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TIME–DEPENDENT SIMPLE TEMPORAL NETWORKS:
PROPERTIES AND ALGORITHMS ∗
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Abstract. Simple Temporal Networks (STN) allow conjunctions of
minimum and maximum distance constraints between pairs of tem-
poral positions to be represented. This paper introduces an extension
of STN called Time–dependent STN (TSTN), which covers temporal
constraints for which the minimum and maximum distances required
between two temporal positions x and y are not necessarily constant
but may depend on the assignments of x and y. Such constraints are
useful to model problems in which the duration of an activity may
depend on its starting time, or problems in which the transition time
required between two activities may depend on the time at which the
transition is triggered. Properties of the new framework are analyzed,
and standard STN solving techniques are extended to TSTN. The con-
tributions are applied to the management of temporal constraints for
so-called agile Earth observation satellites.
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1. Motivations

Managing temporal aspects is crucial when solving planning and scheduling
problems. Indeed, the latter generally involve constraints on the earliest start times
and latest end times of activities, precedence constraints between activities, no–
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overlapping constraints over sets of activities, or constraints over the minimum and
maximum temporal distance between activities. In many cases, these constraints
can be expressed as simple temporal constraints, written as x − y ∈ [α, β] with
x, y two variables corresponding to temporal positions and α, β two constants.
Such simple temporal constraints can be represented using the STN framework
(Simple Temporal Networks [9]). This framework is appealing in practice due to
the polynomial complexity of important operations such as determining the con-
sistency of an STN or computing the earliest/latest times associated with each
temporal variable of an STN, which is useful to maintain a schedule offering tem-
poral flexibility. Another feature of STN is that they are often used as a basic
element when solving more complex temporal problems such as DTN (Disjunctive
Temporal Networks [26]).

In this paper, we propose an extension of the STN framework and of STN al-
gorithms. This extension has been motivated by an application from the space
domain. The latter corresponds to the management of Earth observation satellites
such as those of the Pleiades system whose first satellite was launched in De-
cember 2011 (see http://smsc.cnes.fr/PLEIADES/). Such satellites are moving
around the Earth on a circular, quasi-polar, low-altitude orbit (several hundreds
of kilometers). They are equipped with an optical observation instrument which
is body-mounted on the satellite. They are said to be agile, because they have the
capacity, while moving on their orbit, to move very quickly around their gravity
center along the three axes (roll, pitch, and yaw), thanks to gyroscopic actuators
and to their attitude control system. This agility allows them to acquire via scan-
ning any strip at the Earth surface, in any direction, on the right, on the left, in
front of, or behind of the so-called nadir, that is the Earth point which is at any
time at the vertical of the satellite. Acquiring a given strip requires at any time a
particular configuration of the satellite, called an attitude, defined by a pointing
direction and by a speed of the pointing movement on each of the three axes.
Moreover, agility allows satellites to move quickly from the end of the acquisition
of a strip to the beginning of the acquisition of the following one.

In the agile satellite context, contrary to the simplified version of the 2003
ROADEF Challenge [6], the minimum transition time required by an attitude
movement between the end of an acquisition i and the start of an acquisition j
is not constant and depends on the precise time at which acquisition i ends [17].
This is schematically illustrated by the 2–dimension view of Figure 1.

In fact, transition times may vary of about ten seconds on the examples provided
in Figure 2. For Figure 2b, there is no point after t = 150 because no transition
from i to j is possible after that time. Figure 2 also shows how diverse minimum
transition times evolution schemes can be. Minimum transition times are computed
by solving a continuous command optimization problem which takes into account
the movement of the satellite on its orbit, the movement of points on the ground
due to the rotation of Earth, and kinematic constraints restricting the possible
attitude movements of the satellite (pointing direction, speed and acceleration of
the pointing movement).
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Figure 1. How the attitude movement to be performed and thus
the minimum transition time between acquisitions may depend
on the time at which the first acquisition ends.
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Figure 2. Minimum transition time, in seconds, from the
acquisition of a strip i ending at point of latitude-longitude
41◦17′48′′N–2◦5′12′′E to the acquisition of a strip j starting at
point of latitude-longitude 42◦31′12′′N–2◦6′15′′E, for different
scanning angles with regard to the trace of the satellite on the
ground: (a) scan of i at 40◦ and scan of j at 20◦; (b) scan of i at
40◦ and scan of j at –80◦; (c) scan of i at 90◦ and scan of j at 82◦.
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Logistics problems, where the estimated time to go from one location to another
one depends on the traffic congestion and thus on the starting time, is another
example of application in which the transition time may depend on the time at
which the transition is triggered.

Similar aspects are taken into account by works on so-called time–dependent
scheduling [7,12], where activity durations may depend on activity starting times.
However, the particular forms (piecewise constant or piecewise linear) of activity
durations as functions of activity starting times, that are considered in these works,
do not apply to the agile satellite context.

This motivates the need for a new modeling framework able to handle problems
in which the minimum transition time between two activities may depend on the
precise time at which the transition is triggered. The framework proposed, called
Time–dependent STN (TSTN), is first introduced (Sect. 2). Techniques are then
defined for computing the earliest and latest times associated with each temporal
variable (Sect. 3 to 5). These techniques are used for scheduling activities of an
agile satellite, in the context of a local search algorithm (Sect. 6). Proofs can be
skipped without loss of continuity. Parts of the work described in this paper were
published in [22, 23].

2. Towards time–dependent STN

2.1. Simple temporal networks (STN)

We first recall some definitions associated with STN. In the following, given a
variable x, D(x) denotes its initial domain of values and d(x) ⊆ D(x) denotes its
current domain of values.

Definition 2.1. An STN is a pair (V, C) with V a finite set of continuous variables
whose initial domain is a closed interval I ⊆ R, and C a finite set of binary
constraints of the form x − y ∈ [α, β] with x, y ∈ V , α ∈ R ∪ {−∞}, and β ∈
R∪{+∞}2. Such constraints are called simple temporal constraints. A solution to
an STN (V, C) is an assignment of all variables in V satisfying all constraints in C.
An STN is consistent iff it has at least one solution.

Unary constraints x ∈ [α, β], including those defining the initial domains of
possible values of variables, can be formulated as simple temporal constraints
x − x0 ∈ [α, β], with x0 a special variable of domain [0, 0] playing the role of a
temporal reference. Moreover, as x−y ∈ [α, β] is equivalent to (x−y ≤ β)∧(y−x ≤
−α), it is possible to use only constraints of the form y−x ≤ c with c some constant.

An important element associated with an STN is its distance graph. This graph
contains one node per variable of the STN and, for each constraint y − x ≤ c of
the STN, one arc from x to y weighted by c. Based on this distance graph, the

2x−y ∈ [α, β] generalizes the following situations: (a) x−y ≤ β (case α = −∞); (b) x−y ≥ α
(case β = +∞); (c) α ≤ x − y ≤ β (case α, β ∈ R and α < β); (d) x − y = γ (case γ = α = β).
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following results can be established [9] (some of these results are similar to earlier
work on PERT and critical path analysis):

1. an STN is consistent iff its distance graph has no cycle of negative length;
2. if d0i (resp. di0) denotes the length of the shortest path in the distance graph

from the reference node labeled by x0 to a node labeled by variable xi (resp.
from xi to x0), then interval [−di0, d0i] gives the set of consistent assignments
of xi; the shortest paths can be computed for every i using Bellman-Ford’s
algorithm [1,11] or arc–consistency filtering [4, 5, 13, 25];

3. if dij (resp. dji) denotes the length of the shortest path from xi to xj (resp.
xj to xi) in the distance graph, then interval [−dji, dij ] corresponds to the
set of all possible temporal distances between xi and xj ; shortest paths can
be computed for every i, j using Floyd-Warshall’s algorithm [10, 28] or path-
consistency filtering [9, 20, 21, 29], which produces the minimal network of the
STN [18].

Example 2.2. Let us consider a simplified satellite scheduling problem. This
problem involves 3 acquisitions acq1, acq2, acq3 to be realized in order acq3 →
acq1 → acq2. For every i ∈ [1..3], Tmini and Tmaxi denote the earliest start time
and latest end time of acqi, and Dai denotes the duration of acqi. The minimum
durations of the transitions between the end of acq3 and the start of acq1, and
between the end of acq1 and the start of acq2, are denoted Dt3,1 and Dt1,2 respec-
tively. These durations are considered as constant in this first simplified version.
We also consider two temporal windows w1 = [Ts1, T e1], w2 = [Ts2, T e2] during
which data download to ground stations is possible. The satellite must download
acq2 followed by acq3 in window w1, before downloading acq1 in window w2. For
every i ∈ [1..3], Ddi denotes the duration taken by the download of acqi.

This problem can be modeled as an STN containing, for every acquisition acqi

(i ∈ [1..3]), (a) two variables sai and eai denoting respectively the start time
and end time of the acquisition, with domains of values D(sai) = D(eai) =
[Tmini, Tmaxi]; (b) two variables sdi and edi, denoting respectively the start
time and end time of the download of the acquisition, with domains of values
[Ts1, T e1] for i = 2, 3 and [Ts2, T e2] for i = 1.

Simple temporal constraints in Equation 1 to 4 are imposed over these variables.
Equation 1 defines the duration of acquisitions and data downloads. Equation 2
imposes minimum transition times between acquisitions. Equation 3 enforces no–
overlap between downloads. Equation 4 expresses that an acquisition can start
being downloaded only after its realization. Figure 3 gives the distance graph of
the obtained STN.

∀i ∈ [1..3], (eai − sai = Dai) ∧ (edi − sdi = Ddi) (1)
(sa1 − ea3 ≥ Dt3,1) ∧ (sa2 − ea1 ≥ Dt1,2) (2)
(sd3 − ed2 ≥ 0) ∧ (sd1 − ed3 ≥ 0) (3)
∀i ∈ [1..3], sdi − eai ≥ 0 (4)
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Figure 3. Distance graph (reference temporal position x0 is not represented).

2.2. T–simple temporal constraints and TSTN

We now introduce a new class of temporal constraints which can be used to
model transitions whose minimum duration depends on the precise time at which
the transition is triggered. These constraints are called t–simple temporal con-
straints for “time–dependent”-simple temporal constraints.

Definition 2.3. A t–simple temporal constraint is a triple (x, y, dmin) composed
of two temporal variables x and y, and of one function dmin : D(x) × D(y) →
R called minimum distance function (function not necessarily continuous). A t–
simple temporal constraint (x, y, dmin) is also written as y− x ≥ dmin(x, y). The
constraint is satisfied by (a, b) ∈ D(x) ×D(y) iff b− a ≥ dmin(a, b).

Informally, dmin(x, y) specifies a minimum temporal distance between the
events associated with temporal variables x and y respectively. Note that any
binary continuous constraint f(x, y) ≤ 0 over continuous variables x and y can be
expressed as a t–simple temporal constraint by taking dmin(x, y) = y−x+f(x, y).
Conversely, any t–simple temporal constraint y−x ≥ dmin(x, y) can be put in the
form f(x, y) ≤ 0 by taking f(x, y) = x + dmin(x, y)− y. This paper considers the
“y−x ≥ dmin(x, y)” version instead of the “f(x, y) ≤ 0” one in order to make the
parallel with STN and Time–dependent scheduling more explicit. But all results
given in the paper can be applied to f(x, y) ≤ 0 constraints as well. Function f
defined by f(x, y) = x + dmin(x, y)− y will also be particularly important in the
following (see the notion of delay-function introduced in Def. 3.1).

To illustrate why having a minimum distance function dmin depending on both
x and y is useful, let us consider the example of agile satellites. Let x be a variable
representing the end time of an acquisition acq. Let Att(x) denote the attitude
obtained when finishing acq at time x. Let y be a variable representing the start
time of an acquisition acq′, to be performed just after acq. Let Att ′(y) denote the
attitude required for starting acq′ at time y. Let minAttTransTime be the function
(available in our agile satellite library) such that minAttTransTime(att , att ′) gives
the minimum transition time required by a satellite maneuver to move from atti-
tude att to attitude att ′. Then, t–simple temporal constraint y − x ≥ dmin(x, y)
with dmin(x, y) = minAttTransTime(Att(x),Att ′(y)) expresses that the duration
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between the end of acq and the start of acq′ must be greater than the minimum
duration required to move from attitude Att(x) to attitude Att ′(y).

In some cases, function dmin(x, y) does not depend on y. This concerns time–
dependent scheduling [7, 12], for which the duration of an activity only depends
on its start time (t–simple temporal constraint y − x ≥ dmin(x) with dmin(x)
the activity duration when starting it at time x). T–simple temporal constraints
also cover simple temporal constraints y − x ≥ c, by using a constant minimum
distance function dmin = c. They also cover constraints of maximum temporal
distance between two temporal variables y − x ≤ dmax (x, y), since the latter can
be rewritten as x− y ≥ dmin(y, x) with dmin(y, x) = −dmax (x, y).

Note that a t–simple temporal constraint only refers to the minimum duration
of a transition. Such an approach can be used for handling agile satellites under
the (realistic) assumption that any maneuver which can be made in duration δ is
also feasible in duration δ′ ≥ δ. This assumption of feasibility of a “lazy maneuver”
is not necessarily satisfied by every physical system.

On this basis of t–simple temporal constraints, a new framework called TSTN
for Time–dependent STN can be introduced.

Definition 2.4. A TSTN is a pair (V, C) with V a finite set of continuous vari-
ables of domain [l, u] ⊂ R, and C a finite set of t–simple temporal constraints
(x, y, dmin) with x, y ∈ V . A solution to a TSTN is an assignment of variables in
V that satisfies all constraints in C. A TSTN is said to be consistent iff it admits
at least one solution.

Example 2.5. Let us reconsider the example involving three acquisitions (acq1,
acq2, acq3), and remove the unrealistic assumption of constant minimum transition
durations between acquisitions. In the TSTN model obtained, the only difference
when compared to the initial STN model is that the simple temporal constraints of
Equation 2 are replaced by the t–simple temporal constraints given in Equation 5
and 6, in which given an acquisition acqi, Satt i(t) and Eatt i(t) respectively denote
the attitudes required at the start and at the end of acqi if this start/end occurs
at time t.

sa1 − ea3 ≥ minAttTransTime(Eatt3(ea3),Satt1(sa1)) (5)
sa2 − ea1 ≥ minAttTransTime(Eatt1(ea1),Satt2(sa2)) (6)

The definition of the distance graph associated with a TSTN is similar to the
definition of the distance graph associated with an STN (see Figure 4).

3. Arc–consistency of T–simple temporal constraints

A first important notion for establishing arc–consistency is the delay function.

Definition 3.1. The delay function associated with a t–simple temporal con-
straint ct : (x, y, dmin) is function delayct : D(x) × D(y) → R defined by
delayct(a, b) = a + dmin(a, b)− b.
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Figure 4. TSTN distance graph (temporal reference x0 is not represented).

Informally, delayct(a, b) is the delay obtained in b if a transition in minimum time
from x to y is triggered at time a. This delay corresponds to the difference between
the minimum arrival time associated with the transition (a + dmin(a, b)) and the
required arrival time (b). A strictly negative delay corresponds to a transition
ending before deadline b. A strictly positive delay corresponds to a violation of
constraint ct. A null delay corresponds to an arrival right on time.

Definition 3.2. A t–simple temporal constraint ct : (x, y, dmin) is said to be
delay–monotonic iff its delay function delayct(., .) satisfies the conditions below:

∀a, a′ ∈ D(x), ∀b ∈ D(y), (a ≤ a′)→ (delayct(a, b) ≤ delayct(a
′, b))

∀a ∈ D(x), ∀b, b′ ∈ D(y), (b ≤ b′)→ (delay ct(a, b) ≥ delayct(a, b′))

Definition 3.2 means that for being delay–monotonic, a t–simple temporal con-
straint (x, y, dmin) must verify that on one hand the later the transition is triggered
in x, the greater the delay in y, and on the other hand the earlier the transition
must end in y, the greater the delay. When monotonicities over the two arguments
are strict, we speak of a strictly delay–monotonic constraint. A TSTN is said
to be delay–monotonic iff it contains only delay–monotonic constraints. Delay–
monotonicity can be related to the notion of monotonic constraints, defined for
instance in [15]. One slight difference is that in TSTN, domains considered are con-
tinuous, and we speak of delay–monotonicity essentially to make the interpretation
of this property more explicit in the context of temporal constraints. As shown
in Propositions 3.3 and 3.4, simple temporal constraints are delay–monotonic, as
well as standard distance functions considered in time–dependent scheduling [7].

Proposition 3.3. Simple temporal constraints ct : y − x ≥ c are strictly delay–
monotonic.

Proof. If a < a′, then delayct(a, b) − delayct(a′, b) = a − a′ < 0. If b < b′, then
delayct(a, b)− delayct(a, b′) = b′ − b > 0. �

Proposition 3.4. Let x, y be two temporal variables corresponding to the start
time and end time of an activity respectively. Results of Table 1 hold.
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Distance dmin(x, y) = dmin(x) form delay-monotonic

A + Bx yes (strict)

A−Bx yes iff B ≤ 1 (strict iff B < 1)

max(A, A + B(x−D)) yes (strict)

A if x < D, A + B otherwise yes (strict)

A−B min(x, D) yes iff B ≤ 1 (strict iff B < 1)

Table 1. delay–monotonicity of some minimum distance func-
tions used in time–dependent scheduling, with x a variable whose
domain is not reduced to a singleton, and A, B, D constants such
that A ≥ 0, B > 0, and D > min(D(x)).

Proof. If dmin(x, y) = dmin(x) decreases at some step, then delay–monotonicity
holds if the decrease slope is ≥ −1. Indeed, in this case, if a ≤ a′, then
delayct(a, b) − delayct(a

′, b) = (a − a′) + (dmin(a) − dmin(a′)) ≤ 0. Moreover,
if b ≤ b′, then delayct(a, b)− delayct(a, b′) = b′ − b ≥ 0. Strict delay–monotonicity
holds when the decrease slope of dmin(x) is always > −1. �

We now introduce the functions of earliest arrival time and latest departure time
associated with a t–simple temporal constraint. In the following, given a function
F : R → R and a closed interval I ⊂ R, we denote by (1) firstNeg(F, I) the
smallest a ∈ I such that F (a) ≤ 0 (value +∞ if such a value does not exist); (2)
lastNeg(F, I) the greatest a ∈ I such that F (a) ≤ 0 (value −∞ if such a value
does not exist)3.

Definition 3.5. The functions of earliest arrival time and latest departure time
associated with a t–simple temporal constraint ct : (x, y, dmin) are functions earr ct

and ldepct, defined over D(x) and D(y) respectively by:

∀a ∈ D(x), earr ct(a) = firstNeg(delay ct(a, . ),d(y))
∀b ∈ D(y), ldepct(b) = lastNeg(delayct( . , b),d(x))

Informally, quantity earr ct(a) gives the smallest arrival time in y without delay
if the transition from x is triggered at time a, and quantity ldepct(b) gives the
latest triggering time of the transition in x for an arrival in b without delay.

Proposition 3.6 shows that the earliest arrival and latest departure functions
help establishing bound arc–consistency.

3Quantities firstNeg(F, I) and lastNeg(F, I) are mathematically not necessarily well-defined if
function F has discontinuities; we implicitly use the fact that all operations are done on computers
with finite precision.
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Proposition 3.6. Bound arc–consistency for a t–simple temporal constraint ct :
(x, y, dmin) can be enforced using the following domain modification rules:

d(y)← d(y) ∩ [earr ct(min(d(x))), +∞[ (7)
d(x)← d(x)∩ ]−∞, ldepct(max(d(y)))] (8)

Proof. By definition of earr ct, quantity earr ct(min(d(x))) used in Rule 7 equals
either +∞ or a value in d(y). If it equals +∞, the domain of y becomes empty.
Otherwise, earr ct(min(d(x))) ∈ d(y) is the min value of y after the application
of Rule 7. Moreover, delayct(min(d(x)), earr ct(min(d(x)))) ≤ 0 by definition of
earr ct, which proves that the min bound of x and the min bound of y after the
application of Rule 7 support each other.

By definition of ldepct, quantity ldepct(max(d(y))) used in Rule 8 equals either
−∞ or a value in d(x). If it equals−∞, the domain of x becomes empty. Otherwise,
ldepct(max(d(y))) ∈ d(x) is the max value of x after the application of Rule 8.
Moreover, delayct(ldepct(max(d(y))), max(d(y))) ≤ 0 by definition of ldepct, which
proves that the max bound of x after the application of Rule 8 and the max bound
of y support each other. �

Rule 7 updates the earliest time associated with y. Rule 8 updates the latest
time associated with x. These domain modification rules are such that current
domains d(x) and d(y) remain closed intervals. Proposition 3.7 below establishes
the equivalence between bound arc–consistency and arc–consistency for delay–
monotonic constraints.

Proposition 3.7. Let ct : (x, y, dmin) be a t–simple temporal constraint with
monotonic delay. Establishing bound arc–consistency for ct using Rules 7 and 8 is
equivalent to establishing arc–consistency over the whole domains of x and y.

Proof. Let x−, x+, y−, y+ denote the min/max bounds of x and y before appli-
cation of the rules. Let b ∈ [y−, y+]. If b < earr ct(x−), then b has no support
over x for ct because ∀a ∈ [x−, x+], delayct(a, b) ≥ delayct(x

−, b) > 0 (by delay–
monotonicity and by definition of earr ct(x−)). Conversely, if b ≥ earr ct(x−), then
delayct(x−, b) ≤ delayct(x−, earr ct(x−)) ≤ 0, hence b is supported by x−. There-
fore, y–values pruned by Rule 7 are those that have no support over x.

Let a ∈ [x−, x+]. If a > ldepct(y
+), then a has no support over y for ct be-

cause ∀b ∈ [y−, y+], delayct(a, b) ≥ delayct(a, y+) > 0 (by delay–monotonicity and
by definition of ldepct(y+)). Conversely, if a ≤ ldepct(y+), then delayct(a, y+) ≤
delayct(ldepct(y+), y+) ≤ 0, hence a is supported by y+. Therefore, x–values
pruned by Rule 8 are those that have no support over y. �

When delay–monotonicity is violated, Rules 7–8 can be applied but they do not
necessarily establish arc–consistency.

Concerning the way earr and ldep can be computed in practice, for a simple
temporal constraint ct : y − x ≥ c, an analytic formulation of earr and ldep can
be given. Rules 7–8 then correspond to the standard propagation rules associated
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Figure 5. Interpolation procedure used for computing earr ct.

with distance constraints in constraint programming. Analytic formulations can
also be derived when distance functions of Table 1 are used.

However, in the general case, in order to compute earr and ldep, quantities
firstNeg(F, I) and lastNeg(F, I) must be evaluated. Such an evaluation is an opti-
mization problem in itself. An iterative method for approximating firstNeg(F, I =
[a1, a2]) is illustrated in Figure 5 and formally defined in Algorithm 1. This
method corresponds to the standard false position method, used to find a zero
of an arbitrary function. Applied to the case of t–simple temporal constraints,
the method works as follows. If leftmost point P1 = (a1, F (a1)) has a negative
delay (F (a1) ≤ 0), then a1 is directly returned. Otherwise, if rightmost point
P2 = (a2, F (a2)) has a strictly positive delay (F (a2) > 0), then +∞ is returned.
Otherwise, points P1 and P2 have opposite delay–signs (F (a1) > 0 and F (a2) ≤ 0),
and the method computes delay F (a3) in a3, the x-value of the intersection be-
tween segment (P1, P2) and the x-axis. See Figure 5a for an illustration. If the
delay in P3 = (a3, F (a3)) is negative, then the mechanism is applied again by
taking P2 = P3, as from Figure 5a to Figure 5b. If the delay in P3 is positive, then
the mechanism is applied again by taking P1 = P3, as from Figure 5b to Figure 5c.
The procedure stops when value F (a3) is less than a given precision, as it may be
the case after the computation of F (a3) in Figure 5c.

If the t–simple temporal constraint considered has a strictly monotonic delay,
the convergence to firstNeg(F, I) is ensured; otherwise, the method may return a
value a > firstNeg(F, I), but in this case a still satisfies F (a) ≤ 0 (with a given
precision). It can be observed in practice that the convergence is particularly fast
for the delay function associated with agile satellites.

4. Global consistency for TSTN

Proposition 4.1 generalizes an STN result to TSTN and shows why maintaining
bound arc–consistency is useful.

Proposition 4.1. If all constraints of a TSTN are made bound arc-consistent
using Rules 7–8, then the schedule which assigns to each variable its earliest (resp.
latest) possible time is a solution of the TSTN.
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Algorithm 1: Possible way of computing firstNeg(F, I), with I=[a1, a2],
maxIter a maximum number of iterations, and prec a desired precision

1 firstNeg(F, [a1, a2], maxIter, prec)
2 begin
3 f1 ← F (a1); if f1 ≤ 0 then return a1

4 f2 ← F (a2); if f2 > 0 then return +∞
5 for i = 1 to maxIter do
6 a3 = (f1 ∗ a2 − f2 ∗ a1)/(f1 − f2)
7 f3 = F (a3)
8 if |f3| < prec then return a3

9 else if f3 > 0 then (a1, f1)← (a3, f3)
10 else (a2, f2)← (a3, f3)

11 return a2

Proof. Let ct : (x, y, dmin) be a constraint of the TSTN. As shown in the Proof
of Proposition 3.6, the min bounds of x and y after application of Rules 7–8 form
a consistent pair of values for ct, as well as their max bounds. Therefore, all min
bounds are consistent with each other, as well as all max bounds. �

Another interesting aspect concerns the global consistency of non-extremal val-
ues in the domains. For STN, it is known that any value in the domain of a
variable after arc–consistency enforcing can be extended to a solution. Proposi-
tion 4.2 shows that this result does not hold for TSTN in general, even if delay–
monotonicity holds.

Proposition 4.2. Consider a TSTN made bound arc-consistent using Rules 7–8.
Let x be a variable of the TSTN and let a be a value in d(x) distinct from the
min and max bounds of x. Then, there does not necessarily exist a solution of the
TSTN in which x is assigned to value a, that is value a is not necessarily globally
consistent. The result holds even for delay–monotonic TSTN.

Proof. Consider a TSTN containing two variables x, y of domain [0, 2] and two
t–simple temporal constraints ct1 : x − y ≥ 0 and ct2 : y − x ≥ dmin(x, y), with
dmin(x, y) = x/2 if x ≤ 1, 1−x/2 otherwise. See Figure 6a for a representation of
dmin(x, y), which is independent from y in this case. Domains are already bound
arc-consistent on this example, since value 0 (resp. 2) of x and value 0 (resp. 2) of
y support each other for ct1 and ct2.

Consider value 1 in d(x). For this value to be globally consistent, we must find
a value b for y such that 1 − b ≥ 0 (due to ct1) and b − 1 ≥ dmin(1, b) (due to
ct2), that is such that b ≤ 1 and b ≥ 1.5, which is impossible. This proves that
assignment x = 1 cannot be extended to a solution of the TSTN. See Figure 6b
for an illustration of the regions of acceptable (x,y)–values for each constraint,
showing that value 1 of x has no y-support common to both ct1 and ct2. Moreover,
all constraints considered here are delay–monotonic (for ct2, x + dmin(x, y)− y is
a non decreasing function of x, as shown in Fig. 6c). �
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Figure 6. Counter-example for global consistency.

Proposition 4.3 gives a sufficient condition guaranteeing that every value re-
maining in the domain of a variable after arc–consistency enforcing is globally
consistent.

Proposition 4.3. Consider a delay–monotonic TSTN made bound arc-consistent
using Rules 7–8. If all cycles of the distance graph involve only simple temporal
constraints (and not t–simple ones), then for every variable x and every value
a ∈ d(x), assignment x = a can be extended to a solution of the TSTN.

Proof. The proof is based on the decomposition of the distance graph into Strongly
Connected Components (SCCs). See Definition 5.8 page 192 for the definition
of SCCs. Let x be a variable of the delay–monotonic TSTN made bound arc-
consistent using Rules 7–8. Consider a value a ∈ d(x). Let scc(x) denote the
strongly connected component containing x. Let Desc(x) (resp. Ndesc(x)) denote
the set of variables belonging to SCCs that are descendant (resp. non-descendant)
of scc(x) in the DAG of SCCs of the distance graph.

• By assigning each variable y ∈ Desc(x) to its earliest possible time (i.e. its
min value, denoted y−), all t–simple temporal constraints holding only over
variables in Desc(x) are satisfied (by Prop. 4.1).

• By assigning each variable y ∈ Ndesc(x)\ scc(x) to its latest possible time (i.e.
its max value, denoted y+), all t–simple temporal constraints holding only over
variables in Ndesc(x) \ scc(x) are satisfied (by Prop. 4.1 again).

• Results on standard STN (Corollary 3.4 in [9]) ensure that x = a can be ex-
tended to an assignment of variables in scc(x) that satisfies all simple temporal
constraints holding only over variables in scc(x).

• The only constraints not checked yet involve one variable z in scc(x), assigned
to value b, and one variable y /∈ scc(x). These constraints are:
– either constraints of the form ct : z − y ≥ dmin(y, z) with y ∈ Desc(x);

in this case, value y− assigned to y and value b assigned to z satisfy ct
because delayct(y−, b) ≤ delayct(y−, z−) ≤ 0 (first inequality obtained by
delay–monotonicity and second one by Prop. 4.1);
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– or constraints of the form ct : y−z ≥ dmin(z, y) with y ∈ Ndesc(x)\scc(x);
in this case, value y+ assigned to y and value b assigned to z satisfy ct
because delayct(b, y+) ≤ delayct(z+, y+) ≤ 0 (first inequality obtained by
delay–monotonicity and second one by Prop. 4.1).

As a result, the assignment built satisfies all constraints of the TSTN, which proves
that x = a can be extended to a solution. �

Proposition 4.3 can be applied to the example of Figure 4, for which cycles
only contain simple temporal constraints. It entails that if the t–simple temporal
constraints used are delay–monotonic, then for any acquisition index i ∈ [1..3] and
for any value a remaining in domain d(sai), there exists a consistent schedule in
which acquisition acqi starts at time a.

5. Solving TSTN

The problem considered hereafter is to determine the consistency of a TSTN
and to compute the earliest and latest possible times associated with each tem-
poral variable. We also consider a context in which temporal constraints can be
successively added and removed from the problem. This dynamic aspect is use-
ful for instance when using local search for solving scheduling problems. In this
kind of search, local moves are used for modifying a current schedule. They may
correspond to additions and removals of activities, which are translated into addi-
tions and removals of temporal constraints. The different techniques used, which
generalize existing STN resolution techniques, are successively presented.

5.1. Constraint propagation

We first use constraint propagation for computing min and max bounds of
temporal variables. This standard method is inspired by approaches defined
in [5, 13, 25]. The latter correspond to maintaining a list of variables for which
constraints holding over these variables must be revised with, for each variable
z in the list, the nature of the revision(s) to be performed: (a) if z had its min
bound updated, then the min bound of every variable t linked to z by a constraint
t − z ≥ c must be revised; (b) if z had its max bound updated, then the max
bound of every variable t linked to z by a constraint z − t ≥ c must be revised.

Compared to standard STN approaches, we choose for TSTN a constraint prop-
agation scheme in which a list containing constraints to be revised is maintained,
instead of a list containing variables. This list is partitioned into two sub-lists,
the first one containing constraints to be revised which may modify a min bound
(constraints y − x ≥ dmin(x, y) awoken following a modification of min x, which
may modify min y), and the second one containing constraints to be revised which
may modify a max bound (constraints y − x ≥ dmin(x, y) awoken following a
modification of max y, which may modify maxx). Compared to the version main-
taining lists of variables, maintaining lists of constraints allows some aspects to be
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more finely handled (see below for more details). The idea of distinguishing mod-
ifications of min bounds and max bounds of variables for propagation is present
in many solvers, including those based on constraint logic programming for finite
domains [8].

Last, a t–simple temporal constraint is revised using Rules 7 and 8 of Proposi-
tion 3.6.

5.2. Negative cycle detection

With bounded domains of values, the establishment of arc–consistency for STN
is able to detect inconsistency. However, the number of constraint revisions re-
quired for deriving inconsistency may be prohibitive compared to STN approaches
defined in [4, 5], which use the fact that STN inconsistency is equivalent to the
existence of a cycle of negative length in the distance graph.

The basic idea of these existing STN approaches consists in detecting such
negative cycles on the fly by maintaining so-called propagation chains. The latter
can be seen as explanations for the current min and max bounds of the different
variables. A constraint y − x ≥ c is said to be active with regard to min bounds
(resp. max bounds) if and only if the last revision of this constraint is responsible
for the last modification of the min of y (resp. the max of x). It is shown in [4]
that if there exists a cycle in the directed graph where an arc is associated with
each active constraint with regard to min bounds, then the STN is inconsistent.
The intuition is that if a propagation cycle x1 → x2 → . . .→ xn → x1 is detected
for min bounds, then this means that the min value of x1 modified the min value
of x2 . . . which modified the min value of xn which modified the min value of x1.
By traversing this propagation cycle a sufficient number of times, the domain of
x1 can be entirely pruned. The same result holds for the directed graph containing
one arc per active constraint with regard to max bounds.

These results cannot however be directly reused for t–simple temporal con-
straints, because for TSTN in general, the existence of a propagation cycle does
not necessarily imply inconsistency, as shown in the examples below.

Example 5.1. Let dmin be the minimum distance function defined by
dmin(a, b) = (1 − a)/2. Let (V, C) = ({x, y}, {ct1 : x − y ≥ 0, ct2 : y − x ≥
dmin(x, y)}) be a TSTN containing two temporal variables of initial domain [0, 1]
and two constraints. Constraints ct1 and ct2 can also be written as x ≥ y and y ≥
(1 + x)/2 respectively. The delay functions associated with ct1 and ct2 are strictly
monotonic (for ct2, it equals delayct2(a, b) = a + dmin(a, b)− b = (1 + a)/2− b).

Propagating ct2 using Rule 7 updates the min of y and gives d(y) = [1/2, 1].
Propagating ct1 using the same rule then updates the min of x and gives d(x) =
[1/2, 1]. The result obtained is a cycle of propagation since the min value of x
modified the min of y which itself modified the min of x. On standard STN, the
existence of such a cycle means inconsistency. Such a conclusion is wrong for the
TSTN considered, because for instance assignment x = 1, y = 1 is consistent.
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Example 5.2. The same phenomenon may happen when propagating max values
of variables. For example, consider a TSTN involving two variables x and y of
initial domain [0..1], and two temporal constraints ct1 : x−y ≥ 0 and ct2 : y−x ≥
dmin(x, y) with dmin(x, y) = x. Constraints ct1 and ct2 can also be written as
y ≤ x and x ≤ y/2 respectively. They are both strictly delay–monotonic (for ct2,
delayct2(a, b) = a + dmin(a, b)− b = 2a− b).

Propagating ct2 using Rule 8 updates the max of x and gives d(x) = [0, 1/2].
Propagating ct1 using the same rule then updates the max of y and gives d(y) =
[0, 1/2]. The result obtained is a cycle of propagation since the max value of y
modified the max of x which itself modified the max of y. On standard STN, the
existence of such a cycle means inconsistency. Such a conclusion is wrong for the
TSTN considered, because for instance assignment x = 0, y = 0 is consistent.

On the two examples provided, the existence of a propagation cycle does not
imply inconsistency. The reason is that in TSTN, domain reductions obtained by
traversing cycles again and again may become smaller and smaller and conse-
quently may not necessarily prune all values in the domains. This is what hap-
pens here: after n traversals of the propagation cycle between x and y, we get
d(x) = [1 − 1/2n, 1] in Example 5.1 and d(y) = [0, 1/2n] in Example 5.2. The
finite computer precision implies that cycle traversals stop at some step, but po-
tentially only after many iterations.

In the following, we provide sufficient conditions for inferring inconsistency in
case of propagation cycle detection. Examples 5.1 and 5.2 show that strict mono-
tonicity of the delay function does not suffice. The conditions we propose are
directly based on monotonicity properties of minimum duration functions dmin .
They guarantee that a propagation cycle does not become “less negative” when
traversed again and again.

Definition 5.3. A t–simple temporal constraint ct : (x, y, dmin) is said to have
a non–decreasing duration (resp. non–increasing duration) iff function dmin is
non–decreasing (resp. non–increasing) over its two arguments.

Sufficient conditions for inferring inconsistency in case of detection of a propaga-
tion cycle are given in Propositions 5.5 and 5.64. These conditions are derived from
the basic result given in Proposition 5.4. The latter shows that a non–decreasing
duration implies that when the start time of a constraining transition is shifted for-
ward, then the earliest arrival time is shifted forward by at least the same amount.
On the other hand, a non–increasing duration implies that when the arrival time
of a constraining transition is shifted backward, then the latest departure time is
shifted backward by at least the same amount. See Figure 7 for an illustration.

Proposition 5.4. Let ct : (x, y, dmin) be a delay–monotonic constraint.

4In [22,23], a sufficient condition called shift–monotonicity was proposed. However, this con-
dition does not actually suffice (mistake in one of the proof given in [23]).
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Figure 7. Influence of duration–monotonicity over earliest arrival
and latest departure times (left: non–decreasing duration; right:
non–increasing duration).

• If ct has a non–decreasing duration, then for all a, a′ ∈ D(x) such that a ≤ a′,
(earr ct(a) �= min(D(y)))→ (earr ct(a′) ≥ earr ct(a) + (a′ − a)).

• If ct has a non–increasing duration, then for all b, b′ ∈ D(y) such that b ≤ b′,
(ldepct(b′) �= max(D(x)))→ (ldepct(b) ≤ ldepct(b′)− (b′ − b)).

Proof. Let us consider a delay–monotonic t–simple temporal constraint with a
non–decreasing duration. Let a, a′ ∈ D(x) such that a ≤ a′. Assume that
earr ct(a) �= min(D(y)). Then, it is possible to show that for every ε ∈]0, earr ct(a)−
min(D(y))], delayct(a′, earr ct(a) + (a′ − a)− ε) > 0. Indeed,

delayct(a
′, earr ct(a) + (a′ − a)− ε)

= a′ + dmin(a′, earr ct(a) + (a′ − a)− ε)− (earr ct(a) + (a′ − a)− ε)
= a + dmin(a′, earr ct(a) + (a′ − a)− ε)− (earr ct(a)− ε)
≥ a + dmin(a, earr ct(a)− ε)− (earr ct(a)− ε) (by non–decreasing duration)

This proves that delayct(a′, earr ct(a) + (a′ − a)− ε) ≥ delayct(a, earr ct(a)− ε) >
0 (strict inequality obtained by definition of earr ct(a)). As set ]0, earr ct(a) −
min(D(y))] is not empty and as ct is delay–monotonic, this entails that earr ct(a′) ≥
earr ct(a) + (a′ − a).

Conversely, consider a delay–monotonic t–simple temporal constraint with
a non–increasing duration. Let b, b′ ∈ D(x) such that b ≤ b′. Assume that
ldepct(b′) �= max(D(x)). Then, it is possible to show that for every ε ∈
]0, max(D(x)) − ldepct(b

′)], delayct(ldepct(b
′)− (b′ − b) + ε, b) > 0. Indeed,

delayct(ldepct(b
′)− (b′ − b) + ε, b)

= ldepct(b
′)− (b′ − b) + ε + dmin(ldepct(b

′)− (b′ − b) + ε, b)− b

= ldepct(b
′) + ε + dmin(ldepct(b

′)− (b′ − b) + ε, b)− b′

≥ ldepct(b
′) + ε + dmin(ldepct(b

′) + ε, b′)− b′ (by non–increasing duration)

This proves that delayct(ldepct(b
′) − (b′ − b) + ε, b) ≥ delayct(ldepct(b

′) + ε, b′) >
0 (strict inequality obtained by definition of ldepct(b

′)). As set ]0, max(D(x)) −
ldepct(b′)] is not empty and as ct is delay–monotonic, this entails that ldepct(b) ≤
ldepct(b′)− (b′ − b). �
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Proposition 5.5. Consider a TSTN and a propagation cycle over min values
(resp. max values). If all constraints involved in the cycle are delay–monotonic
and have a non–decreasing duration (resp. a non–increasing duration), then the
TSTN is inconsistent.

Proof. Assume that propagation cycle x1 → x2 → . . . → xn → x1 is detected for
min bounds, following the revision of a constraint linking xn and x1. Let δ > 0 be
the increase in the min bound of x1 following this last constraint revision. Non–
decreasing durations guarantee that if the cycle is traversed again, the min bounds
of x2, . . . , xn will be increased again by at least δ, thanks to Proposition 5.4. After
a sufficient number of cycle traversals, the domain of one variable of the cycle
becomes empty. The proof is similar for a propagation cycle over max values. �

Proposition 5.6. For a TSTN such that all cycles of the distance graph involve
only simple temporal constraints (and not t–simple ones), the existence of a prop-
agation cycle implies inconsistency.

Proof. Consider a TSTN such that all cycles of the distance graph involve only
simple temporal constraints. Assume that a propagation cycle is detected. As a
propagation cycle necessarily corresponds to a cycle in the distance graph, the
propagation cycle detected contains only simple temporal constraints. As these
constraints both have a non–decreasing and non–increasing duration, Proposi-
tion 5.5 allows inconsistency to be inferred. �

In the agile satellite application which motivates this work, the minimum dis-
tance functions used are not necessarily non–decreasing or non–increasing, as can
be seen in Figure 2, but Proposition 5.6 applies for case studies considered. Note
that checking the satisfaction of the condition given in Proposition 5.6 is easy
(linear in the number of variables and constraints).

The results provided can also be applied to time–dependent scheduling. Among
minimum duration functions given in Table 1, the ones in rows 1, 3, and 4 are
non–decreasing, and the detection of a propagation cycle for min values implies
inconsistency; the ones in rows 2 and 5 are non–increasing, and the detection of a
propagation cycle for max values implies inconsistency.

If the sufficient condition given in Proposition 5.6 is not satisfied, several options
can be considered:

1. first, it is possible not to consider constraints with a decreasing duration (resp.
increasing duration) in propagation chains for min values (resp. for max values);
this approach is correct but may lose time in propagation cycles;

2. second, it is possible not to consider constraints with a decreasing duration
(resp. increasing duration) in propagation chains for min values (resp. for max
values), as in the first point, but to stop propagating constraints when some
time–limit or some precision is reached; the price to pay is then that inconsis-
tency may not be detected;
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3. a third option is to consider a TSTN as inconsistent as soon as a propagation
cycle is detected, even if it contains constraints whose minimum distance func-
tions do not have the right theoretical properties; this may be incorrect in the
sense that it may wrongly conclude to inconsistency.

In terms of implementation, we perform on the fly detection of propagation cycles
based on an efficient data structure introduced in [2]. The latter is used for main-
taining a topological order of nodes in the graphs of propagation of min and max
bounds. When no topological order exists, the graph contains a cycle.

5.3. Complexity

Proposition 5.7 generalizes polynomial complexity results available on STN to
TSTN, and therefore to time–dependent scheduling. It gives conditions allowing
bound arc–consistency to be established using a polynomial number of constraint
revisions. Let us emphasize that it does not give conditions allowing such a con-
sistency property to be established in polytime. The distinction between number
of revisions and time is due to the fact that very few assumptions are made on
the kind of dmin functions considered. In particular, dmin functions can be hard
to compute.

Proposition 5.7. Given a TSTN (V, C), if the existence of a propagation cycle
implies inconsistency, then the algorithm using Rules 7–8 for propagation, plus a
FIFO ordering on the propagation queue and a propagation cycle detection, estab-
lishes bound arc–consistency in O(|V ||C|) constraint revisions (bound independent
of the size of the variable domains).

Proof. Similar to the result stating that the number of arc revisions in the Bellman-
Ford’s FIFO label-correcting algorithm is O(|V ||C|). �

5.4. Constraint depropagation for dynamic TSTN

Constraint propagation techniques are directly able to handle constraint addi-
tion or constraint strengthening. As for constraint removal or constraint weakening,
constraint depropagation strategies defined in [25] for STN can be directly reused.
These strategies allow min and max bounds of temporal variables to be recomputed
at minimum cost. They avoid reinitializing all variable domains and repropagating
all constraints from scratch when a constraint is removed or weakened. The basic
idea is to use propagation chains in order to determine which variable domains
must be reinitialized and which constraints need to be revised. More precisely,
when a constraint y− x ≥ dmin(x, y) is removed or weakened, if this constraint is
active with regard to the min bound of y (resp. the max bound of x), then the min
bound of y (resp. the max bound of x) is reinitialized to the value it had before
any propagation. This reinitialization may trigger other reinitializations. TSTN
constraints of the form y − z ≥ dmin(z, y) (resp. z − x ≥ dmin(x, z)) are then
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added to the list of constraints to be revised from the point of view of min bounds
(resp. max bounds).

The only difference when compared to standard STN techniques is the use of
lists of constraints to be revised instead of lists of variables. This allows constraint
depropagation to be slightly less costly: on the example of reinitialization of the
min bound of y, the standard STN version would add to the list of variables to
be propagated every variable z linked to y by some constraint y− z ≥ dmin(z, y),
and doing so would repropagate in the end all constraints of the form u − z ≥
dmin(z, u), even those with u �= y.

5.5. Constraint revision ordering

A last technique is used for minimizing the number of constraint revisions.
This can be particularly useful for TSTN, for which revising one constraint can be
significantly more costly than for STN. The proposed approach extends a technique
developed for STN− [13], a sub-class of STN in which every constraint must be
rewritable as y − x ≥ c with c ≥ 0. The idea consists in building the strongly
connected components of the distance graph, in ordering them in topological order,
and in using this order to determine which constraint to propagate first. We first
recall definitions concerning strongly connected components.

Definition 5.8. Let G = (V, A) be a directed graph with V the set of nodes and
A the set of arcs. A Strongly Connected Component (SCC) of G is a maximum
sub-graph G′ of G such that there exists in G′ a path from every node to every
other node.

The DAG (Directed Acyclic Graph) of SCCs of G is the directed graph whose
nodes are the SCCs of G and which contains an arc from SCC c1 to SCC c2 iff
there exists in G an arc from one of the nodes of c1 to one of the nodes of c2.

A topological order of SCCs is an order � where each SCC c is put strictly after
each of its parents c′ in the DAG of SCCs (c′ ≺ c). Given a node x in graph G,
scc(x) denotes the unique SCC of G that contains x.

Propagating temporal constraints following a topological order of SCCs in the
distance graph boils down to using the fact that solving shortest path problems is
easier for acyclic graphs than for arbitrary graphs. To apply this result, constraints
to be propagated are ordered according to a topological order of SCCs. More pre-
cisely, concerning the propagation of min bounds, we propagate first constraints
y−x ≥ dmin(x, y) such that scc(y) is maximum in the order of SCCs and, in case
of equality, we propagate first constraints such that scc(x) �= scc(y), to postpone
as much as possible the propagation of “internal” constraints in an SCC. To break
remaining ties, a FIFO ordering strategy is used. Concerning the propagation of
max bounds, constraints are ordered by increasing scc(x) and, in case of equality,
we propagate first constraints such that scc(y) �= scc(x), and break remaining ties
using a FIFO ordering strategy. In the example of Figure 4, SCCs are represented
as dotted boxes. A bad propagation order for min bounds would consist in propa-
gating first the constraint between sa2 and ea1, and then the constraint between
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Figure 8. Distance graph without (a) and with (b) a reference
temporal position x0, and associated SCCs (dotted boxes).

sa1 and ea3. A good order, consistent with the order of SCCs, would consist in
using the opposite strategy.

Compared to the way SCCs are used in [13] for STN−, the method we propose is
adapted not only to general STN, but also to TSTN. In terms of implementation,
in order to avoid recomputing the DAG of SCCs from scratch after each constraint
addition or removal, we use recent algorithms proposed for maintaining SCCs in
a dynamic graph [14,24].

5.6. Specific management of unary constraints

In the constraint propagation mechanism used, unary constraints x ≤ c and
x ≥ c are actually revised first because their revision is easy. We give another
argument in favor of handling such constraints separately.

Consider n temporal variables x1, . . . , xn of domain [0, 1], n unary domain
constraints ∀i ∈ [1..n], xi ∈ [0, 1], and n − 1 t–simple temporal constraints
∀i ∈ [1..n − 1], xi+1 − xi ≥ 1/n. The associated distance graph without unary
constraints is given in Figure 8a. It contains one SCC per variable xi. Following
the order of SCCs, once unary constraints are revised, min bounds of variables are
computed in n−1 constraint revisions (one left-right traversal of the chain defined
by SCCs), as well as max bounds (one right–left traversal of the chain defined by
SCCs).

If a global reference temporal position x0 of domain [0, 0] is introduced, unary
domain constraints xi ≥ 0 and xi ≤ 1 are transformed into xi − x0 ≥ 0 and
x0 − xi ≥ −1 respectively. The distance graph obtained is given in Figure 8b. It
contains a unique SCC. With a FIFO management of the propagation queue, it
can be shown that in the worst case, a quadratic number of constraint revisions is
performed to compute min and max bounds of variables (propagation in the order
opposite to the order defined by SCCs of Fig. 8a). By handling unary constraints
specifically, we avoid considering them in the distance graph, and doing so they
do not hide the real structure of the problem.

6. Experiments

All techniques presented in Section 5 (constraint propagation, propagation cycle
detection, constraint depropagation, SCC ordering, specific management of unary
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constraints) are integrated and simultaneously used in a scheduling tool based on
local search. The local search aspect entails that doing/undoing a local move is
fast, similarly to constraint-based local search tools Comet [16] and LocalSolver [3].
Our STN/TSTN solver is implemented in Java. Results are obtained on an Intel
i5-520 1.2 GHz, 4GBRAM.

Experiments not detailed here were first performed on STN obtained from
scheduling problems of the SMT-LIB. The objective was to evaluate the prop-
agation heuristics based on a topological ordering of the SCCs. This heuristics
appears to be a robust strategy, which significantly decreases the number of con-
straint revisions on some problems. More precisely, for consistent STN, the SCC
heuristics is always at least as good as a pure FIFO heuristics, but for inconsistent
STN, it is not always the fastest strategy for proving inconsistency.

We detail below experiments realized on TSTN in the context of agile satellites.
Even if the TSTN approach is not deployed and actually used for satellites, the
scenario considered is realistic in terms of acquisitions to be performed. More
precisely, the problem considered here is a simple no overlapping constraint over
an ordered sequence of n acquisitions acq1 → . . .→ acqn, with n varying between
5 and 13. These acquisitions correspond to ground strips located between the
north of Spain and the north of France. The no–overlapping constraint between
acquisitions can be written as a set of t–simple temporal constraints of the form
si+1 − ei ≥ minAttTransTime(Eatt i(ei), Satti+1(si+1)) with, for an acquisition j,
sj/ej the start/end time of this acquisition, and Sattj(t)/Eatt j(t) the attitudes
required to start/end j at time t. In addition, simple temporal constraints are used
to define the constant duration of each acquisition.

Two methods are compared: (1) a TSTN approach in which exact transition
times between acquisitions are used, and (2) an STN approach in which upper
bounds on transition times are pre–computed, by sampling on the different possi-
ble start times of the transitions. The schedule obtained in both cases is flexible in
the sense that the domains of values after propagation over STN/TSTN are gen-
erally not reduced to singletons. The criterion considered for comparing the two
approaches is the mean temporal flexibility mtf = 1

|V |
∑

x∈V (max(x) −min(x)),
measured as the mean, over all temporal variables x ∈ V , of the difference be-
tween the latest and earliest possible times associated with x. Such a flexibility is
important in practice to offer as much freedom as possible concerning the choice
of an angle of acquisition of ground strips, which influences image quality.

Three scenarios are considered. In the first one, acquisitions correspond to strips
of length about 80 km, to be observed with a scanning direction of 0 degrees (angle
between the trace of the satellite on the ground and the direction in which the
strip must be scanned). Figure 9a shows that in this case, the temporal flexibility
obtained with TSTN only slightly improves on the flexibility obtained with STN.
The reason is that if all acquisitions are realized with a scanning direction of 0
degrees, the minimum transition times between acquisitions are almost indepen-
dent of the triggering time of transitions: they are only time–dependent when the
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Figure 9. Comparison of temporal flexibilities, in seconds,
obtained with precomputed upper bound on transition times
(flexSTN) and with exact transition times (flexTSTN).

rotation around the pitch axis is the most constraining from a temporal point of
view, compared to the rotation around the roll axis.

In the second scenario, the scanning direction becomes 30 degrees. Figure 9b
shows that the temporal flexibility obtained with TSTN is better than with STN
(improvement of about 20 seconds in flexibility), and that the flexibility gap be-
tween STN and TSTN increases with the number of scheduled acquisitions.

In the third and last scenario, the length of the strips considered becomes ap-
proximately 40 km, and the scanning direction is chosen at random for each strip.
In this case, Figure 9c shows that the STN approach only allows sequences of
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length 5 and 6 to be scheduled. It concludes to an inconsistency of the problem
for n ≥ 7. On the other hand, the TSTN approach schedules all 13 acquisitions
considered. One reason explaining these results is that the more distinct the scan-
ning directions are, the more the minimum transition times between acquisitions
depend on the triggering time of the transitions. The possibility to have distinct
scanning directions is important in practice. It indeed allows acquisitions defined
as polygons to be split into strips whose orientation can be freely chosen, which
can reduce the number of strips to be scanned.

To give an idea of computation times, for 13 acquisitions added one by one to
the current schedule, a precision of one second on dates, and a maximum number
of iterations equal to 104 for computing firstNeg and lastNeg , the TSTN approach
takes about 2 ms per acquisition addition. With STN, the computation time is
less than 0.1 ms per addition. For precisions of 10−1, 10−2, and 10−3 s on dates,
computation times with TSTN respectively become 3 ms, 12 ms, and 66 ms per
addition. A typical technique can consist in first searching for schedules with a
fast coarse-grained approach, before using a finer precision.

In practice, satellite acquisitions may have to be planned over a full-day pe-
riod, and plans obtained may contain several hundreds of acquisitions. The latter
are chosen from a larger set of candidate acquisitions submitted by end–users.
Experiments on such real test case scenarios remain to be done.

7. Conclusion

This paper introduced TSTN, their properties, resolution techniques, and their
application to agile satellites. It showed that some standard STN properties can
be generalized to TSTN, whereas others cannot, especially concerning global con-
sistency issues or detection of propagation cycles. Compared to time–dependent
scheduling, one specificity of TSTN is that they use a minimum distance function
dmin(x, y) depending on both the start time of the transition (x) and the end
time of the transition (y). This can be useful in any problem in which transitions
must be made between the tracking of two moving targets whose trajectories are
completely known in advance. For agile satellites, targets correspond to points at
the Earth surface, and point trajectories can be fully determined thanks to laws of
orbital mechanics. Models previously proposed in time–dependent scheduling do
not cover such problems.

For future work directions, it would be interesting to combine TSTN with opti-
mization. Indeed, in the space domain and in other domains as well, the quality of
an acquisition usually depends on the angle between the pointing direction of the
observation instrument and the area to be acquired. For optical observation satel-
lites, the optimal angle corresponds to an acquisition at the vertical of the satellite
(at the nadir). For other kinds of satellites, the optimal angle may correspond to
an acquisition at the astronomical horizon, i.e. when the satellite pointing direc-
tion is perpendicular to the zenith-nadir axis for the target. In any case, in order
to handle such problems and assign temporal variables to good quality values,
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it would be interesting for instance to try and reuse works combining STN and
linear objective functions [19]. Moreover, in a context where the memory size of
an acquisition is not fully known in advance, especially due to non–deterministic
ratio for image compression, the duration of data downloads is actually uncer-
tain. Techniques for facing this uncertainty, such as those available on STN with
uncertainties (STNU [27]), should therefore also be designed.
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