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Abstract. Applied research into Renewable Energies raises complex
challenges of a technological, economical or political nature. In this
paper, we address the techno−economical optimization problem of se-
lecting locations of wind and solar Parks to be built in Egypt, such
that the electricity demand is satisfied at minimal costs. Ultimately,
our goal is to build a decision support tool that will provide private
and governmental investors into renewable energy systems, valuable
insights to make informed short and longer term decisions with respect
to park creation and placements. Existing approaches have essentially
focused on past data to tackle variations of this problem. In this paper,
we introduce a novel approach that considers both past and forecast
data, and show the impact for accounting for both sets of data and
constraints in a two−stage optimization model. We first show that in-
teger linear programming is best suited to solve the past data model
compared to Dynamic Programming and Constrained Local Search. We
then introduce our two−stage model that accounts for forecast data as
well, adding new constraints to the initial model. Our empirical results
show that the two−stage model improves solution quality and overall
costs, and can be solved effectively to optimality using Integer Linear
Programming.
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1. Introduction

The need for clean energy is recognized worldwide not only to face global warm-
ing and CO2 emissions, but also to reduce grounds for international conflicts. Na-
tional and international targets are being set [6,7]. There are many aspects to the
development of renewable energy technologies which can be broadly categorized
into engineering & technological advancement aspects, versus techno/economical
and commercial ones. The engineering components deal with the construction of
renewable plants that are reliable, effective and realistic including essentially hy-
dro, solar (photo–voltaic and concentrated solar power), wind and bio-fuel.

The techno−economical study of renewable energy on the other hand, investi-
gates gradual implantation of Renewable Energy (RE) systems for a given country
such that the installation and maintenance costs are minimized and the short/long
term returns on investment are maximized. Studies in this field investigate country
profiles in terms of energy demand, available resources, and anticipated renewable
engineering cost reductions [19]. However, more is needed as highlighted in [15],
that “there is little economic analysis of renewable energy”. The main objectives
of studying the economics of RE is to attract investments (national and interna-
tional) and set realistic targets and strategies that will remain so in the longer
term.

Comprehensive surveys are now available discussing the trends and current
improvements in the cost, performance, and reliability of renewable energy sys-
tems [6]. Clearly electricity generated from renewable energy sources remains gen-
erally more expensive than the one generated from conventional fossil−fuel sources.
However, the cost of electricity from RE sources has been falling steadily for the
last two decades and various estimates have been derived in terms of “expected
cost of electricity production from RE sources” [9]. Today wind energy is the least
expensive option but requires lots of maintenance, and is space consuming com-
pared to photo–voltaic solar panels which are, however, currently more expensive.
Note that the forecasts in price reduction are promising, as shown in Figure 1 [6].
This indicates that taking into account forecast measurements is a strong element
of effective decision making.

Based on existing forecast studies, and each country renewable resources, which
REs or portfolio of RE should a given nation invest in? How much should be in-
vested now, in 15 years time? These are questions at the heart of the “economics
of RE” for which our decision support tool aims to seek an answer to [15]. We
seek the best trade–off cost/return on investment by taking into account physical
installation constraints as well as energy requirements and costs. The main ben-
eficiaries will be the governmental as well as private national and international
investors.

In this paper we focus essentially on Egypt, even though the methodology em-
ployed can be generalized to other countries. The scene in Egypt today can be
summarized briefly as follows, regarding the aspects we are concerned with. En-
ergy consumption in Egypt is growing at fast pace and relies extensively on fossil
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Figure 1. RE costs forecast.

fuel as shown in the latest earth-trends survey [29]. Egypt enjoys excellent wind
and solar resources and there are tremendous potentials to invest into RE in Egypt,
for local consumption and even export. Research and on site projects are being
carried out with a growing trend.

A short term plan is to meet 20% of Egypt electricity demand by 2020 using
RE sources. While wind farms installation is currently cheaper than solar panels
or Concentrated Solar Power (CSP) plants, there are strong arguments in favor
of solar energy. Thus it is essential to consider both. Basically solar energy can
be installed on small surfaces (little cable and maintenance required), offers more
stability especially in Egypt (sun is less dependent on season fluctuations for coun-
tries located on the sun belt), plus wasted heat has the advantage of being usable
for water desalination [10]. Egypt can become a strong player in wind and so-
lar energy. However, a specific strategy is still to be determined, together with
investments. Our tool aims at contributing towards an efficient strategy into the
investment and planning of wind and solar energy parks in Egypt.

The optimization problem is defined as follows. Given the country of Egypt with
its data and constraints: 1) Egypt map of populated areas, and energy demand per
area, 2) Wind and Solar atlas, 3) electricity grid map, 4) current and forecast en-
ergy cost per RE resource, 5) current and forecast energy demands per month, 6) a
set of potential RE park locations; determine the set of energy parks to be invested
in today, the set of energy parks to be invested in the future (e.g. 5–10 years time),
such that atleast 20% of the current and forecast energy demand are covered for
each month of the year, and the anticipated financial cost is minimized. The cost
is determined in terms of sum of total costs associated with each potential park:
cost of connection to the grid, cost of installation, and cost of park maintenance.

In this work, we adopted an iterative development methodology by first focusing
on a problem instance with current data only, and extending it to include forecast
data and constraints. Thus, both the one–stage and two−stage approaches are
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presented. The two−stage approach we introduce relates to two aspects: 1) we ad-
dress the placement problem by investigating two time–periods simultaneously, 2)
we solve the forecast model by exploiting the solution of the problem based on
the current data only. One could consider a multi–stage approach that involves
more forecast data. However, considering that we are still in a phase in Egypt
where no large scale investment has been done, simulating with solutions based
on the current data and one forecast data will already be very informative. From
a technical point of view, our approach can easily be generalised to a multi–stage
model. The only restriction lies in the fact that for each time period considered
(e.g. 5 years time, 10, 15 etc.), reliable forecast data are made available. Also to
remain realistic one should not forecast beyond the limit of investors’s span. This
explains why in this paper we focus on a two−stage model, that considers current
and one 10 years forecast data set.

In this paper, we compare three different models and techniques to tackle the
one–stage model: dynamic programming, local search and Integer Linear Program-
ming. A comparison is carried out among all the approaches on different bench-
marks and randomly generated instances of the problem.We then apply the most
efficient technique to solve the two−stage problem and compare the results of
both approaches. This approach is a novel contribution by taking into considera-
tion short term and long term impact on the costs. Using a cost forecast to estimate
the cost of the different technologies in the future, our model finds which potential
parks should be built now to satisfy the current electricity demand, which should
be built after ten years to satisfy a percentage of Egypt’s expected electricity de-
mand for the year 2020. To our knowledge this concept has not been considered
with respect to renewable energy park placement problems. In other words, our
contribution through the models and algorithmic studies, is to allow a decision
maker to time his investment and choice of park.

This work was supported by an STDF grant, Egyptian government funding
agency. The paper is organized as follows. In Section 2 we survey related works. In
Section 3 we introduce optimization techniques that we use to solve the problem.
Section 4 decribes the data we used to build the prototype and run the simula-
tions. Sections 5 and 6 describe respectively the different models we investigated
to solve the first problem. Section 7 defines the forecast model, and Section 8 the
implementation. The experimental results are given in Section 9. Finally, a sum-
mary of the contribution of this work is given in Section 10 along with suggestions
and ideas for future research.

2. Related work

The two−stage approach that takes into account both present and forecast
data is novel to our knowledge and has not been addressed with respect to such
selection problems involving economical constraints. However, variants of the core
problem have been tackled with different constraints and objective functions. We
summarize them hereafter. The main model is a form of energy resource allocation
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problem using either a single objective (e.g. minimizing the total annual cost of
building renewable energy parks), or multiple objectives of different sorts such as
minimizing pollution emissions of CO2 and NOx, maximize self−production of
energy, in addition to the costs factor.

In [23], a survey of different models is presented relative to the problem of energy
planning using multi–criteria decision making. While such approaches put a strong
emphasis on evaluating the best trade–off between (possibly conflicting) criteria,
it does not account for the physical location of parks, nor the future data trends in
terms of energy needs and RE sources costs. This could have the downfall that the
solution proposed is not technically viable or could be obsolete within few years
given the technological advances and cost reductions.

Some approaches address the problem of park placement and selection in specific
countries with different objective functions. [21] focuses on the implementation of
wind and PV parks to supply electricity in rural areas of Japan. The simulation
tool optimizes the cost and seeks to reduce CO2 emissions. The main drawback is
that it only focuses on the present demand and cost values, and ignores the longer
term situation. From a different perspective of the problem, [18, 28, 31] focus on
the economic dispatch of electricity such that the total fuel cost is minimized,
together with the total emissions of CO2 and NOx. As such they do not consider
the park placement problem but rather the source of RE to consider to reach the
objectives. While such problems have raised a lot of interest due to the study of
gas emissions, it does not account of the technical aspects that must be taken into
account together with the economical ones.

[2] is the most recent and closest work to ours, where the goal of the decision
support tool was to increase renewable energy parks in the US, and in turn reduce
the usage of non-renewable source. Similar to our problem, it combines the idea
of relating the objective of minimizing costs with the choice of physical location
of RE parks, but again no account for future reductions in costs and increased
demands. It is important though to note that this work showed empirically that
a non-fully utilized park is not cost–effective, mainly due to the fact that a great
portion of the cost of establishing a RE park is proportional to the distance of the
park to the electricity grid, ie. transporting the energy. Thus once the connection
is established, one might as well transport as much electricity as possible. We will
use this insight in our models.

3. Techniques background

We now briefly recall the foundations of the techniques we will be using in our
design implementation, namely dynamic programming, constrained local search
and Integer linear programming. Our choice for these techniques was based on our
study of the problem components, namely showing the knapsack equivalence, and
exploiting the linearity of the constraints, as well as trying to tradeoff efficiency
and optimality.
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Dynamic Programming (DP). DP is a technique occasionally used for solving
optimization problems [8]. It amounts to making a sequence of decisions that
yield an optimal solution given a cost function. However, not all optimization
problems are solvable using DP. The problem must have two main properties
namely, optimal substructure and overlapping subproblems. If the problem lacks
either of these properties, then it is either unsolvable using DP or inefficient to
solve using this technique. The first property ensures that the optimal solution to
the problem contains within it an optimal solution to subproblems. By identifying
the optimal substructure and thus the subproblems, a recursive formulation of the
solution can be defined. The overlapping property ensures that it is worth using
DP to solve the problem. When the computation of some states is needed more
than once, this is where DP pays off. From an implementation point of view, the
time complexity of a DP algorithm can be approximated by the product of the
number of subproblems the algorithm goes through overall, and the number of
choices necessary to determine which subproblems to use. Examples of problems
for which there exists polynomial time DP algorithms are shortest path, sequence
alignment, context−free grammar parsing, etc. There are also pseudo-polynomial
algorithms to problems such as knapsack, subset sum, cutting–stock [17, 20]. In
the next section we show how DP can be used for our problem by reducing it to
an instance of the knapsack problem.
Constrained Local search. Similar to many other non–deterministic optimiza-
tion techniques, Local Search (LS) is a method for searching solution spaces of
hard combinatorial problems. The result does not guarantee a globally optimal
solution. LS basically makes an educated guess to find an initial solution and then
makes a fast enough update to reach a better neighboring solution. The main focus
of research in this field lies in finding a “good” neighborhood operator, according
to the problem structure and objective function. If the problem is constrained and
the solution needs to satisfy such constrained we then talk about constrained local
search [30]. This is the case in our design of a local search technique for the optimal
park selection problem.
Integer linear programming. Finally we investigated a third approach that
requires the problem to be modeled as a linear problem, ie. all the constraints
are linear. The Simplex algorithm is one of the most effective methods used to
solve LP. The problem at hand is expressed as a maximization (or minimization)
of a linear function, such that all the constraints are linear and the variables are
positive reals. If any of the variables take integer values, we are then dealing with
an Integer Linear Program (ILP) [25]. This will be the case in our study.

In such cases the Simplex algorithm generally does not yield an integer op-
timum. Some exceptions can be found though, when the matrix of the model is
totally uni-modular yielding a structure whereby the linear programming optimum
found by the Simplex method is the integer optimum [16]. However, in the general
case further processing is required to reach an integer optimum. The most common
techniques, i.e. branch and bound and cutting planes, use the Linear Program-
ming (LP) relaxation to estimate the optimal solution of the integer model. The
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LP relaxation is the integer problem without the integrality constraints. Briefly,
branch and bound branches on a variable which should take an integer value,
by dividing the LP problem into two sub−problems, and for each sub−problem
adding a constraint on this variable to take a value smaller (respectively greater)
than the relaxed value, and solving the LP relaxation for each sub−problem. The
order in which the variables are selected is based on various heuristics, the com-
mon one being: choose first the variable with non−integral part closest to zero.
The best integer solution found provides a bound for the optimal objective value.
This technique can be combined with the cutting planes technique, to reduce the
search space to be explored without removing any integral solution. Cutting planes
are basically extra constraints that “cut off”, part of the feasible region but no
integer solution. They can be appended to the model at the beginning or during
the optimisation procedure.

4. Data at hand

Our core contribution is on the portfolio selection problem for renewable energy
parks, such that planning for both short and medium term park installation is
seen as one decision problem. One key component to the realistic nature of the
model lies in the data made available to us. In this decision support prototype, the
data of relevance is as follows, together with its nature in terms of measurement
uncertainty.

4.1. Wind atlas

The wind atlas for Egypt in the form of a hard copy document, was obtained
from the NREA (New and Renewable Energy Authority in Egypt), who took
measurements over 14 years in partnership with the Danish Ministry of foreign
affairs (1991−2005). The outcome provides a comprehensive overview of the wind
resource over the entire land area (and sea) of Egypt. The maps produced indicate
the mean power density, and wind speeds at a height of 50m over the actual
land surface. It gives for a set of specific locations, the prediction of the average
yearly energy production of a specific wind turbine or wind farm based on actual
measurements of wind speed and direction [14].

4.2. Solar atlas

The solar atlas fo Egypt, established in 1998 as part of a USAID project (United
States Agency for International Development) and managed by the NREA, is a
document including maps of solar energy density for each month. The data is the
result of measuring the solar radiation daily in ten locations between 1980 and
1988. The maps were produced using a computerized model that distributes the
daily value of global solar radiation into different energy bands [27]. The maps pro-
duced as in Figure 3 are monthly average of solar energy density in kWh/m2/day.
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Figure 2. Mean wind power density in W/m2, determined by
mesoscale modelling [14].

4.3. Parameter data

In the current development stage of our prototype, some data knowledge remains
in the hand of the user or decision maker. This includes the average electricity
demand per month for Egypt, the annual growth rate of electricity demand, and
relative to a specific park location and chosen RE type and park size, the associated
cost values (including installation cost, maintenance cost and cost of connection to
the grid). While in the final stage such data should be pre–processed and loaded
automatically into the system, it is currently entered manually by the user. The
maximum energy production of a given park location, size and type is computed
automatically thanks to the digitalized atlas maps.

Clearly when planning for future investments, the parks costs will change, as well
as the electricity needs and production. In the absence of any reliable data trends, a
probabilistic model would not have been realistic nor reliable. As a consequence, we
let the domain expert enters their expertise in terms of forecasted costs and growth
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Figure 3. Monthly average of the global solar radiation over
Egypt in kWh/m2/day for March [22].

factor which is directly linked with population growth. Such dynamic parameters
can be edited and used to run several simulations and study their impact. The
user can currently experiment with the tool in a reverse engineering manner, by
seeking whether slightly similar or different outputs are produced from a same set
of potential parks but different growth and forecast data.

Also, Egypt does not enjoy yet thorough studies and surveys of fine grained
patterns of electricity consumption unlike European countries or North America
(e.g. [1]) , thus monthly average is the data used. On the other hand the electricity
grid in Egypt is a fully connected network and thus when compensation is required
to provide more electricity to certain areas like Cairo or Alexandria, this can be
achieved and is currently done. It is also important to note that the current plan
for renewable energy parks, is to cover at least 20% of the electricity demand by
2020, thus, such parks are not meant yet to be used to cover unforeseen peak
demands; rather as a base to off-load the current production based on fossil fuel.
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5. Optimization models

We now explore the approaches attempted to solve the optimal park selection
problem. As mentioned earlier, in terms of costs, transportation or connection to
the grid is the main bottleneck, thus the problem of selecting a given park, with
its maximum capacity, implies that a “yes” is equivalent to “full capacity usage”.
This reduces the search space subsequently. Thus independently of the techniques
we will use, the model will be Boolean in terms of the decision variables. Another
observation that applies to our case study of Egypt, is that the electricity grid
is fully connected. This implies that the issue is not about selecting certain park
locations to cover certain populated areas, it is more global. As such a traditional
set covering model is not required and we introduce our Grid model.

5.1. The grid model

The following input data is provided by the decision maker to our system, but
can also be preprocessed and entered automatically.

5.1.1. Input data

Ci = Cost of park i (5.1)
(xi, yi) = Coordinates of park i (5.2)

Gij = Watts/m2 produced by park i in month j (5.3)
Dj = 20% Electricity demand in Egypt,month j, 2010 (5.4)

Note that the cost Ci is the total cost for each potential location and is composed
of, installation cost, maintenance cost, and the cost of building the transportation
lines to connect and bring the electricity to the grid.

5.1.2. Decision variables

Since a Boolean model is used, the decision variables are associated to each
potential park location:

Bi =
{

1 if park i is chosen
0 otherwise (5.5)

5.1.3. Constraints

The total electricity generated by the RE parks must satisfy 20% of the current
demand. Given the demand Dj for month j, we have:

n∑
i=1

Gij · Bi ≥ Dj Bi ∈ {0, 1} ∀j ∈ {1, . . . , 12} (5.6)
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5.1.4. Objective Function

We seek to minimize the current cost over all the potential parks:

minimize
n∑

i=1

Bi · Ci (5.7)

5.2. Multi–dimensional Knapsack equivalence

We show that the grid model actually formulates the optimal park selection
problem as a Multi–Dimensional Knapsack problem (MDK). This implies that
we can benefit from techniques suitable to the MDK to solve our problem. The
classical Knapsack Problem (KP) is defined by the tuple (n, P, W, Q), where n
elements have each a profit Pi and a weight Wi. The objective is to select elements
such that the total profit is maximized under the constraint that the total weight
should not exceed Q. We consider the discrete 0-1 KP. The 0-1 KP maps directly
our Boolean grid model. More formally the 0–1 KP is specified by:

Maximize

n∑
i=1

Pi · Xi (5.8)

subject to
n∑

i=1

Wi · Xi ≤ Q, Xi ∈ {0, 1} (5.9)

where Xi = 1 if and only if the ith element is selected.
The multi–dimensional KP extends it and is specified as a tuple (n, m, P, W, Q)

where m is the number of dimensions; and we have:

Maximize

n∑
i=1

Pi ·Xi (5.10)

subject to
n∑

i=1

Wij · Xi ≤ Qj ,Xi ∈ {0, 1}, ∀j ∈ {1, .., m} (5.11)

where Wij is the weight consumed by the ith element in the jth dimension, and
Qj is the limit of the jth dimension. Note that there is one constraint per di-
mension. A solution to the MKP is one that satisfies the conjunction of the m
constraints (5.11). An optimal solution is one that maximizes (5.10).

Obviously, the objective of the standard MKP problem is to maximize the profit,
whereas in the optimal park selection problem our objective is to minimize the total
cost. Also, in the MKP the constraints set an upper bound not to be exceeded
for each dimension, whereas in the park selection we have a lower bound to cover
the electricity demand for each month. We just need to transform the problem
by multiplying constraints and objective by (−1) to have the equivalence. The
optimal park selection problem corresponds to the MKP, whereby Dj = −Qj is
the demand to be covered at month j; Gij = −Wij is the energy gain of park i
during month j; and Ci = −Pi is the total cost of park i.



136 C. GERVET AND M. ATEF

6. Algorithms

We present the different algorithms we implemented to solve this problem. The
first is a pseudo-polynomial deterministic algorithm that finds the exact optimal
solution using DP. The second is a constrained local search algorithm that uses a
neighborhood operator to find a good solution. Complexity results are given not so
to compare algorithms which are not comparable indeed (complete versus incom-
plete ones) but rather to show the parameters that matter for a given algorithm.
The third and most successful approach uses Integer Linear Programming.

6.1. Dynamic programming algorithm

The most common approach to solving the KP and MKP is dynamic program-
ming [20]. Thus we first extend it to the the optimal park selection problem. Given
n potential park locations to choose from, and assume for simplicity a constant
monthly demand of d kw/h, we can divide the problem into two independent sub-
problems. In the first subproblem, the nth location is included in the solution, the
cost associated with the nth is subtracted in the new subproblem and the cost is
added. In the second subproblem the nth location is not included. The following
smaller subproblems solve the same problem with n− 1 potential locations. More
formally, the problem to be solved is defined recursively by:

(n, C, G, d) (6.1)

where n is the number of locations, d is the rate of electricity required in kw/h,
Gn is the production gaing of kw/h provided by the nth potential location, and Cn

is the total cost associated with it. The objective function to minimize is F (n, d)
which is defined recursively by:

F (n, d) =

⎧⎪⎨
⎪⎩

0 if d ≤ 0
∞ if n = 0 and d > 0

min
(

F (n − 1, d)
Cn + F (n − 1, d − Gn)

)
otherwise

(6.2)

Clearly if the demand d ≤ 0 then the cost is 0, while for strictly positive demand
and no potential locations, there is no solution which is represented by an infinite
cost value. Otherwise, the solution is the minimum of two subproblems, one that
includes the nth location and the other that excludes it.

6.1.1. Complexity

This recursive formulation leads to a DP algorithm with a time complexity
expressed in terms of: n, the number of potential location, Dj the demand at month
j (in {1, .., 12}), and d, the largest demand to be covered. As aforementioned with
respect to knapsack problems, the time complexity is pseudo-polynomial, which
is theoretically the best available for the classical KP. The time complexity is in
O(n · dm) where d =

m
max
j=1

Dj .
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In our version of the problem m is a constant equal to 12, corresponding to
the number of months in this case. The same bound of the time complexity serves
as a loose upper bound one the space complexity. This is due to the fact that
when top-down DP is used, some subproblems are never reached during solving
the original problem. The reason for that is the first base case of recurrence (6.2),
which prunes the computation once the demand has been satisfied. Computational
results are presented in the implementation section.

6.1.2. Preprocessing: adding a sorting heuristic

we also considered a preprocessing step to this approach, by sorting the locations
before running the DP algorithm. The sorting rule is defined as follows:

Locationa < Locationb ⇐⇒
m∑

j=1

Gaj <

m∑
i=1

Gbj

This causes the locations with higher gain values for electricity rates to come first
in the list of locations. Such an ordering forces many branches of the search tree
to be pruned early, hence a better performance. Note that this does not affect the
optimality of the algorithm. In other words, the sorting heuristic does not affect the
completeness of this approach. However, it does make it more efficient in practice.
In Section 9, the sorting heuristic is evaluated, where we compare the running
times of two versions of the algorithm, one which applies the sorting heuristic, and
one which does not.

6.2. Constrained local search algorithm

While the sorting heuristic improves the running time of the DP approach,it is
not effective enough to scale up the problem as we illustrate in the experimental
results. To improve, we sought a polynomial–time, but sub–optimal algorithm to
solve the problem. Now we discuss a local search method used to determine a sub–
optimal solution to the problem. The main aspect of local search techniques is
to define the neighborhood operator. We use a successful neighborhood operator
suggested by Ghosh et al. [12]. Their work focuses on solving the subset sum
problem and comparing their suggested neighborhood with previous ones for the
same problem. The reason we use a subset sum problem technique to solve our
problem, is that the MKP model is very similar to subset sum with a slight change
in the objective function. In MKP the chosen elements in the solution may not
exceed the upper bound, but in the subset sum problem the chosen elements must
sum up exactly to the bound.

In our work, we modify and implement the idea to solve the optimal park selec-
tion problem as a MKP, which requires several changes to [12] that are highlighted
here.
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6.2.1. Neighborhood operator

In order to define the operator we first define the permutation we use and
how a solution is specified. We define Y the permutation vector over all poten-
tial parks. Instead of reasoning directly about the Boolean vector X, and try-
ing to improve upon a solution using operations on X, we represent a search
space of permutations Y of the park location indices. The neighbor of a per-
mutation Y is a vector that differs from Y in only two values (one swap).
For example, for n = 4, and Y = [1, 2, 3, 4], we have Neighborhood(Y) =
{[2, 1, 3, 4], [3, 2, 1, 4], [4, 2, 3, 1], [1, 3, 2, 4], [1, 4, 3, 2], [1, 2, 4, 3]}. However, [3, 1, 2, 4]
and [4, 3, 2, 1] /∈ Neighborhood(Y) since they each contain two swaps.

For a given permutation vector Y, we denote Yi the value of its ith argument.
For instance for Y = [2, 1, 3, 4], Y2 = 1. For sake of notation simplicity, we will
perform vector operations and denote by the vector Gi the energy coverage of
park i (over the 12 months period). In other words it represents the row i of the
matrix Gij .

Algorithm 6.1 GREEDY
Require: G, D, Y

E← {Ei = 1,∀1 ≤ 1 ≤ n} {solution vector with all parks selected}
V ← [V1, .., Vm] such that Vj =

∑n
i=1 Gij

{vector of aggregated energy covered by all parks per month j}
for i = 1→ n do

if V −GYi ≥ D then
V ← V −GYi

EYi ← 0 {park Yi is removed from the solution vector E}
end if

end for
return E

The local search algorithm operates as follows: choose an initial permutation
randomly, use the greedy heuristic to compute the solution that matches the per-
mutation with a good cost while satisfying the constraints (GREEDY(G,D,Y)),
compute the set of neighboring vectors, determine if a neighbor point can lead to
a better solution cost (FINDBEST(Y)). If one exists, move to this permutation
with associated solution, if not exit.

The key point lies in the heuristic used to compute a good solution for a given
permutation. The greedy algorithm starts by including the entire list E of potential
locations in the initial solution. Given a permutation Y of the potential locations,
the algorithm traverses the potential locations according to the ordering of Y .
For every potential location, if removing it from E causes the total demand to be
unsatisfied for atleast one of the 12 months (i.e. the vector difference V −GYi ≥ D
is false), the algorithm does not remove it, otherwise it is removed from E. The
selection of park Yi in the current solution vector E is disabled, EYi = 0; and we
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need to cover the demand vector D with the coverage offered by the remaining
parks (updated vector V ).

Algorithm 6.2 Local Search
Require: G, C, D

Y← [Y1, Y2, ..., Yn] {random permutation}
X← Greedy(G, D, Y)
loop

Y’ ← FindBest(Y) {finds the best permutation in the neighborhood of Y which is
better than Y }
if Y’ does not exist then

return X
end if
X← Greedy(G, D, Y’) {binary solution from the greedy algorithm (6.1)}

end loop

The local search algorithm moves away from an initial permutation Y by search-
ing for the best neighboring permutation Y’, that corresponds to the satisfiable
neighbor with the smallest cost. The algorithm terminates after failing to find a
better permutation to switch to. Typically, a local search algorithm is run for a
number of iterations, and the final result is the best solution over all solutions which
the algorithm terminated with during all the iterations. At every new iteration in
our implementation, the algorithm is not permitted to re−visit permutations that
were already encountered during previous iterations2.

6.2.2. Complexity

The highest cost of Algorithm 6.2 is FindBest, which finds the best next so-
lution, better than the current one from within the neighborhood. The time com-
plexity of this FindBest is polynomial in the number of locations.

O(n3 · m) (6.3)

where n is the number of potential locations, and m is the number of seasons (12).
Therefore, m is a constant and the complexity can be reduced to O(n3).

The time complexity of the full algorithm depends on how many iterations the
loop in Algorithm (6.2) does. This is controlled by how far is the initial random
permutation from a local minimum, since the algorithm terminates when no better
solution is found in the neighborhood.

6.3. Integer linear approach

Finally we tried a third approach which proved the most effective in terms
of both, solution quality and efficiency. The Boolean variables in Equation (5.5),

2This is called local search with memory, which resembles the operation of tabu search.
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Table 1. All possible scenarios of building a and b.

Build Build Demand Demand
park a park b 2010 2020

1 no no no no
2 no yes/2010 satisfied no
3 no yes/2020 no no
4 yes/2010 no satisfied no
5 yes/2020 no no no
6 yes/2020 yes/2020 no satisfied
7 yes/2010 yes/2010 satisfied satisfied
8 yes/2010 yes/2020 satisfied satisfied
9 yes/2020 yes/2010 satisfied satisfied

Xi lie in the domain {0, 1}. The objective function is a linear sum of the costs
of all potential locations chosen to be in the solution. Also, the constraints in
Equation (5.6) are linear constraints ensuring that the demand for each month
is satisfied by the chosen potential locations.This grid model is now solved using
the Simplex algorithm to find an optimal solution which would in general violate
the integrality constraint on the variables. While the Simplex algorithm might not
produce an integral solution, the solution to the LP relaxation is used to direct
the search towards an integer one using a complementary technique called branch
and bound, briefly described in Section 2. In our case the branching will create two
sub−problems when handling each 0–1 decision variable Xi, by constraining the
variable to take a value ≤ 0 or ≥ 1 thus forcing the Simplex method to assign 0 or 1
to such decision variable when seeking an optimum solution to each sub−problem.
The CPLEX tool contains a branch and bound technique to tackle integer or mixed
integer linear programs.

In our case, solving the grid model directly with a standard ILP solver proved
to be the best technique in terms of CPU and optimality. Thus we use it for the
two−stage optimization model.

7. Two–stage optimization model

In this section, we extend the grid model (Sect. 5), to include forecast data,
namely the costs of potential parks and expected electricity demand for 2020. The
impact of considering the two−stage model is illustrated in the example below. Let
a and b be 2 potential renewable parks. Assume a monthly demand with an annual
growth rate, and assume that each park can satisfy alone the present demand but
not the forecast one. We have the following combinations of scenarios shown in
Table 1, of which 3 satisfy all the constraints and the optimal one shall be the
one with lowest cost that relies on forecast cost reductions (either scenario 8 or
9 depending on the cost values).
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The uncertainty lies in the technologies costs, as well as the forecast electricity
demand for 2020. It can be estimated with existing forecasting curves of mar-
ket and demographic studies. It is expected as shown in Figure 1, that the cost
for renewable energy technologies will decrease in the coming years [6]. For each
type of uncertainty, the current approach considers an annual growth rate for the
electricity demand (that can be tuned by the end–user), and a total future cost
per potential park according to the technology used and its transportation cost.
Thus the initial grid model is extended with the following underlined terms and
equations. The objective now is to find the minimum total cost for satisfying the
demand of today and tomorrow, by taking into account forecast values.

The input for the final model is:

Ci = Cost of park i (7.1)

FCi = Future cost of the ith location (7.2)
(xi, yi) = Coordinates of park i (7.3)

Gij = Watts/m2 produced by park i in month j (7.4)
Dj = Electricity demand in 2010,month j (7.5)

r = Annual growth rate of electricity demand (7.6)

FDj = Dj × r future demand, month j, 2020 (7.7)

Model Variables. We extend the set of variables from the short–term model,
with new ones as shown below.

Xi =
{

1 The ith location is to be built in the present
0 otherwise (7.8)

FXi =
{

1 The ith location is to be built in the future
0 otherwise (7.9)

Constraints The integer linear program has the following linear constraints:

n∑
i=1

Gij · Xi ≥ Dj, ∀j ∈ {1, .., m} (7.10)

n∑
i=1

Gij · (Xi + FXi) ≥ FDj, ∀j ∈ {1, .., m} (7.11)

0 ≤ Xi + FXi ≤ 1, ∀i ∈ {1, .., n} (7.12)

Xi ∈ {0, 1}, FXi ∈ {0, 1}, ∀i ∈ {1, .., n} (7.13)

Constraints 7.10 ensure that the locations chosen to be built in the present
satisfy the current demand, while constraints 7.11 ensure that all chosen loca-
tions built in the present and the future satisfy the future demand as well. Con-
straints 7.12 prevent each potential location from being built twice.
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Objective Function. The objective function defined in the approach is obviously
a linear one. Since we seek to minimize the sum of all costs, given by the expression:

Cost =
n∑

i=1

Xi · Ci +
n∑

i=1

FXi · FCi (7.14)

The cost expression is the sum of two scalar products, one for the locations chosen
to be built today, and the other for the locations chosen to be built in the future.
This model is also solved using the Simplex algorithm, with built–in branch and
bound to search for an integer optimum.

8. Implementation

We discuss the implementation of the different algorithms used and our proto-
type. Then we analyze the results obtained. The entire process of implementing all
models was done on an Ubuntu 10.04 (Linux–based) Operating System.We first
highlight the sources of the data used during testing and evaluation. The DP al-
gorithm (6.2) as well as the constrained local search one (6.2), were implemented
in C++. The DP algorithm uses top-down DP. Caching the intermediate solutions
for the subproblems is done using the map data–structure in the C++ STL. The
memoization is achieved by keeping track of an array of maps. Each map stores
key-value pairs, where the key is STL ’s vector container, representing the total
gain vector x and the value is the solution to the corresponding problem. The
constrained local search algorithm was stopped when the optimum was found (in
our case the LP solution). The ECLiPSe [5] platform was chosen to implement the
ILP model thanks to its high level of abstraction and hybridization libraries with
the cplex solver.

8.1. Data pre-processing

We purchased from a governmental body the wind and solar solar atlas of
Egypt [14, 22]. In the form of printed documents and maps, they contain detailed
information about solar radiation, wind speed, wind directions for each month
of the year for a given location (resulting from analysis over the past 8 years).
There are 12 maps in the solar atlas, each specifying an amount of watts/m2 for
each month for a given latitude. In the solar atlas, the annual average rate of
electricity is given in a single map. A sample of the solar map for one month
was illustrated earlier in Figure 3. The information in these maps was extracted
using Python’s image processing library SciPy [26]. We scanned the atlases, then
processed the maps’ images by labeling the different regions over each map with
their corresponding solar radiation or wind power [11]. The result of the extraction
process was the generation of a function that takes as input (x, y, t) and returns
the kWh value, representing the gained rate of electricity at location (x, y) during
month t.
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Figure 4. Home page of the GUI to enter relevant data.

8.1.1. Graphical user interface

The GUI module was implemented using Java. In order to enable the user to
freely select potential locations from the map of Egypt, the OpenStreetMap [13]
library was used. The user inputs data regarding the cost and maximum area for
each location selected on the map. The database contains default data for the
current demand of Egypt as well as the forecasted cost data shown in Figure (1).
This information is stored and available for the solver to read during execution.

8.1.2. Instance data sets

For a given run of the tool, a dataset is composed of n points chosen by the
user, on a digitalized map of Egypt. The energy gain of these locations is derived
from the gain matrix G for the dataset. However, the costs for these locations
is currently set by the user through the GUI. It reflects on the type of the park
(wind, solar PV, solar CSP), its size and distance to the grid.

Regarding the demand vector, we generated random instances to better evaluate
the different techniques, as follows:

Dj = F ·
n∑

i=1

Gij (8.1)

Basically, each value Dj in the demand vector is computed by multiplying a
factor F < 1 by the sum of all Gij ∀1 ≤ i ≤ n. This factor F was devised, such
that it determines the level of difficulty for the demand to be satisfied by the
potential parks energy gain. This difficulty level relates to the tightness of the
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model to satisfy the demand given the number of potential parks and respective
energy gain. The closer F is to 0.5 the largest the number of combinations of
potential parks need to be considered since it implies on average that 50% of the
parks will be needed to cover the demand. For example, if F = 0.3 and n = 100,
then about 30 parks will be needed to satisfy the given demand.

9. Evaluation

We first present the results of evaluating the scalability of the different algo-
rithms we evaluated: DP, DP with preprocessing using sorting (DPS), constrained
Local search (LS), and ILP. We show the results on the average running time of 20
instances of the problem chosen randomly. This average is taken over all instances
of the same problem size, n. Note that we stop the constrained local search when
it reaches the ILP optimum, which was the case in these runs.

In Figure 5 we show the CPU running times of all approaches for a group of
datasets where 20 ≤ n ≤ 34 and F ∈ {0.25, 0.5, 0.75}. DP and DPS have very high
running times according the shown results. As we can see seen from the Figure 5a,
the running times of DP and DPS do not exceed 50 seconds for n ≤ 40. However
when F ≥ 0.5, the worst running time becomes quite high. Also, the DP and DPS
approaches tend to require memory more than 2GB for n > 30. The approaches
that proved efficient for this problem size are LS and ILP. This is expected, since
DP and DPS have a pseudo-polynomial running time. When the required potential
locations in the solution k approaches F × n, the number of solutions considered
grows rapidly, which affects the running time of DP and DPS approaches.

Now we show the performance of the LS and ILP algorithms for larger values
for n, 40 ≤ n ≤ 220 (Fig. 6). The numbers are actually the same for the different
values of F we considered, thus the main issue here is on the number of potential
parks to consider rather than the tightness of the constraints. The results show a
polynomial increase in the running time with respect to n. This reflects the O(n3)
time complexity of the LS approach used. On the other hand, the ILP approach
proves to be extremely fast and robust in solving all instances.

9.1. Forecast ILP model

The solution was broken into two stages. First the simple gridmodel described
in Section 5 is solved whereby the selection of parks at present should cover 20%
of the forecast demand directly. The two−stage model builds on this first solution
by constraining the total cost to be smaller than the one produced by the grid
model. It becomes an upper bound to the extended cost function since we can
ensure that future costs are cheaper than covering the forecast demand from the
present investment.

We show that adding this constraint and solving the two−stage problem with
the constrained new objective function (7.14), even though it requires a second
run of the Cplex solver, it greatly speeds up the runtime of the entire algorithm.
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(a) F = 0.25

(b) F = 0.50

(c) F = 0.75

Figure 5. Runtime of DP, DPS, ILP, and LS approaches for 20 ≤ n ≤ 34.



146 C. GERVET AND M. ATEF

Figure 6. Runtime of ILP and LS approaches for 40 ≤ n ≤ 220

In other words, solving the forecast model without the upper bound constraint on
the cost is less efficient than solving grid model, acquiring the upper bound, then
solving the forecast model, as shown in Figure 7. The testing was done for larger
number of potential locations, 50 ≤ n ≤ 250 given its efficiency.

The performances show that the LP approach offers efficiency as well as ro-
bustness to compute the optimal solution. Even though we are dealing with a
simulation and a decision support tool, where real time and computational time
is not the first factor to consider when choosing an algorithm, this study shows
the suitability of the LP apporach. Indeed, the LP approach guarantees optimality
(an important element of confidence in the tool for decision makers), is efficient,
scaleable, and robust to changes in the model, including the forecast ILP.

9.2. Solutions produced

We now illustrate the impact of reasoning with forecast demand and cost values
in terms of the solution quality and difference in final parks choice. A set of 10
potential solar and wind parks are initially placed on the GUI. These two sets are
chosen by randomly selecting coordinates on the map of Egypt.The output of the
algorithm, is the optimal set of parks to be built in the present or in 10 years time
in order to satisfy both demands. In Figure 8, the optimal set is shown when only
present data is considered. In Figure 9, it is shown how the optimal solution differs
when we account for forecast costs and demands. We can see that solar park 8 and



OPTIMAL ALLOCATION OF REP: A TWO–STAGE OPTIMIZATION MODEL 147

Figure 7. Runtime of the ILP long term model for 50 ≤ n ≤ 250.

Figure 8. Chosen locations using grid model.

wind parks 1 and 7 are best to be built in the future and wind park 5,7 and 9 for
instance should not be considered at all when future data is taken into account.

We can notice that the selection of parks and the planning regarding when to
invest, differs. One can see, in particular, the shift between the first solution where
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Figure 9. Chosen locations with two−stage model.

more investment is put into wind farms, and the second one where solar parks
become predominant with identical input of potential parks.

The solutions differ also in terms of the costs of investment when the number of
chosen parks grows. With less than ten parks the costs are similar, however as we
simulated with a much larger number of parks both CSP solar and wind, the cost
difference increased, while maintaining the constraints of covering both the present
and forecast demands. In other words, we run what we call the binary model that
relies solely on the investment in parks at present (Bi variables) to cover both
present and future demand, and compared its total cost with the forecast model.
The difference in cost was anticipated given the reduction of parks’ costs over time,
however its order of magnitude shows the importance of timing the investment
(cost expressed in 1000 of Egyptian Pounds). This is illustrated in Figure 10.

10. Conclusion

In this paper we have extended the state–of–the art models for optimal park
selection, to account for both current and forecast data in the decision making
process. We showed how this impacts greatly the solution quality, and also how it
can be achieved efficiently using a two−stage approach as an ILP model.

Clearly, when dealing with forecast estimates, even from domain experts, un-
certainty is present and cannot be overlooked. While the scope of this paper is to
study the impact and added value of our two−stage model, part of future work on
this project is to extend the linear model we obtained by considering the parameter
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Figure 10. Solution costs comparison.

data as interval coefficients in the model, thus introducing a robust enclosing of the
uncertainty measures, to seek a reliable constraint model. Interval linear models
have shown their success and suitability to reason with incomplete and erroneous
data (e.g. [3]). Furthermore, our previous work in this field,including our more re-
cent work on CDF–intervals [24], and in robust optimization in general have shown
that interval linear models can be very effectively transformed into tractable linear
models and solved using LP techniques to derive solution sets [4,32]. The ECLiPSe

platform now supports such coefficients format in its modelling environment [5].
Thus, future work includes the migration of the linear model to a reliable interval
models to account for erroneous data from the forecast data specified by the user.
Also, given the strong interests from domain experts in Egypt towards the poten-
tial of such a tool, we definitely intend to extend the actual problem specification
to finer grained level of constraints. For instance by modelling the reduction of
a park production over time, to account for a more accurate production rate per
month of a given time period.
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