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ANALYZING THE DYNAMICS OF DETERMINISTIC
SYSTEMS FROM A HYPERGRAPH THEORETICAL
POINT OF VIEW

Luis M. TORRES! AND ANNEGRET K. WAGLER?

Abstract. To model the dynamics of discrete deterministic systems,
we extend the Petri nets framework by a priority relation between con-
flicting transitions, which is encoded by orienting the edges of a tran-
sition conflict graph. The aim of this paper is to gain some insight into
the structure of this conflict graph and to characterize a class of suitable
orientations by an analysis in the context of hypergraph theory.
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1. INTRODUCTION

For modeling complex dynamic systems, Petri nets constitute a well-established
framework, see, e.g., [18] for an overview. Their broad application range includes
the design of asynchronous hardware circuits [23], the analysis of production and
workflow systems [2], the analysis and control of batch processes [9], the design of
distributed algorithms for networks of agents [19], and the modeling and simulation
of biological networks [10,12], to cite some prominent examples.

Petri nets have been extended in various ways for dealing with further applica-
tions. For instance, colored and high-level Petri nets are used for protocol speci-
fication in communication networks [5, 11], stochastic Petri nets model the noise
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coming from the input data or being intrinsic to a system [3,13], and hybrid Petri
nets are used for systems were both continuous and discrete processes coexist [6].
In this paper we consider another extension introduced in [22] to model systems
with a discrete event-based dynamic behavior exhibiting deterministic features.
For instance, some biological systems are of this nature, as stimulating them in a
certain way triggers always the same response (see e.g. the light-induced sporula-
tion of Physarum polycephalum plasmodia or the phototaxis of halobacterial cells
described in [14-16]).

In general, the structure of the studied systems is described by means of a
network, while the studied dynamic processes are usually represented in terms of
state changes.

The network is a weighted directed bipartite graph G = (PUT, A, w) with two
kinds of nodes, places and transitions, linked by weighted directed arcs. The set P
of places represents the system’s components, while the set T" of transitions stands
for the possible interactions. We denote by A the set of arcs in the network and
by w the vector of their weights, with w;; being the weight of arc (i,t) € A.

Some places B C P have bounded capacities associated with them, which are
given by a positive integral vector u € Zf. We refer to a capacitated network
by (G, u).

A state® of the system is an assignment of tokens to places that takes into
account the capacities of the places in B. Hence, any state can be represented as
an integral nonnegative vector x € Z¥ and the potential state space of the system
is the set of all theoretically possible states:

X::{meZi:xigui, VieB}.

Observe that X is finite if B = P holds.

Dynamic processes are described as sequences z', ..., 2* of consecutive system
states*, where state z°t! is obtained from z' by switching a transition t € T.
Thereby, ¢ consumes w;; tokens from each pre-place i in

P=(t):={ie P: (i,t) € A}
and produces wy; new tokens on each post-place i in
Pt(t):={ie P:(ti)e A}.

A transition t € T is enabled at a state x € X if switching ¢ yields a valid successor
state and disabled otherwise. Thus, the set of enabled transitions at state x is

T(z):= {teT:xi—wit >0,Vie P (t); x+wy < ug, Vi 6P+(t)ﬂB}.

A Petri net is a pair (G, ") consisting of a network G together with an initial
state 2¥, and its state space is understood as the set of all further system states

3A state is also called marking m : P — Zy in the Petri net community.
4T hroughout this paper, we will use superindices to reference different states and subindices
to specify places. Thus, xz is the number of tokens assigned to place i at state x7.
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which can be reached from z° by switching sequences of transitions. Describing
the dynamics might be done by model animation, i.e., by simulating the flow of
tokens inside the network.

If T(x) contains more than one transition for some state x, a decision between
the alternatives is taken non-deterministically. This leads to a branching system
behavior, and describing dynamic processes is done in terms of potential reacha-
bility with the help of model animation and simulation.

In particular, it is not possible to model deterministic systems, where any state
x € X has a unique successor state succ(z). Hence, if there is a state x in such
a system where more than one transition is enabled, a deterministic decision is
taken in order to select a unique transition trans(x) € T'(x) that must be switched
in order to reach succ(z).

An explicit encoding of trans(z), for instance state-wise, is at least exponential
in the size of G and u. In [22] we proposed a compact encoding, using orientations
of the following conflict graph. The transition conflict graph of G is an undirected
graph K = (T, E) having as nodes the transitions from G, where two transitions ¢, ¢/
are joined by an edge if and only if there exists at least one state where both are
enabled, i.e., tt' € E < X(t)N X (') # 0, where

X(t) = {x €EX x> wy, Vi€ P (t); x; <wu;—wy, Vi€ PT(t) ﬂB}

denotes the set of states at which transition ¢ is enabled. K can be constructed in
O(|P| |T|?) time using a straightforward algorithm to check for box intersections
or in a more efficient way suggested in [22]. It clearly follows that, for every state
x € X, the set T'(x) induces a clique in K, i.e., a set of mutually adjacent nodes.

A directed graph D obtained by orienting the edges of K is said to be a wvalid
orientation if, for every state x € X with T(x) # (), the clique induced by the
nodes from T'(z) has a unique sink, and this sink coincides with trans(z). The
arcs of D can be interpreted as priority relations between pairs of transitions, with
trans(z) being the transition with highest priority in T'(x) [17]. This allows us to
explore the dynamic system behavior including reachability questions with the
help of successor or predecessor oracles based on determining trans(z) L22]. Note
that the oracles are encoded in a compact way as the size of D is O(|T'|).

In [22], it is shown that for any undirected graph H, there is a network G having
H as its transition conflict graph. Thus, in general, neither K nor D show any
particular structural properties from a graph-theoretical point of view, which turns
characterizing valid orientations into a difficult task. The aim of this paper is to
provide some insights into the structural properties of special classes of transition
conflict graphs and their valid orientations in the context of hypergraph theory.

2. HYPERGRAPHS RELATED TO THE TRANSITION CONFLICT GRAPH

Let G = (PUT, A, w) be a network and K = (T, E) its transition conflict graph.
By definition, for every state x € X, the set T'(x) of enabled transitions induces
a clique in K. The converse is not necessarily true (see [22] for an example), but
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we show that at least the inclusion-wise maximal cliques in K are associated with
states of the system.
For that, consider the following equivalence relation on X

T~ & T(z) =T(z"). (2.1)

This relation partitions the state space into r < 2|71 equivalence classes X1, ..., X,
of states that share the same sets of enabled transitions. Let #* € &; with 1 < i <7
be (arbitrarily chosen) representative elements for each of these classes, and define
the transition hypergraph Hy := (T, Er) of G to be the hypergraph on the set T
of transitions, whose family £7 of hyperedges is given by

Er ={T@E):1<i<r}.

Thus, the size of Hp is exponential in the number of transitions of the network,
but it is always finite, as there are at most 2!”! different subsets of T'.

The dual hypergraph H 3 of Hrp has X = {il, e ,:%T} as node set, and its
family of hyperedges is determined by

Eizz{X(t)ﬂ/'\;:teT}.

We call H 3 the state hypergraph of G.

A hypergraph H := (V, &) has the Helly property if, for any family & C & of
pairwise intersecting hyperedges, there exists at least one node v € V' contained
in all hyperedges from &’. A well-known result in hypergraph theory [4] states
that H has the Helly property if and only if the inclusionwise maximal hyperedges
of its dual hypergraph H* are precisely the inclusionwise maximal cliques of the
intersection graph G(H) of H. The nodes of G(H) represent the hyperedges of H,
and two nodes are joined by an edge if and only if the corresponding hyperedges
intersect. exactly G(H 5 ). Observe that in our case we have:

Observation 2.1. For a capacitated network (G, u), the transition conflict graph
K is exactly the intersection graph G(H ) of the state hypergraph H ;.

Moreover, we have the following result.

Lemma 2.2. For a capacitated network (G, u), the state hypergraph H ; satisfies
the Helly property.

Proof. Consider the hypergraph Hy := (X,Ex), which has one node for each
potential state and a set of hyperedges defined by

Ex ={X(t):teT}.

Observe that Hy may be infinite (if some places of the network are unbounded)
and that each hyperedge is a box in the lattice X. Families of boxes in integral
lattices are one classical example of hypergraphs that satisfy the Helly property.
We show that this property is transferred to H 3.
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Let &5 = {X(tl) NX,..., X(tg)N .9?} be a family of pairwise intersecting
hyperedges in H 3. Consequently, &% = {X (t1),..., X (tx)} is a family of pairwise
intersecting hyperedges in Hy and due to the Helly property there exists a state
x € X with z € X(t;), V1 <i < k. Now recall the partition of X introduced by the
equivalence relation (2.1) and let Xy be the equivalence class containing z. Then
T(z) = T(z*) holds for the corresponding representative element #‘, and hence
for any ¢ € T we have z € X (t) if and only if Z* € X (t). Since #’ € X holds by
definition,

FeXt)nXx, vVi<i<k

finally follows. O

Combining Lemma 2.2 and the preceding observations, we obtain:

Theorem 2.3. Consider a capacitated network with transition conflict graph K
and transition hypergraph Hp = (T,Er). The inclusionwise mazimal hyperedges
from Ep are exactly the inclusionwise maximal cliques of K. Thus, for every inclu-
sionwise mazimal clique Q of K there is some state & € X, 1 < i < r, satisfying

T(F) = Q.

A natural question is whether the studied transition conflict graphs have a
special structure from a graph-theoretical point of view. As it is shown in [22],
this is not the case, since for any arbitrary undirected graph H, there exists a
network (G, u) with the property that its transition conflict graph K is isomorphic
to H. We point out in the following that, however, K can have some interesting
properties, provided that Hr and H ; belong to certain classes of hypergraphs.

A cycle of length k in a hypergraph H = (V, ) is a sequence

('Ul,El,'UQ,EQ, cee 7vk7Ek:7vk:+l)

such that v; € Vforall 1 <i<k+1, By foralll <i <k, E; #Ej;ifi# 7,
Vi, Vir1 € E;forall1<i< k‘, and Vg1 = V1.

A hyperedge E; € H = (V,€) is called an ear if there exists another hyperedge
E5 € 'H such that, for any v € E; \ Es, no hyperedge different from F; contains v.
The operation of removing the ear E consists in deleting E from £ and deleting
from V all nodes that are only contained in E. A hypergraph is acyclic if it can
be reduced to the empty hypergraph by a sequence of ear removals.

In contrast to the analogue concepts in graph theory, a hypergraph can contain
a cycle and be acyclic at the same time. For instance, let V := {1,...,6} and
& = {E1,E2, E3}, with E; := {1,2,3,3+4}, for 1 <4 < 3. One can check that
the hypergraph H = (V, &) contains the cycle 1, F1,2, F5,3, E5,1. At the same
time, Fq, Fo, E3 provides a valid sequence of ear removals that reduces H to the
empty hypergraph, so H is acyclic.
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According to [1], a hypergraph H is acyclic if and only if its dual H* has the Helly
property, and for every cycle of length at least 3 in H, some edge of H contains at
least 3 nodes of the cycle. This implies together with the previous results:

Lemma 2.4. For a capacitated network (G,w), the transition hypergraph Hr is
acyclic if and only if for every cycle of length at least 3 in Hr, there exists a state
T € X such that T(Z) contains at least three nodes (i.e., transitions of G) of the
cycle.

A hypergraph H* = (V*,£*) is called arboreal if there exists a tree T on the
node set V* such that every hyperedge of H* induces a subtree in T*. Due to
structural characterizations in [7,8,20], arboreal hypergraphs are dual to acyclic
hypergraphs.

Moreover, H* is arboreal if and only if H* has the Helly property and every
cycle of length at least 3 contains three intersecting edges. In our case we obtain:

Lemma 2.5. For a capacitated network (G,u), the state hypergraph H 5 is arbo-
real if and only if for every cycle of length at least 3 in H 3, there exist a state
& e X and (at least) three hyperedges X (t1), X (t3), X (t3) in the cycle such that
T e X(tl) N X(tg) n X(tg).

Observe that the condition & € X(t1) N X(t2) N X(¢3) is equivalent to
{t1, to, tg} C T(i‘)

A graph is called chordal if each of its cycles having four or more nodes contains
a chord, i.e., an edge joining two nodes that are not adjacent in the cycle. Arboreal
hypergraphs and chordal intersection graphs are closely related, as shown in the
next result.

Lemma 2.6. A hypergraph H* is arboreal if and only if H* has the Helly property
and its intersection graph G(H*) is chordal.

Proof. Assume H* = (V,€) is arboreal and let Ey,..., Ey, with k& > 4, be (the
nodes of) a cycle C' in the intersection graph G(H*). Then F; N E;1q1 # () holds
for 1 < i < k, and Ey N Ey # (. Thus, there exist vy,...,vp € V with v; €
E, 1 NE;,Vl <i <k and v1 € E; N E,. The sequence vy, E1,..., v, B, v1
is a cycle in H. From the characterization above, this cycle must contain three
intersecting hyperedges, which induce a clique in G(H*). At least one edge of this
clique must be a chord in C'. Moreover, we know (again from the characterization
above) that H* has the Helly property.

Conversely, assume H* has the Helly property and G(H*) is chordal. Let
v, B, ..., vk, Bk, v1 be a cycle in ‘H, with k£ > 3. Then Fj, ..., E} are the nodes of
a cycle in G(H*). Since G(H*) is chordal, it is easy to show that this latter cycle
contains a clique of size 3. But then, the hyperedges corresponding to the nodes in
this clique must be pairwise intersecting, and due to the Helly property they must
share a common node. From the characterization above, H* is arboreal. O
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Since H ; has the Helly property by Lemma 2.2, this hypergraph is arboreal if
and only if G(H ;) = K is chordal. We summarize the last observations as follows.

Theorem 2.7. For a capacitated network (G,w), the following assertions are
equivalent:

e Hrp is acyclic.

e H 3 is arboreal.

e For each sequence t1,T(Z1),t2, T(Z2), ..., tg, T(Zx),t1, with k > 3, t;, t;11 €
T(Z;)V1 < i < k, and t1,t, € T(Zy), there exists some state T such that at
least three transitions from {t1,...,tx} are enabled at &.

e For each sequence T1, X (1), &2, X (t2), ..., Tk, X (tg), T1, with k > 3, T;, Ti41 €

X))Vl <i <k, and T1,% € X(ti), there exists some state T such that at

least three transitions from {t1, ..., tx} are enabled at &.

K is chordal.

3. VALID ORIENTATIONS

Our purpose is to encode the dynamics of a given deterministic system (G, u)
in a compact way, by introducing enough priority relations among transitions, as
to be able to determine trans(z) for every z € X. As the set of enabled transitions
at each state corresponds to a clique in the associated transition conflict graph K,
this graph is a plausible candidate for a framework where these priorities could be
embedded. This idea motivated the following definition from [22].

Let D = (T, A) be a directed graph obtained by orienting the edges of K. Then
D is said to be valid if, for every state x € X with T'(x) # ), the subgraph induced
by the nodes from 7'(z) has a unique sink, and this sink coincides with trans(z).

Observe that the existence of a valid orientation implicitly imposes a further
requirement on the nature of a dynamic system. Namely, if two states z,z* € X
have the same set T'(x) = T'(z*) of enabled transitions, then both induce the
same subgraph of D and, therefore, trans(x) = trans(z*) must hold. Moreover, if a
transition ¢ is enabled at two states x, 2’ € X and t is the highest-priority transition
at x, then either ¢ is also the highest-priority transition at 2’ or trans(z’) & T'(x).
In [22] it is shown that this condition is also sufficient for the existence of a valid
orientation.

The fact that one has to check, for each clique @ in K, if there is a corresponding
state x € X with T(x) = @ makes the recognition of valid orientations hard in
general, as there might be up to 2!7! cliques. In the following we describe a special
class of orientations for which this recognition problem can be solved efficiently.

Observe that two different dynamic systems might share the same transition
conflict graph and let us define the following equivalence relation between capaci-
tated networks:

(G,u) ~g (G/,U/) =1 K(G,u) = K(G/m/),
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where = stands for graph isomorphism. An orientation is said to be strongly valid
if it is valid for all networks of some equivalence class of ~g. According to [22],
strongly valid orientations are characterized as follows:

Theorem 3.1 ([22]). An orientation D of the transition conflict graph of a capac-
itated network (G, u) is strongly valid if and only if it does not contain any directed
cycle of length 3.

Hence, strongly valid orientations can be easily recognized with the help of
this characterization. Note that acyclic orientations are one specific example of
strongly valid orientations, but there exist deterministic systems for which the
valid orientation encoding the dynamic behavior contains directed cycles [22].

In the previous section, we considered networks for which the transition hyper-
graph Hy is acyclic. Theorem 2.7 states that in such cases the transition conflict
graph is chordal. Moreover, note that a chord (¢;,%;) within a directed cycle C
induces a new directed cycle with a smaller number of nodes, as C' contains both a
directed path from t; to t; and a directed path from ¢; to ¢;. Hence, an orientation
of a chordal graph contains a directed cycle of length 3 if and only if it contains
any directed cycle. This observation can be used to obtain a new characterization
of acyclic transition hypergraphs of capacitated networks:

Theorem 3.2. The transition hypergraph Hr of a capacitated network (G, u) is
acyclic if and only if, for any orientation D of K, the following two statements are
equivalent:

(i) D is strongly valid.
(i) D is acyclic.

Proof. If Hp is an acyclic hypergraph, then K is chordal and it follows from the
remarks above that (i) and (i7) are equivalent. Conversely, assume that for some
capacitated network (G, u), we have equivalence between these two statements.
From Theorem 3.1, this means that D contains a directed cycle only if it contains
a directed cycle of length 3. Hence, K must be chordal and Theorem 2.7 asserts
that Hr is acyclic. O

4. CONCLUSIONS

We have examined a new approach for encoding the dynamic behavior of certain
deterministic discrete systems that relies on extending the familiar framework of
Petri nets. Our encoding consists in a realization of the successor-oracle as a valid
orientation of the edges of the transition conflict graph K. This encoding is compact
in the sense that the amount of space required for its storage is polynomial in the
size of the network. Therefore, it is well-suited for being integrated into simulation
algorithms to study the dynamics of large complex deterministic systems, and
to address issues such as reachability, boundedness, existence of deadlocks, and
liveness, among others.
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In some applications, for instance in systems biology, the set of rules governing
the dynamic behavior of the system (i.e., the valid orientation in our model) is
not known a priory, but has to be reconstructed from information provided by
experimentally observing some system states together with their successors. One
key task for the design of the required experiments consists in finding minimum
cardinality test sets, i.e., sets of system states whose experimental observation
provides enough information on a partial orientation of the edges in K in order
to infer the orientation of the remaining edges [21]. The studied test sets of states
correspond to minimum cardinality transversals in the state hypergraph H; of
the system and are hard to find in general.

For the biological systems studied in [17], the reconstructed priority relations
reflect reaction rates and turned out to be partial orders on T which correspond to
acyclic orientations of the transition conflict graph K. In the light of Theorem 3.2,
we expect that many biological systems admit the combinatorial properties stud-
ied here. Thus the experimental design can benefit from the structure of arboreal
state hypergraphs or chordal transition conflict graphs, see Theorem 2.7. In fact,
each non-complete chordal graph has 2 non-adjacent simplicial nodes (i.e. nodes
having a clique as neighborhood). Consecutively removing simplicial nodes from
a chordal graph results in a well-known elimination scheme. The cliques forming
the neighborhoods of the studied simplicial nodes are maximal and, hence, corre-
spond to sets T'(z) of some states x by Theorem 2.3. Subject of further research
is whether and to which extent the knowledge on the successors for these states
can be exploited to completely infer a valid orientation of the transition conflict
graph K. In the affirmative case, the elimination scheme for K would help to de-
termine a sufficient test set of states whose experimental observation provides the
required information on the set of rules governing the dynamic behavior of the
studied system.
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