register requirement.
The current theoretical framework that models precisely the periodic register con-
straints is called SIRA [22], this section gives a synthetic recall.

A simple way to explain and recall the concept of SIRA is to provide an example.
All the theory has already been presented in [22]. Figure 1a provides an initial
DDG with two register types t1 and t2. Statements producing results of type t1
are in dashed circles, and those of type t2 are in bold circles. Statement u1 writes
two results of distinct types. Flow dependence through registers of type t1 are in
dashed edges, and those of type t2 are in bold edges.

As an example, Cons(ut2
2 ) = {u1, u4} and Cons(ut1

3 ) = {u4}. Each edge e in
the DDG is labelled with the pair of values (δ(e), λ(e)). In this simple example,
we assume that the delay of accessing registers is zero (δw,t = δr,t = 0). Now,
the question is how to bound the register need for the loop in Figure 1a without
increasing the initiation interval II if possible.

As formally studied in [22], periodic register constraints are modelled thanks
to reuse graphs. We associate a reuse graph Greuse,t to each register type t, see
Figure 1b. The reuse graph has to be computed by the SIRA framework, Figure 1b
is one of the examples that SIRA may produce. Note that the reuse graph is not
unique, other valid reuse graphs may exist.
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Figure 1. Example for SIRA and Reuse Graphs.

A reuse graph Greuse,t = (V R,t, Ereuse,t) contains V R,t, i.e., only the nodes
writing inside registers of type t. These nodes are connected by reuse edges.
For instance, in Greuse,t2 of Figure 1b, the set of reuse edges is Ereuse,t2 =
{(u2, u4), (u4, u2), (u1, u1)}. Also, Ereuse,t1 = {(u1, u3), (u3, u1)}. Each reuse edge
er = (u, v) is labelled by an integral distance μt(er). The existence of a reuse edge
er = (u, v) of distance μt(er) means that the two operations u(i) and v(i+μt(er))
share the same destination register of type t. In the example of Figure 1b, we have
in Greuse,t2 μt2((u2, u4)) = 2 and μt2((u4, u2)) = 3.

In order to be valid, reuse graphs should satisfy two main constraints [22]: 1)
They should describe a bijection between the nodes; that is, they must be composed
of elementary and disjoint circuits. 2) The associated DDG should be schedulable,
i.e., it has at least one valid SWP.

Now, let us describe what we mean by the DDG associated with a reuse graph.
Once a reuse graph is fixed before SWP, say the reuse graphs of types t1 and
t2 in Figure 1b, the register constraints create new periodic scheduling con-
straints between loop statements. These scheduling constraints result from the
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anti-dependencies created by register reuse. Since each reuse arc (u, v) in the reuse
graph Greuse,t describes a register sharing between u(i) and v(i + μt((u, v))), we
must guarantee that v(i+μt((u, v)) writes inside the same register after the execu-
tion of all the consumers of ut(i). That is, we should guarantee that v(i+μt((u, v)))
writes its result after the killing date of ut(i). If the loop is already scheduled, the
killing date is known. However, if the loop is not already scheduled, then the killing
date is not known and hence we should be able to guarantee the validity for all
possible SWP schedules.

Guaranteeing precedence relationship between lifetime intervals for any SWP
is done by creating the associated DDG with the reuse graph. This DDG is an
extension of the initial one in two steps:

1. Killing nodes: First, we introduce dummy nodes representing the killing dates
of all values[6]. For each value u ∈ V R,t, we introduce a node kut which repre-
sents the killing date of ut. The killing node kut must always be scheduled after
all ut’s consumers, so we add edges of the form e = (v, kut) where v ∈ Const(u).
If a value ut has no consumer (not read inside the loop), it means that the node
can be killed just after the creation of its result. Figure 1c illustrates the DDG
after adding all the killing nodes for all register types. For each added edge
e = (v, kut), we set its latency to δ(e) = δr,t(v) and its distance to −λ, where λ
is the distance of the flow dependence edge (u, v) ∈ ER,t. As explained in [22],
this negative distance is a mathematical convention, it simplifies our mathe-
matical formula and does not influence the fundamental results of reuse graphs.
Formally, if u ∈ V R,t is a node writing a value of type t ∈ T , then we note
kut the killer node of type t of the value ut. The set of killing nodes of type t
is noted V k,t. For each type t ∈ T , we note Ek,t the set of edges defining the
precedence constraints between V R,t nodes and the killer nodes:

Ek,t = {e = (v, kut) | u ∈ V R,t ∧ v ∈ Const(u) ∧ δ(e) = δr,t(v)}
∪ {(u, kut) | u ∈ V R,t ∧ Const(u) = ∅ ∧ δ(e) = 1}

For instance, in Figure 1b, we have V k,t2 = {ku1
t2 , ku2

t2 , ku4
t2 }, and we have

Ek,t2 = {(u2, ku1
t2 ),

(u1, ku2
t2 ), (u4, ku2

t2 ), (u4, ku4
t2 )}.

If we note K =
⋃

t∈T
V k,t and Ek =

⋃
t∈T

Ek,t, then the DDG with killing nodes

is defined by (V ∪ K, E ∪ Ek).

2. Anti-dependence edges: Second, we introduce new anti-dependence edges
implied by periodic register constraints. For each reuse edge er = (u, v) in
Greuse,t, we add an edge e′r = (kut , v) representing an anti-dependence in the
associated DDG. We say that the anti-dependence e′r = (kut , v) in the DDG G
is associated with the reuse edge er = (u, v) in Greuse,t. We write Φ(er) = e′r
and Φ−1(e′r) = er.
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The added anti-dependence edge e′r = (kut , v) has a distance equal to the reuse
distance λ(e′r) = μt(er), and a latency equal to:
• δ(e′r) = −δw,t(v) if the processor has NUAL semantics.
• δ(e′r) = 1 if the processor has UAL semantics. Note that we can still assume

a latency δ(e′r) = δw,t−δr,t = 0, since the instruction scheduler will generate
a sequential code, so this zero edge imposes to schedule kut before v.

Figure 1d illustrates the DDG associated to the two reuse graphs of Figure 1(b).
Periodic register constraints with multiple register types are satisfied conjointly
on the same DDG even if each register type has its own reuse graph. The reader
may notice that the critical circuit of the DDG in Figure 1a and c are the same
and equal to MII = 4

2 = 2 (a critical circuit is (u1, u2)). The set of added
anti-dependence edges of type t is noted Eμ,t

Eμ,t = {e = (kut , v) | er = (u, v) ∈ Ereuse,t ∧ Φ(er) = e}

In Figure 1d, Eμ,t1 = {(ku1
t1 , u3), (ku3

t1 , u1)} and Eμ,t2 = {(ku1
t2 , u1),

(ku2
t2 , u4), (ku4

t2 , u2)}. If we note Eμ =
⋃

t∈T
Eμ,t, then the DDG G′ (with

killing nodes) associated with the reuse graphs
(
V R,t, Ereuse,t

)
t∈T is defined

by G′ = (V = V ∪ K, E = E ∪ Ek ∪ Eμ).

As can be seen, computing a reuse graph of a register type t implies the creation
of new edges with μt distances. We proved in [22] that if a reuse graph Greuse,t is
valid, then any valid SWP cannot require more than

∑
er∈Ereuse,t μt(er) registers of

type t, and this upper-bound is reachable. We call
∑

er∈Ereuse,t μt(er) the register
requirement of type t.

Now the problem that must be solved by SIRA is to compute a valid reuse graph
with minimal

∑
er∈Ereuse,t μt(er), without increasing the initiation interval II if

possible. Also, instead of minimising the register requirement, SIRA may simply
look for a solution such that

∑
er∈Ereuse,t μt(er) ≤ Rt, where Rt is the number

of available registers of type t. We may propose many exact method models (the
problem has been proved NP-complete in [22]) or heuristics based on the SIRA
framework [8, 21].

As explained before, the latency of an added anti-dependence edge e′r = (kut , v)
is equal to δ(e′r) = −δw,t(v) if the target processor has NUAL semantics. The
next section explains the problem that may arise when we use edges with negative
latencies.

4. Problem description of non-positive circuits

A circuit C is said lexicographic-positive iff λ(C) > 0, while λ(C) is a notation
for
∑

e∈C λ(e). A data dependence graph (DDG) is said lexicographic-positive iff
all its circuits are lexicographic-positive too. A DDG is said schedulable iff there
exists a valid SWP, i.e., a SWP satisfying all its periodic precedence constraints,
not necessarily satisfying other constraints such as resources or registers. A data
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dependence graph computed from a sequential program is always lexicographic
positive, it is an inherent characteristic of imperative sequential languages. When
a DDG is lexicographic-positive, there is a guarantee that a schedule exists for it
(at least the initial sequential schedule).

When a DDG is modified by introducing non-positive edges as explained in
Section 3.3, it modifies the DDG under the condition that it remains schedula-
ble. If the target architecture has a UAL code semantics (sequential code), then
the introduced edges by has unit-assumed latencies, and the DDG remains lex-
icographic positive. If the target architecture has explicit architectural delays in
accessing registers (NUAL code semantics), then the introduced edges are of the
form e′ = (kut , v) with latencies δ(e′) = −δw,t(v). Such latencies are non-positive.

If an edge latency is non-positive, this does not create specific problem for
periodic scheduling in theory, unless if the latency of a circuit is negative too. The
following lemma proves that if δ(C) < 0, then the DDG may not be lexicographic
positive.

Lemma 4.1. Let G be a schedulable loop DDG, i.e., a SWP exists. Let C be an
arbitrary circuit in G. Then the following implications are true:

1. δ(C) ≥ 0 =⇒ λ(C) ≥ 0.
2. δ(C) ≤ 0 =⇒ λ(C) may be non-positive (either λ(C) ≤ 0 or λ(C) ≥ 0).

Proof. Since the DDG is schedulable, then there exists a valid SWP with II > 0.
It is well known that ∀C a cycle : II × λ(C) ≥ δ(C), hence λ(C) ≥ δ(C)

II .

1. II > 0 ∧ δ(C) ≥ 0 =⇒ λ(C) ≥ 0.
2. II > 0 ∧ δ(C) ≤ 0 =⇒ λ(C) ≥ x, where x = δ(C)

II ≤ 0. �

Recall that SIRA looks for a SWP for a given DDG and inserts edges inside
the DDG based on the SWP. The previous lemma proves such SIRA mechanism
may insert negative edges inside a DDG can generate circuits with λ(C) ≤ 0
(observed in practice, as we will show later).Such circuits with λ(C) ≤ 0 cause hard
scheduling problems. Indeed, an explanation may be clear following the periodic
scheduling theory: Given a DDG (with circuits), let C+ be the set of circuits with
λ(C) > 0, le C− be the set of circuits with λ(C) < 0, and let C0 be the set of
circuits with λ(C) = 0. Then the following inequality is true [14, 16]:

max
C∈C+

δ(C)
λ(C)

≤ II ≤ min
C∈C−

δ(C)
λ(C)

In other words, the existence of circuit inside C− imposes hard real time con-
straints on the value of II. Such constraints can be satisfied with periodic schedul-
ing if we consider only precedence constraints [14,16]. However, if we add resource
constraints (as will be carried out during the subsequent instruction scheduling
pass), then the DDG may not be schedulable. Simply it may be possible that the
conflicts on the resources may not allow to have an II lower than minC∈C−

δ(C)
λ(C) .
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When a circuit C ∈ C0 exists, this means that there is a precedence relationship
between the statements belonging to the same iteration: that is, the loop body a
graph without circuits.

By abuse of language, we say also that a circuit in C0∪C− is a non-positive cir-
cuit. Some concrete examples demonstrating the possible existence of non-positive
circuits are drawn in [4]. According to our experiments that will be addressed later,
inserting non-positive edges inside a large sample of representative DDG produces
non-positive circuits in 30.77% of loops in SPEC2000 C applications (resp. 28.16%,
41.90% and 92.21% for SPEC 2006, MEDIABENCH and FFMPEG loops). Note
that this problem of non-positive circuits is not related exclusively to SIRA, but it
is related to any pass of register optimisation performing on the DDG level before
SWP.

As a compiler construction strategy, we must guarantee that the schedulable
DDG produced after constructing any reuse graph by SIRA is always lexicographic
positive. Otherwise, there is no guarantee that the subsequent SWP pass would
find a solution under resource constraints, and the code generation may fail. We
start by studying a necessary and sufficient condition to detect and prevent the
problem in the next section.

5. Necessary and sufficient condition to avoid

non-positive circuits

As mentioned previously, we need to ensure that the associated DDG computed
by any SIRA method is lexicographic positive. We have also noted that if the
processor has a UAL semantics then it is guaranteed that any associated DDG
found by SIRA is lexicographic positive. This is because the UAL semantic is used
to model sequential processors, all inserted anti-dependences edges have latency
equal to 1. Since all the edges in the associated DDG have positive latencies, and
since the associated DDG is schedulable by SWP (guaranteed by SIRA), then the
DDG is necessarily lexicographic positive.

Hence, a naive strategy is to always consider UAL semantics, which defines a first
sufficient condition to eliminate non-positive circuits. That is, we do not exploit
the access delays to registers. This solution works in practice but the register
requirement model is not optimal, since it does not exploit NUAL code semantics.
Consequently, the computed register requirement is not well optimised.

A more clever, yet naive, way to ensure that any associated DDG computed
by SIRA is lexicographic positive is to have a reactive strategy. It tolerates the
problem as follows:

1. Consider SIRA with NUAL semantics.
2. Check whether the associated DDG is lexicographic positive4 and

• if it is, then return the computed solution.
• if it is not, then apply SIRA considering UAL semantics.

4Thanks to Corollary 5.3, to be defined later.



HOW TO ELIMINATE NON-POSITIVE CIRCUITS IN PERIODIC SCHEDULING 235

Considering a UAL semantic for SIRA on a processor that has a NUAL semantics
cannot hurt: it just possibly implies a loss of optimality in either II or in the
register requirement. The above method is optimistic (reactive) in the sense that
it considers that non lexicographic DDG are rare in practice. This is not true
in theory of course, but maybe the practice would highlight that the proportion
of the problems producing DDG that must be corrected is low. In this case, it
is in practice better to do not try to restrict SIRA, but to correct the solution
afterwards if we detect the problem.

The question that thus arises naturally is the following: is it possible to devise
a better method to ensure a priori that the associated DDG computed by SIRA
are lexicographic positive while exploiting the benefit of NUAL semantics ? That
is, we are willing to study a proactive strategy that prevents the problem. The
following simple lemmas, deduced from [5], are a basis for a necessary and sufficient
condition to eliminate non-positive circuits. Their proof is easy thanks to shortest
path equations.

Lemma 5.1. Let G = (V, E) a directed graph and w : E → Z a cost function.
Then G has a circuit C of non-positive cost with respect to cost w if and only if G
has a circuit of negative cost with respect to cost w′ defined by w′(e) = ‖V ‖·w(e)−1:∑

e∈C

w(e) ≤ 0 ⇐⇒
∑
e∈C

w′(e) < 0

Proof. Clearly any cycle of G of negative cost w.r.t. w is also a cycle of strictly
negative cost w.r.t. w′.

Let c = (e1, . . . , ep) be an elementary cycle.
Then ∑

1≤i≤p

w′(ei) < 0 ⇐⇒ ‖V ‖ ·
∑

1≤i≤p

w(ei) − p < 0

⇐⇒ ‖V ‖ ·
∑

1≤i≤p

w(ei) < p

⇐⇒
∑

1≤i≤p

w(ei) <
p

‖V ‖

Hence if c is an elementary cycle of strictly negative cost w.r.t. w′, i.e. if∑
1≤i≤p

w′(ei) < 0

Then we have ∑
1≤i≤p

w(ei) <
p

‖V ‖

Since c is elementary, we have p ≤ ‖V ‖ and thus∑
1≤i≤p

w(ei) < 1
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And since the left hand term is an integer, we have

∑
1≤i≤p

w(ei) ≤ 0

This shows that c is a cycle of negative cost w.r.t. w. �

Lemma 5.2. Let G = (V, E) a directed graph and w : E → R a cost function.

Then G has a circuit C of negative cost (i.e.
∑

e∈C w(e) < 0 ) if and only if the
constraints system SG,w defined below is infeasible.

(SG,w)
{

∀e ∈ E :, xtgt(e) − xsrc(e) ≤ w(e)
∀v ∈ V, xv ∈ R

Proof. For the proof, see also [5].

• Assume that G has a cycle of negative cost.
Let e1, . . . , ep be a cycle with tgt(ei) = src(ei+1) for 1 ≤ i < p, tgt(ep) = src(e1)
and

∑
1≤i≤p

w(ei) < 0

Assume that SG,w has a solution.
This solution should satisfy:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xtgt(e1) − xsrc(e1) ≤ w(e1)
xtgt(e2) − xsrc(e2) ≤ w(e2)

...
xtgt(ep) − xsrc(ep) ≤ w(ep)

Thus, by summing all these inequalities, we get

∑
1≤i≤p

(xtgt(ei) − xsrc(ei)) ≤
∑

1≤i≤p

w(ei)

Thus ∑
1≤i≤p

(xtgt(ei) − xsrc(ei)) < 0
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But we have∑
1≤i≤p

(xtgt(ei) − xsrc(ei)) =
∑

1≤i≤p

xtgt(ei) −
∑

1≤i≤p

xsrc(ei)

=

⎛⎝xtgt(ep) +
∑

1≤i<p

xtgt(ei)

⎞⎠−

⎛⎝xsrc(e1) +
∑

2≤i≤p

xsrc(ei)

⎞⎠
=
∑

1≤i<p

xtgt(ei) −
∑

2≤i≤p

xsrc(ei)

=
∑

1≤i<p

xsrc(ei+1) −
∑

2≤i≤p

xsrc(ei)

=
∑

2≤i≤p

xsrc(ei) −
∑

2≤i≤p

xsrc(ei)

= 0

Thus 0 < 0, which is a contradiction.
Hence SG,w has no solution and is thus infeasible.

• Assume that SG,w is infeasible.
If G has no cycle of strictly cost, then G can be modified as follows.
Add a source � to G connected to each vertex v ∈ V and extend w so that
w(�, v) = 0 for any v ∈ V .
Then the distance from � to any other vertex v (ie the length of the shortest
path from � to v) is well defined, since this extension of G has no cycle of
negative cost (observe that � cannot belong to any cycle since it has no in-
coming edges). For instance, Bellman Ford algorithm can successfully compute
this distance function.
Let d(�, v) denote the distance from � to v for any vertex v ∈ V .
Let e ∈ E. Then we have d(�, tgt(e)) ≤ d(�, src(e)) + w(e) by property of a
distance function.
Thus if we pose for any v ∈ V , xv = d(�, v) then we have just found a solution
of SG,w.
This is a contradiction.
So G has a cycle of strictly negative cost. �

From Lemmas 5.1 and 5.2, we deduce the following corollary, which defines a
necessary and sufficient condition to eliminate non-positive circuits.

Corollary 5.3. Let G = (V, E) a directed graph and w : E → Z a cost function.
Then G has a circuit C of non-positive cost with respect to cost w (i.e.∑
e∈C w(e) ≤ 0) if and only if the system composed of the following constraints is

infeasible.
∀e ∈ E, xtgt(e) − xsrc(e) ≤ ‖V ‖ · w(e) − 1

where ∀v ∈ V, xv ∈ R.
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Proof. A direct consequence of Lemma 5.1 and 5.2. �

Now, any produced DDG by any register optimisation method (hence any SIRA
method), must guarantee the above condition to eliminate non-positive circuits.
In our article, we show how to combine the above condition with an efficient
heuristic of SIRA that constructs a reuse graph (and hence the associated DDG
accordingly), named SIRALINA. The next section studies this question.

6. Application to the SIRA framwork

The problem that must be solved by SIRA is to construct a reuse graph. There
are many heuristics and methods that may be used. SIRALINA [8, 21] is our
most powerful method, we have already demonstrated that it a really efficient
heuristic for SIRA: it considers an initial DDG with multiple register types, and
produces an associated DDG to bound or to minimise the register requirement
before SWP. SIRALINA is a two steps heuristic, with an algorithmic complexity
equal to O(‖V ‖3 log ‖V ‖), where ‖V ‖ is a notation for the cardinality of a set. It
has been shown that SIRALINA, applied on a large set of benchmarks [8,21], is fast
and efficient in practice. So it has been connected to an industry quality compiler
for embedded systems targeting VLIW ST231 processors. The next section briefly
recalls SIRALINA, if the reader is familiar with our previous publication on the
topic, he may skip the section. The section after shows how to eliminate non-
positive circuits in the context of SIRALINA.

6.1. Recall on SIRALINA heuristic

Computing a valid reuse graph for a fixed period II that minimises∑
er∈Ereuse,t μt(er) is NP-complete [22]. SIRALINA heuristic [8, 21] computes an

approximate solution to this problem for all register types conjointly. In order to
balance between the importance of each involved register type, we assume to have
a weight αt ∈ R attributed to each type t ∈ T . This weight may be set to 1 if all
register types have the same importance.

SIRALINA is composed of two polynomial steps summarised as follows (here,
the period II is fixed):

1. Step 1 (scheduling problem): Determine minimal reuse distances for all pairs
of values (i.e. compute, for each type t, a function μ̂t : V R,t × V R,t → Z);

2. Step 2 (linear assignment problem): Determine a bijection Ereuse,t : V R,t →
V R,t that minimises

∑
(u,v)∈V R,t×V R,t

μ̂t(u, v) for each t.

These two steps allows the construction of a reuse graph for a period II. Then
G′ = (V , E) the associated DDG is constructed as explained previously: V = V ∪K
and E = E ∪ Ek ∪ Eμ. The two following sections details each of the two above
steps.
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6.2. Step 1: the scheduling problem for a fixed II

The scheduling problem [8,21] is to guarantee the existence of a SWP schedule
for the associated DDG. The problem is formulated as an integer linear problem
with totally unimodular constraints matrix. In addition, it aims at determining
minimal reuse distances for all pairs of values. The two next paragrahs define the
integer linear program of the scheduling problem.

Integer variables of the linear problem
For any u ∈ V , define a variable σu ∈ Z representing a scheduling date.

Linear program formulation
The scheduling problem is expressed according to equation 1:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimise

∑
t∈T

αt

( ∑
u∈V R,t

σkt
u
−

∑
u∈V R,t

σu

)
subject to

∀e ∈ E ∪ Ek, σtgt(e) − σsrc(e) ≥ δ(e) − II × λ(e)

The constraints matrix of this integer linear program is an incidence matrix of
the DDG G (with killing nodes), consequently it is totally unimodular. Hence it
can be solved with a polynomial algorithm.

Let σu
∗ and σkt

u

∗ be the values of the variables of the optimal solution of the

above scheduling problem. The minimal reuse distance function, noted μ̂∗t
is then

defined as follows for all pairs of values (u, v):

μ̂∗t
(u, v) =

⌈
σkt

u

∗ − δw,t(v) − σv
∗

II

⌉
This minimal reuse distance constitutes the lower bound of the optimal values of
the optimisation problem solved by SIRALINA.

6.3. Step 2: the linear assignment problem

The linear assignment problem for a register type t is to find a bijection
θt : V R,t → V R,t such that

∑
u∈V R,t

μ̂∗t
(u, θt(u)) is minimal. It can be solved in

polynomial time complexity with the so-called Hungarian algorithm [13]. Such an
optimal bijection θt defines a set of reuse edges Ereuse,t as follows.

Ereuse,t = {er = (u, θt(u)) | u ∈ V R,t ∧ μt(er) = μ̂∗t
(u, θt(u))}
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6.4. Eliminating non-positive circuits in SIRALINA

Our idea is thus the following. Once an initial reuse graph has been computed
by SIRALINA, the DDG associated to it may contain non-positive circuits. So
we have to eliminate these circuits. All the edge distances are fixed, except that
we can increase the anti-dependence edges distances. That is, we can modify the
values of μ̂t to eliminate non-positive circuits. Modifying these reuse distances is
a valid transformation as soon as it does not violate the scheduling constraints.
However, this transformations may ask to use more registers.

Indeed, observe that in the associated DDG, the added edges e′r = (kt
u, v) ∈

Eμ,t, where er = (u, v) is a reuse edge of type t, have a distance equal to λ(e) =
μ̂t(u, v), and that the distances of the other edges are entirely determined by the
initial DDG and are not subject to changes. By modifying μ̂t(u, v), the optimal
solution to the linear assignment problem may be affected (step 2 of SIRALINA).
In this case, we may choose to recompute the linear assignment. This defines an
iterative process. We start by explaining this iterative process, then we describe
how we modify the reuse distances.

Our iterative process is thus given by Algorithm 1. At each iteration i of the
algorithm, it computes new reuse distances μ̂t

(i) and new reuse edges Ereuse,t
(i) ,

based on the previous reuse distances μ̂t
(i−1) and previous reuse edges Ereuse,t

(i−1) .
This algorithm is parametrised by two functions:

• LinearAssignment(G, μ̂t) computes a bijection θt : V R,t×V R,t that minimises∑
(u,v)∈V R,t×V R,t

μ̂t(u, v). In other words, it solves the linear assignment problem

and is typically implemented by the Hungarian algorithm, as done in the second
step of SIRALINA. The result of this function is a new set of reuse edges
Ereuse,t

(i) .

• UpdateReuseDistances(G, (μ̂t
(i−1))t∈T , (Ereuse,t

(i−1) )t∈T ) uses Corollary 5.3 to
compute new distance functions (μ̂t

(i))t∈T such that the associated DDG
w.r.t.(μ̂t

(i))t∈T and (Ereuse,t
(i) )t∈T is lexicographic positive.

Our process stops after a certain number of iterations according to the time budget
allowed for this optimisation process. The body of the repeat-until loop is executed
with a finite number of iterations, noted n. The loop may be interrupted before
reaching n iterations when a fix-point is reached, i.e. when the set of reuse edges
stabilises from one iteration to another (Ereuse,t

(i) = Ereuse,t
(i−1) ). Since the body of

algorithm loop is executed at least once, it is guaranteed that the associated DDG
will be lexicographic positive.

The following section explains our implementation of the function
UpdateReuseDistances.

6.5. Updating reuse distances

Our proactive method, named SPE (Shortest Path Equations), is based on
Corollary 5.3. We deduce from it that the associated DDG is lexicographic positive
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Algorithm 1 The Algorithm IterativeSIRALINA

Require: G a loop DDG
Require: n maximal number of iterations

(μ̂t
(0))t∈T ← (μ̂∗t

)t∈T {Compute initial distance functions by solving the scheduling
problem}
for t ∈ T do

Ereuse,t
(0) ← LinearAssignment(G, μ̂t

(0)) {Compute intial reuse edges}
end for
i← 0
repeat

i← i + 1
(μ̂t

(i))t∈T ← UpdateReuseDistances(G, (μ̂t
(i−1))t∈T , (Ereuse,t

(i−1) )t∈T )
for t ∈ T do

Ereuse,t
(i)

← LinearAssignment(G, μ̂t
(i))

end for
if Ereuse,t

(i) = Ereuse,t
(i−1) for every t ∈ T then

break {A fix-point has been reached}
end if

until i > n
return (μ̂t

(i))t∈T and (Ereuse,t
(i) )t∈T

if and only if there exists |V| variables xv ∈ R for v ∈ V such that

∀e ∈ E : xtgt(e) − xsrc(e) ≤ ‖V‖ · λ(e) − 1

Recall that V = V ∪ K where V is the set of vertices of the initial DDG and
K is the set of all killing nodes. We are willing to modify each reuse distance by
adding to it an integral increment γt. Our objective is still to minimise the register
requirement, which means that we need to minimise the sum of γt. We thus define
a linear problem as follows, which is the heart of our contribution in this article.

For each vertex v ∈ V , we define a continuous variable xv. For each anti-
dependence edge e = (kt

u, v) corresponding to the reuse edge er = (u, v), we define
a variable γt(u, v), so that the distance of e is λ(e) = μ̂t

(i−1)(u, v) + γt(u, v).
We seek to minimise the register requirement, which means to minimise∑

t∈T
αt

∑
(u,v)∈Ereuse,t

γt(u, v), where αt is a weight given to a register type, as de-

fined in Section 6.1. In order to guarantee that modifying the reuse distances is a
valid transformation, we must ensure that the scheduling constraints are not vio-
lated. This means that the modified reuse distances must be greater than or equal
to their minimal values: μ̂t

(i−1)(u, v)+ γt(u, v) ≥ μ̂∗t
(u, v) for any (u, v) ∈ Ereuse,t,

where μ̂∗t
(u, v) is the solution of the scheduling problem (first step of SIRALINA),

which are indeed the minimal valid values for the reuse distances. Since γt is in-
tegral values, we should write a mixed integer linear program. But such solution
is computationally expensive. So we decide to write a relaxed linear program in
Figure 2, where γt variables are declared as continuous. Afterwards, we safely ceil
these variables to obtain integer values. The linear program of Figure 2 contains
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimise
∑
t∈T

αt

⎛⎝ ∑
(u,v)∈Ereuse,t

γt(u, v)

⎞⎠
Subject to:
∀e ∈ E ∪ Ek, xtgt(e) − xsrc(e) ≤ ‖V‖ · λ(e)− 1

∀t ∈ T ,∀e = (kt
u, v) ∈ Eµ,t, xtgt(e) − xsrc(e) − ‖V‖ · γt(u, v) ≤ ‖V‖ · μ̂t

(i−1)(u, v)− 1

∀t ∈ T ,∀(u, v) ∈ Ereuse,t
(i−1) , γt(u, v) ≥ μ̂∗t

(u, v)− μ̂t
(i−1)(u, v)

∀u ∈ V, xu ∈ R

∀t ∈ T ,∀(u, v) ∈ Ereuse,t
(i−1)

, γt(u, v) ∈ R

where:

∀t ∈ T , Eµ,t def
= {Φ(er) | er ∈ Ereuse,t

(i−1) }

Figure 2. Linear program based on shortest paths equations (SPE).

O(|V|+ |E|) variables and O(|E|) linear equations. Once a solution is found for the
linear program of Figure 2, we set the new distance of e = (kut , v) ∈ Eμ,t as equal
to λ(e) = μ̂t

(i−1)(u, v) + �γt(u, v)�.
Hence our implementation of UpdateReuseDistances(G, (μ̂t)t∈T , (Ereuse,t)t∈T )

is given by Algorithm 2.

Algorithm 2 The Function UpdateReuseDistances

Require: (μ̂t
(i−1))t∈T previously computed reuse distances for all register types

Require: (Ereuse,t
(i−1) )t∈T ) previously computed reuse edges for all register types

Solve the linear program of Figure 2 to compute (γt(u, v))

return (μ̂t
(i))t∈T where μ̂t

(i)(u, v)
def
=

{
μ̂t

(i−1)(u, v) +
⌈
γt(u, v)

⌉
if (u, v) ∈ Ereuse,t

(i−1)

μ̂t
(i−1)(u, v) otherwise

7. Experimental study

The full experimental study is is available in [4]: source code and experimental
data are also delivered. This section is a synthesis, it presents our conclusions.

These experiments have been conducted on approximately 9000 representa-
tive DDG, extracted from well known benchmarks (FFMPEG, MEDIABENCH,
SPEC2000 and SPEC2006). We assume three register types T = {GR, BR, FP}.
We used a regular Linux workstation (Intel Xeon, 2.33 GHZ, 9 Gigabytes of mem-
ory).

7.1. Heuristics nomenclature

Our methods to avoid the creation of non-positive circuits are of three sorts:
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1. UAL is the (pessimistic) naive heuristic which consists in applying SIRALINA
with an UAL semantics only. That is, we do not consider NUAL code semantics
from the beginning.

2. CHECK is the reactive strategy which consists in firstly applying SIRALINA
with NUAL semantics. If a non-positive circuit is detected, we apply a second
pass, which apply SIRALINA but with a UAL semantics.

3. SPE is the proactive strategy, based on shortest paths equations (SPE). If
n ≥ 1 is the maximal allowed number of iterations used, we write SPEn.

7.2. Empirical efficiency measures

For each heuristic of non-positive circuit elimination, for each DDG, for each
initiation interval II between MII and L (L is a fixed upper bound on the admissi-
ble values for II), we measured the execution time taken by each heuristic (listed
above) to minimise the register requirement; we recorded also the number of reg-
isters computed by the three methods (UAL,CHECK and SPE). We are going to
examine these results in the next sections.

We have also considered three possible target processor architectures (small,
medium and large) as described in [4]: the difference between these architecture is
the number of available registers per register type. When the number of available
registers is fixed in the architecture, we may need to iterate on multiple values for
II in order to get a solution below the processor capacity; that is, since register
minimisation is applied for a fixed II, we may need to iterate on multiple values
of II if the minimised register requirement is still above the number of available
registers.

The strategy for iterating over II for one of our heuristic (Here, any of the three
methods previously described can be used: UAL, CHECK, SPE) is the following:

• Check whether the heuristic produces a solution that satisfies the register con-
straints for II = MII.
– if yes, stop and return the solution.
– if no, check whether the method gives a solution that satisfies the constraints

for II = L (maximal allowed value for II).
• if yes, search linearly the smallest II > MII such that the heuristic

computes a solution that satisfies the register constraints.
• if no, then fail (no solution found, spilling is required).

For each architecture and for each DDG G, we determined whether the heuritic
(UAL, CHECK or SPE) is able to find a solution that satisfies the architecture
constraints. We thus measured:

• the elapsed time needed to determine whether a solution exists;
• the smallest II for which a solution exists (when applicable).

Regarding the iterative heuristic of non-positive circuits elimination (SPE), we
arbitrary fixed the maximal number of iterations to 3 and 5. In order to get an idea
of how many iterations the iterative methods could take in the worst case before
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Table 1. Execution times of each heuristic.

Strategy SPEC2000 SPEC2006 MEDIABENCH FFMPEG
UAL 0.001 0.002 0.03 0.03
CHECK 0.002 0.002 0.003 0.07
SPE5 0.012 0.015 0.015 0.27

reaching a fixed point (convergence), we also did the experiments by settings a
maximal allowed number of iterations to 1000 and recorded the reached number
of iterations. Remember that if a fixed point (convergence) is detected, the iterative
algorithm stops before reaching 1000 iterations.

7.3. Comparison of the heuristics execution times

In this section, we compare and comment the execution times of the heuristics
of non-positive circuit elimination.

7.3.1. Time to minimise register requirement for a fixed II

In this section, we apply the three methods with all values of II. Table 1 shows
the median execution time for each heuristic and for each benchmark family.

From our results, we see as expected that UAL is the fastest heuristic. CHECK
is between one and three times slower than UAL, which was also expected because
it consists in running SIRALINA, performing a check and in the worst case running
SIRALINA a second time.

Regarding our proactive heuristic, SPE heuristic seems to have a quite reason-
able running time, but is yet sensibly more expensive than UAL or CHECK (about
10 times slower).

7.3.2. Convergence of the proactive heuristic (SPE)

We study in this section the speed of convergence (in terms of number of itera-
tions) of SPE heuristic. Recall that SPE is said to converge when it reaches a fixed
point, i.e. when the set of reuse edges does not change between two consecutive
iterations of Algorithm 1. All the values of II are tested, so the experiments we
consider in this section are for all DDG and for all II values.

Table 2 shows the distribution of the number of iterations of SPE heuristic
(truncated at 1000): the table reports the values of the minimum (FST), the first
quartile (FST), the median, the third quartile (THD) and the maximum (MAX).
We observe that on a few number of DDG, the upper bound of 1000 iterations has
been reached by SPE heuristic. It is indeed well possible that the iterative process
does not terminate in the general case. Note finally that this information may be
used to set in an industrial compiler the upper bound on the maximal number of
iterations: 5 iterations seems to be a satisfactory pratical choice since it allows the
convergence in 75% of the cases for SPEC2000, SPEC2006 and MEDIABENCH
benchmarks.
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Table 2. Maximum observed number of iterations for SPE.

SPEC2000 SPEC2006 MEDIABENCH FFMPEG
MIN 1 1 1 1
FST 3 3 3 6
MEDIAN 3 3 4 11
THD 5 5 5 21
MAX 1000 1000 66 1000

7.4. Qualitative analysis of the heuristics

In this section, we study the quality of the solution produced by the heuristics.
The qualitative aspects include the number of registers needed to schedule the
DDG and the loss of parallelism due to an increase of the MII resulted from
UAL, CHECK and SPE.

7.4.1. Number of saved registers

In this section, we analyse the number of registers each heuristic manage to
optimise. Our tests are for all DDG, for all II values. We compare graphically
the heuristics: for each set of benchmarks, and each register types, we construct a
partial order (lattice) as follows:

• the vertices are labelled with the name of the heuristic
• a directed edge links an heuristic A to an heuristic B iff the number of registers

(of considered type) computed by heuristic B is statistically greater (worse)
than the number of registers (of the same type) computed by heuristic A:
by statistically greater, we mean that we applied a one-sided Student’s t-test
between the alternatives A and B, and we report the risk level of this statistical
test (between brakets in the edges). The edge is also labelled with the ratio∑
G,II

RB∑
G,II

RA
where RB is the number of registers (of considered type) computed by

heuristic B and RA is the number of registers computed by heuristic A.

The lattices are given in [4]. Firstly, from our results, we observe that the or-
dering of the heuristics depends on the register type. Indeed, since the heuristics
try to reduce register pressure of all types simultaneously, it happens that some
performs better on one type that on the others.

Secondly, we see that UAL is the worst heuristics regarding register requirement.
This is not surprising since this is the most naive way to eliminate non-positive
circuits.

Finally, we observe that CHECK is sometimes the best heuristic (in particular
for type GR and FP on all benchmarks except FFMPEG). We can explain this
by the fact that the proportion of DDG with non-positive circuits on SPEC2000,
SPEC2006 and MEDIABENCH is low (less than 40%). Consequently, the reactive
strategy (CHECK) is appropriate, since more than 60% of the DDG did not get a
non-positive circuit from the beginning (so they did not require a correction step).
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7.4.2. Proportion of success when looking for a solution that satisfies the register
constraints

In this section, we do not analyse the amount of registers needed as in the
previous section. We assume an architecture with a fixed number of available
registers, and we count the number of solutions that have a register requirement
below the processor capacity. We decompose the solutions into three families: the
DDG that have been solved without MII increase, the DDG that have been solved
with MII increase, and the DDG that was not solved with *the heuristic *(spilled).
All the results are present in [4].

We find that our heuristics found most of the time a solution that satisfies
the register constraints. Of course, the percentage of success increased while the
architecture constraints were relaxed. Apart from the FFMPEG benchmarks under
the small architecture constraints (where the number of available registers is very
small, so the constraints on register pressure are harder to satisfy), the percentage
of success is above 95%. In these cases, all the heuristics give comparable results.

For the FFMPEG benchmarks, we see that SPE5 and SPE1000 give slightly
better results than the naive UALheuristic (1 to 3% better). We Observe that in
most of the cases of success, the MII has not been increased at all.

7.4.3. Increase of the MII when looking for a solution that satisfies the register
constraints

We count the MII increase by the formula
∑

MIIh(G)∑
MII(G)

− 1, where MIIh(G) is

the MII of the associated DDG computed by heuristic h. In other words MIIh is
the smallest period II that satisfies the register constraints when we use heuristic
h (h ∈{UAL, CHECK, SPEn}).

These results show that the increase of the MII is very low (less than 6% in the
worst case). It is clearly negligible on SPEC2000, SPEC2006 and MEDIABENCH
benchmarks. On FFMPEG benchmarks, we see that when dealing with small ar-
chitecture, SPE heuristics tends to increase the MII more than UAL or CHECK
heuristics, whereas for bigger architecture, SPE5 and SPE1000 gives slightly better
results than UAL or CHECK.

The conclusions we can take from this extensive experimental study are con-
trasted. On one hand, the results show that the proactive heuristic SPE allows
to save a bit more of registers than the two naive heuristics UAL and CHECK.
On the other hand, these results also show that our proactive heuristic is more
expensive regarding the execution times than the reactive one.

We thus advise the following policy. If the target architectures are embedded
systems, where compilation time does not need to be interactive and where register
constraints are strong, we advise to use SPE proactive heuristic. As we have seen,
it optimises registers better than the reactive heuristic while being still quite cheap.
On the contrary, if the target architecture is a general purpose computer (work-
station, desktop, supercomputer), where register constraints are not too strong, it
is probably sufficient to use the reactive heuristic CHECK as it already gives good
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results in practice and it is only between one and three times slower than UAL
heuristic.

8. Conclusion

Pre-conditioning a data dependence graph before SWP is a beneficial ap-
proach for reducing spill code and improving the performance of loops. Until now,
schedule-sensitive register optimisation was studied only for sequential and super-
scalar codes, with UAL code semantics.

When considering NUAL code semantics, the access to registers may be architec-
turally delayed. These delay accesses provide interesting compilation opportunities
to save registers. These opportunities are exploited by the insertion of edges with
non-positive latencies inside DDG.

Inserting edges with non-positive latencies inside DDG highlight two open ques-
tions. First, existing software pipelining (SWP) and periodic scheduling methods
do not handle yet these non-positive latencies. Second, a pre-conditioning step that
optimises registers before SWP may create circuits with non-positive distances.

DDG with non-positive circuits have the drawback of not being lexicographic
positive. This means that, when resource constraints are considered, the existence
of a valid SWP is no longer guaranteed. This may cause the failure of the com-
pilation process (no code is generated while the program is correct). Our exper-
iments show that, if no care is taken, 30.77% of loops in SPEC2000 applications
induce non-lexicographic positive circuits (respectively 28.16%, 41.90% and 92.21
for SPEC 2006, MEDIABENCH and FFMPEG loops).

In order to avoid the situation of creating non lexicographic positive DDG,
we studied two strategies. First, we studied a reactive strategy that tolerates the
problem: we start by optimising the register pressure at the DDG level without
special care; if a non-positive circuit is detected, then backtrack and consider a
UAL code semantics instead of NUAL; this means that we degrade the model of
the processor architecture by not exploiting the opportunities offered by delayed
accesses to registers. Second, we designed a proactive strategy that prevents the
problem. The proactive strategy is based on a necessary and sufficient condition
that we prove. It is implemented as an iterative process that increases the reuse
distances until a fixed point is observed (or until we reach a limit in terms of
iterations).

Concerning the efficiency of our strategies, the reactive strategy seems to per-
form well in practice in a regular compilation process: when the number of archi-
tectural registers is fixed, register minimisation is not necessary (just be sure to
be below the architectural capacity). In this context, it is advised to not to try
to prevent the problem of non-positive circuits, but to tolerate it in order to save
compilation time. In other contexts of compilation, the number of architectural
registers is not fixed. This is the case of reconfigurable circuits where the number
of registers needed may be decided after code optimisation and generation. It is
also the case of architectures with frame registers such as EPIC IA64, where a
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minimal register requirement reduces the cost of function calls. Also, this may
be used to keep free as many registers as possible in order to be used for other
code optimisation methods. In such situations, our proactive strategy is efficient
in practice: the iterative register minimisation saves better registers than in the
reactive strategy, while the compilation time stays reasonable (though greater than
the reactive strategy).
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