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WITH TWO PHASE SERVICE AND PERSISTENCE

BEHAVIOUR OF CUSTOMERS IN SERVICE
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Abstract. This paper describes an unreliable server batch arrival re-
trial queue with two types of repair and second optional service. The
server provides preliminary first essential service (FES) to the primary
arriving customers or customers from retrial group. On successful com-
pletion of FES, the customer may opt for second optional service (SOS)
with probability α. The server is subject to active break downs. The
customer under FES (or SOS) during the failure decides, with probabil-
ity q, to join the orbit(impatient customer) and, with complementary
probability p, to remain in the server for repair in order to conclude his
remaining service (patient customer). Both service and repair times are
assumed to have general distribution. It is considered that the repair
time of server during the presence of patient customer and the repair
time of the server while the customer (impatient customer) joining the
orbit due to failure, are different. For this queueing system, the orbit
and system size distributions are obtained. Reliability of the proposed
model is analysed. Some particular cases are also discussed. Other per-
formance measures are also obtained. The effects of several parameters
on the system are analysed numerically.
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1. Introduction

Queueing system with repeated attempts are characterized by the feature is that
arriving customers who find all server busy are obliged to abandon the service area
and join a retrial group (called orbit) in order to try their luck again after some
random time. For a detailed review of the main results and the literature on this
topic the reader is referred to Artalejo [4, 5] and Falin [14–16]. In most of the
queueing literature it is assumed that the server is available in the service station
on a permanent basis and service station never fails.

In practical system we often meet the case where service stations may fail and
can be repaired. Such phenomena always occur in the area of computer communi-
cation networks and flexible manufacturing systems, etc. Because the performance
of such a system may be heavily affected by service station breakdown, such sys-
tems with repairable service station are worth investigating from both the queueing
theory point of view and reliability point of view. Recently, there has been vast
development in the literature on retrial queues, there are only a very few works
taking into account both the retrial phenomenon and unreliability of the server.

The retrial queueing models with active breakdowns where the interrupted cus-
tomer decides to be patient by waiting for repair to complete his service (non
pre-emptive policy) or impatient by entering the orbit to re-initiate his request
later (pre-emptive policy) are taking into account only in very few research works.
This paper focuses on the analysis of a single server batch arrival retrial queue
with active server breakdowns, two types of repair, second optional service and
impatient behaviour of the customers.

2. Literature survey

Queueing systems with repairable service station have been studied by many
authors. as for example Avi-Itzhak and Naor [10],Tang [28], Yue and Cao [32],
Krishnakumar et al. [19, 20], Li et al. [21], Atencia et al. [7, 8] and Ke [17].

There are only a few works taking into account both the retrial phenomenon
and unreliability of the server. Interested readers can find the main results and
methods about unreliable retrial queues in Aissani [1,2], Aissani and Artalejo [3],
Atencia et al. [7, 8], Wang et al. [29, 30], Choudhury et al. [13], Xiaoyong Wu
et al. [30] and Yang and Li [31]. The breakdowns may be active or passive ac-
cording to whether the failures occur in a working or idle period of the server.
Besides, failures can take place after a random amount of service time or just
before starting the service. Recently, Atencia et al. [7] have analysed the retrial
queues with active breakdowns and exponential server lifetime where the inter-
rupted customer decides to be patient by waiting for repair to complete his service
(non pre-emptive policy) or impatient by entering the orbit to re-initiate his re-
quest later (pre-emptive policy). In practice, it is considered that the repair time
of server during the presence of patient customer and the repair time of the server
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while the customer (impatient customer) joining the orbit due to failure, are dif-
ferent . But two types of repair time are not considered in all of the above models.
Thus this paper concerns about studying the unreliability of the server and the
impatience problems under two different types of repair.

To be more realistic, we further assume that the service process can be done
with optional phase of service, which covers many practical situations: for ex-
ample, in client-server communication systems, messages which are transmitted
through two stages of service. There have been several contributions considering
queueing system with two phases of service. Madan [22] considered the classical
M/G/1 queueing system in which the server provides the first essential service to
all the arriving customers whereas some of them receive second optional service.
The first essential service follows general distribution and second optional service
follows exponential distribution. Medhi [23] generalizes the model by considering
that the second optional service is also governed by a general distribution. Choud-
hury [11], Choudhury et al. [12, 13] investigate the retrial queueing model with
second optional service. Ke [18] extended the result for a multi-optional service
system where concept of set-up time is also introduced. Artalejo and Choudhury [6]
have analyzed the steady state analysis of the M/G/1 queueing system with re-
peated attempts and two phase service using Embedded Markov chain method.
Senthil Kumar and Arumuganathan [24] have analysed the batch arrival single
server retrial queue in which the server provides two phases of heterogeneous ser-
vice and receives general vacation time under Bernoulli schedule. Senthil Kumar
and Arumuganathan [25] have analysed the batch arrival with active breakdowns
in which there is no breakdowns while doing SOS. Further, Senthil Kumar [26] has
analysed discrete time Geo[x]/G/1 with M-additional options for service. Moreover,
very few authors have studied the comparable work on the impatient behaviour
while server breakdowns in retrial queueing model. This paper analyses a single
server batch arrival retrial queue with active server breakdowns, two types of repair
and second optional service.

A possible application of bulk arrival impatient behaviour retrial queueing sys-
tem with two phases of heterogeneous service under active server breakdowns and
two types of repair is given as follows:

The queueing system under consideration has an intrinsic interest to model
some situations in packet switching network. Consider a computer network which
consists of a group of processors connected with a central transmission unit (CTU).
If a processor wishes to send a message it first sends the message to the CTU . If the
transmission medium is available, the CTU sends immediately message; otherwise
the message will be stored in a buffer and the messages in CTU must retry for
the transmission some time later. It is noted that most papers on retrial queues
assume that the server is available on a permanent basis. In practice, however, these
assumptions are apparently unrealistic. CTU may well be subject to lengthy and
unpredictable breakdowns like scheduled backups and unpredictable failures, while
transmitting the message. If CTU is subject to unpredictable breakdowns (not so
lengthy) while transmitting the message, CTU gives the priority to transmit that
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message after being repaired. In the case of lengthy breakdowns, the messages in
buffer must retry for the transmission some time later after being repaired. The
above situation can be modelled as a batch arrival single server retrial queueing
system with active breakdowns, two types of repair time and second optional
service.

The primary focus of this paper is to realize an extensive analysis of this system
from both the queueing and reliability point of view. Analytical treatment of this
model is obtained by supplementary variable technique. The steady state orbit and
system size distribution are found. Also, other performance measures are obtained.
Reliability measures of this model are discussed. Finally some numerical examples
are shown.

3. Model description

We consider a single server retrial queue in which batches of primary calls arrive
according to a Poisson stream with rate λ > 0. In the batch arrival retrial queue
it is assumed that at every arrival epoch a batch of k primary calls arrives with
probability gk. X(z) =

∑∞
k=1 gkzk is denoted as the generating function of the

batch size distribution. The mean batch size is denoted as E[X ] = X ′(1).
If the server is busy at the arrival epoch, then all these calls join the orbit,

whereas if the server is free, then one of the arriving calls begins its service and the
others form sources of repeated calls in order to seek service again after a random
amount of time. The time between two successive repeated attempts of each call in
orbit is assumed to be exponentially distributed with rate v. The server provides
preliminary FES and may break down while serving customers. On successful
completion of FES, the customer may opt for SOS with probability α. When
the server fails while doing FES and SOS, it is sent to repair immediately. It
is supposed that the server lifetime follows an exponential law with rate γ > 0,
i.e., the server fails after an exponential time with γ−1. The customer who was
being served during the server failure chooses, with probability q, to enter the
orbit (impatient customer) and, with complementary probability p, to remain in
the server for repair in order to conclude his remaining service (patient customer).
Both service and repair times are assumed to have a general distribution. It is
natural to consider that the repair time of server during the presence of patient
customer and the repair time of the server while the customer (impatient customer)
joining the orbit due to failure, are different. Therefore, a patient customer will
receive the service first and in this case, the customer has a certain priority in
the service. However, an impatient customer can carry out other subsidiary tasks
during the repair time in order to exploit this period.

Let S1(x) (s1(x)) S̃1(θ) [S0
1(x)] be the cumulative distribution (probability den-

sity function) Laplace-Stieltjes transform (LST)[remaining service time] of FES.
R1(x) (r1(x)) R̃1(θ) [R0

1(x)] be the cumulative distribution (probability density
function) Laplace-Stieltjes transform (LST)[remaining repair time] of repair time
of the server during the presence of patient customer. R2(x) (r2(x)) R̃2(θ) [R0

2(x)]
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be the cumulative distribution (probability density function) Laplace-Stieltjes
transform (LST)[remaining repair time] of repair time of the server while the cus-
tomer (impatient customer) joining the orbit due to failure. S2(x) (s2(x)) S̃2(θ)
[S0

2(x)] be the cumulative distribution (probability density function) Laplace-
Stieltjes transform (LST)[remaining service time] of SOS. N(t) denotes number
of customers in the orbit at time t. The server state is denoted as,

C(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 if the server is idle

1 if the server is busy with FES

2 if the server is down with a customer in the server while

doing FES

3 if the server is down without a customer in the server while

doing FES

4 if the server is busy with SOS

5 if the server is down with a customer in the server while doing

SOS

6 if the server is down without a customer in the server while

doing SOS

The state of the system at time t can be described by the Markov process
K(t) = {(C(t), N(t), S0

1 (t), S0
2(t), R0

1(t), R
0
2(t)); t ≥ 0}. Now we define the following

state probabilities:

P0,n(t) = Pr{C(t) = 0; N(t) = n} n ≥ 0

P1,n(x, t)dx = Pr{C(t) = 1; N(t) = n; x < S0
1(t) ≤ x + dx} n ≥ 0, x ≥ 0

P2,n(x, y, t)dy = Pr{C(t) = 2; N(t) = n;
x = S0

1(t); y < R0
1(t) ≤ y + dy} n ≥ 0, x, y ≥ 0

P3,n(y, t)dy = Pr{C(t) = 3; N(t) = n; y < R0
2(t) ≤ y + dy} n ≥ 1, y ≥ 0

P4,n(x, t)dx = Pr{C(t) = 4; N(t) = n; x < S0
2(t) ≤ x + dx} n ≥ 0, x ≥ 0

P5,n(x, y, t)dy = Pr{C(t) = 5; N(t) = n;
x = S0

2(t); y < R0
1(t) ≤ y + dy} n ≥ 0, x, y ≥ 0

P6,n(y, t)dy = Pr{C(t) = 6; N(t) = n; y < R0
2(t) ≤ y + dy} n ≥ 1, y ≥ 0
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4. Steady state distribution of the queueing system

The following equations are obtained for the queueing system, using supplemen-
tary variable technique.

P0,j(t+Δt) = P0,j(t)(1 − λΔt − jvΔt)+P4,j(0, t)Δt+(1 − α)P1,j(0, t)Δt

+ (1 − δ0,j)(P3,j(0, t)Δt+P6,j(0, t)Δt) j ≥ 0

P1,j(x − Δt, t + Δt) = P1,j(x, t)(1 − λΔt − γΔt)

+ λΔt

j+1∑
k=1

gkP0,j−k+1(t)s1(x) + (j + 1)vP0,j+1(t)s1(x)Δt

+ λΔt

j∑
k=1

gkP1,j−k(x, t) + P2(x, 0, t)Δt j ≥ 0

P2,j(x, y − Δt, t + Δt) = P2,j(x, y, t)(1 − λΔt)

+ pγP1,j(x, t)r1(y)Δt + λΔt

j∑
k=1

gkP2,j−k(x, y, t) j ≥ 0

P3,j(y − Δt, t + Δt) = P3,j(1 − λΔt) + qγr2(y)
[∫ ∞

0

P1,j−1(x, t)dx

]
Δt

+ λΔt

j∑
k=1

gkP3,j−k(y, t) j ≥ 1

P4,j(x − Δt, t + Δt) = P4,j(x, t)(1 − λΔt − γΔt) + αP1,j(0, t)s2(x)Δt

+ λΔt

j∑
k=1

gkP4,j−k(x, t) + P5,j(x, 0, t)Δt j ≥ 0

P5,j(x, y − Δt, t + Δt) = P5,j(x, y, t)(1 − λΔt)

+ pγP4,j(x, t)r1(y)Δt

+ λΔt

j∑
k=1

gkP5,j−k(x, y, t) j ≥ 0

P6,j(y − Δt, t + Δt) = P6,j(1 − λΔt)

+ qγr2(y)
[∫ ∞

0

P4,j−1(x, t)dx

]
Δt

+ λΔt

j∑
k=1

gkP6,j−k(y, t) j ≥ 1
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where δa,b denotes Kronecker’s delta. To obtain the stationary distributions, let
the limiting state probabilities

P0,j = lim
t→∞P0,j(t); P1,j(x) = lim

t→∞ P1,j(x, t); P2,j(x, y) = lim
t→∞P2,j(x, y, t);

P3,j = lim
t→∞P3,j(y, t); P4,j(x) = lim

t→∞P4,j(x, t); P5,j(x, y) = lim
t→∞P5,j(x, y, t);

P6,j(y) = lim
t→∞P6,j(y, t).

As t → ∞, the steady state equations are obtained as difference-differential equa-
tions. In order to solve and to obtain the probability generating functions and
performance measures in steady state, we have used the Laplace transform and
then followed by z- transform.

The steady state equations of the above equations are obtained as follows:

(λ + jv)P0,j = P4,j(0) + (1 − α)P1,j(0) + (1 − δ0,j)(P3,j(0) + P6,j(0) (4.1)

− d
dx

P1,j(x) = −(λ + γ)P1,j(x) + λ

j+1∑
k=1

gkP0,j−k+1s1(x)

+ (j + 1)vP0,j+1s1(x) + λ

j∑
k=1

gkP1,j−k(x) + P2,j(x, 0) (4.2)

− ∂

∂y
P2,j(x, y) = −λP2,j(x, y) + γpP1,j(x)r1(y) + λ

j∑
k=1

gkP2,j−k(x, y) (4.3)

− d
dy

P3,j(y) = −λP3,j(y) + qγ

[∫ ∞

0

P1,j−1(x)dx

]
+ λ

j∑
k=1

gkP3,j(y) (4.4)

− d
dx

P4,j(x) = −(λ + γ)P4,j(x)+ αP1,j(0)s2(x) + λ

j∑
k=1

gkP4,j−k(x) + P5,j(x, 0)

(4.5)

− ∂

∂y
P5,j(x, y) = −λP5,j(x, y) + γpP4,j(x)r1(y) + λ

j∑
k=1

gkP5,j−k(x, y) (4.6)

− d
dy

P6,j(y) = −λP6,j(y) + qγ

[∫ ∞

0

P4,j−1(x)dx

]
r2(y) + λ

j∑
k=1

gkP6,j−k(y).

(4.7)

Let LST [Pi,j] = P̃i,j(θ); i = 1, 4; LST [LST [Pi,j(x, y)]] = ˜̃Pi,j(θ, s); i = 2, 5
LST [Pi,j(y) = ˜Pi,j(s)i = 3, 6,
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Taking LST on (2) with respect to remaining service time of FES, then the
equation (2) becomes,

θP̃1,j(θ) − P1,j(0) = (λ + γ)P̃i,j(θ) − λ

j+1∑
k=1

gkP0,j−k+1S̃1(θ)

− (j + 1)vP0,j+1S̃1(θ) − λ

j∑
k=1

gkP̃1,j−k(θ) − P̃2,j(θ, 0). (4.8)

Taking LST on (3), first with respect to remaining repair time of the server and
then with respect to remaining service time of FES, the equation (3) becomes,

s ˜̃P2,j(θ, s) − P̃2,j(θ, 0) = λ ˜̃P2,j(θ, s) − γpR̃1(s)P̃1,j(θ) − λ

j∑
k=1

gk
˜̃P2,j−k(θ, s).(4.9)

Taking LST on (4) with respect to remaining repair time of the server, then equa-
tion (4) becomes,

sP̃3,j(s) − P3,j(0) = λP̃3,j(s) − qγ

[∫ ∞

0

P1,j−1(x)dx

]
R̃2(s) − λ

j∑
k=1

gkP̃3,j−k(s).

(4.10)
Taking LST on (5) with respect to remaining service time of SOS, then equa-
tion (5) becomes,

θP̃4,j(θ) − P4,j(0) = (λ + γ)P̃4,j(θ) − αP1,j(0)S̃2(θ) − λ

j∑
k=1

gkP̃4,j−k(θ) − P̃5,j(0).

(4.11)
Taking LST on (6), first with respect to remaining repair time of the server and
then with respect to remaining service time of FES, the equation (6) becomes,

s ˜̃P5,j(θ, s)−P̃5,j(θ, 0) = λ ˜̃P5,j(θ, s)−γpR̃1(s)P̃4,j(θ)−λ

j∑
k=1

gk
˜̃P5,j−k(θ, s). (4.12)

Taking LST on (7) with respect to remaining repair time of the server, then
equation (7) becomes,

sP̃6,j(s) − P6,j(0) = λP̃6,j(s) − qγ

[∫ ∞

0

P4,j−1(x)dx

]
R̃2(s) − λ

j∑
k=1

gkP̃6,j−k(s).

(4.13)
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To resolve the equations (1) and (8)–(13), we introduce the following generating
functions,

P0(z) =
∞∑

j=0

P0,jz
j.

P̃1(z, θ) =
∞∑

j=0

P̃1,j(θ)zj ; P1(z, 0) =
∞∑

j=0

P1,j(0)zj

˜̃P2(z, θ, s) =
∞∑

j=0

˜̃P2,j(θ, s)zj ; P̃2(z, θ, 0) =
∞∑

j=0

P̃2,j(θ, 0)zj

P̃3(z, s) =
∞∑

j=1

P̃3,j(s)zj ; P3(z, 0) =
∞∑

j=1

P3,j(0)zj (4.14)

P̃4(z, θ) =
∞∑

j=0

P̃4,j(θ)zj ; P4(z, 0) =
∞∑

j=0

P4,j(0)zj

˜̃P5(z, θ, s) =
∞∑

j=0

˜̃P5,j(θ, s)zj ; P̃5(z, θ, 0) =
∞∑

j=0

P̃5,j(θ, 0)zj

P̃6(z, s) =
∞∑

j=1

P̃6,j(s)zj ; P6(z, 0) =
∞∑

j=1

P6,j(0)zj .

Using PGF, Equations (1) and (8)–(13) can be written follows,

λP0(z) + vzP ′
0(z) = (1 − α)P1(z, 0) + P3(z, 0) + P4(z, 0) + P6(z, 0) (4.15)

(θ − (λ + γ) + λX(z)) P̃1(z, θ) = P1(z, 0) − λ
X(z)

z
P0(z)S̃1(θ) (4.16)

−vP ′
0(z)S̃1(θ) − P̃2(z, θ, 0) (4.17)

(s − λ − λX(z)) ˜̃P2(z, θ, s) = P̃2(z, θ, 0) − pγP̃1(z, θ)R̃1(s) (4.18)

(s − λ + λX(z))P̃3(z, s) = P3(z, 0)− qγzR̃2(s)P̃1(z, 0) (4.19)

(θ − (λ + γ) + λX(z)) P̃4(z, θ) = P4(z, 0)− −αP1(z, 0)S̃2(θ) − P̃5(z, θ, 0) (4.20)

(s − λ − λX(z)) ˜̃P5(z, θ, s) = P̃5(z, θ, 0) − pγP̃4(z, θ)R̃1(s) (4.21)

(s − λ + λX(z))P̃6(z, s) = P6(z, 0) − qγzR̃2(s)P̃4(z, 0). (4.22)
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Substituting s = λ − λX(z) in (17), (18), (20) and (21), the equations become as
follows:

P̃2(z, θ, 0) = pγP̃1(z, θ)R̃1(λ − λX(z)) (4.23)

P3(z, 0) = qγzP̃1(z, 0)R̃2(λ − λX(z)) (4.24)

P̃5(z, θ, 0) = pγP̃4(z, θ)R̃1(λ − λX(z)) (4.25)

P6(z, 0) = qγzP̃4(z, 0)R̃2(λ − λX(z)). (4.26)

From equation (23), the equation (17) becomes,[
θ − (λ + γ) + λX(z) + γpR̃1(λ − λX(z))

]
P̃1(z, θ) =P1(z, 0) − vP ′

0(z)S̃1(θ)

− λ
X(z)

z
P0(z)S̃1(θ)·

(4.27)

From equation (24), the equation (19) becomes,[
θ − (λ + γ) + λX(z) + γpR̃1(λ − λX(z))

]
P̃4(z, θ) = P4(z, 0)− αP1(z, 0)S̃2(θ)

(4.28)
Substituting h(z) = θ = λ + γ − λX(z) − γpR̃1(λ − λX(z)) in (26) and (27), we
get,

P1(z, 0) = vP ′
0(z)S̃1(h(z)) + λ

X(z)
z

P0(z)S̃1(h(z)) (4.29)

P4(z, 0) = αP1(z, 0)S̃2(h(z)), (4.30)

and therefore,

P̃1(z, 0) =
(1 − S̃1(h(z)))

h(z)

(
λ

X(z)
z

P0(z) + vP ′
0(z)

)
(4.31)

P̃4(z, 0) =
α(1 − S̃2(h(z)))

h(z)

(
λ

X(z)
z

P0(z) + vP ′
0(z)

)
S̃1(h(z)), (4.32)

where h(z) satisfies the following properties:

(i) h(1) = qγ;

(ii) h′(1) = −λE(X)(1 + pγE[R1]).

From the equations (15), (23), (25), (28) and (29), we can obtain,

P0(z) = P0(1)exp
[
λ

v

∫ z

1

(
f1(u)
f2(u)

)
du

]
, (4.33)
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where

f1(u) = h(u) −
[

[αS̃2(h(u)) + (1 − α)]h(u)S̃1(h(u))
+qγuR̃2(λ − λX(u))[(1 − S̃1(h(u))[(1 − α) + αS̃2(h(u))]]

]
X(u)

u
,

f2(u) = qγuR̃2(λ − λX(u))[(1 − S̃1(h(u))[(1 − α) + αS̃2(h(u))]]
−h(u)(u − [αS̃2(h(u)) + (1 − α)]S̃1(h(u))).

From the equations (30) and (32), the marginal generating function of the orbit
size when the server is busy with FES is given by

P̃1(z, 0) =
λ(1 − X(z))(1 − S̃1(h(z)))P0(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.34)

Substituting the equations (22) and (33) in (17), the marginal generating function
of the orbit size when the server is down with a customer waiting in the server
while doing FES is given by

˜̃P2(z, 0, 0) =
pγ(1 − S̃1(h(z)))(1 − R̃1(λ − λX(z))P0(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] ·(4.35)

Substituting the equations (23) and (33) in (18), the marginal generating function
of the orbit size when the server is down without a customer waiting in the server
while doing FES is given by,

P̃3(z, 0) =
qγz(1 − S̃1(h(z)))(1 − R̃2(λ − λX(z))P0(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.36)

Substituting the equations (24) and (30) in (20), the marginal generating function
of the orbit size when the server is busy with SOS is given by

P̃4(z, 0)=
α(1 − S̃2(h(z)))S̃1(h(z))λ(1 − X(z))P0(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.37)

Substituting the equations (24) and (36) in (20), the marginal generating function
of the orbit size when the server is down with a customer waiting in the server
while doing SOS is given by

˜̃P5(z, 0, 0) =
pγ(1 − S̃2(h(z)))(1 − R̃1(λ − λX(z))αS̃1(h(z))P0(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] ·(4.38)
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Substituting the equations (25) and (36) in (21), the marginal generating function
of the orbit size when the server is down without a customer waiting in the server
while doing SOS is given by

P̃6(z, 0) =
qγz(1 − S̃2(h(z)))(1 − R̃2(λ − λX(z))αS̃1(h(z))P0(z)[
qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.39)

Theorem 4.1. In the steady state, the probability generating function P (z) of
number of customers in orbit and the probability generating function R(z) of the
system size at an arbitrary epoch is expressed as follows,

P (z) =
P0(z)(1 − z)

(
λ(1 − X(z)) + γp(1 − R̃1(λ − λX(z)))
+γqS̃1(h(z))[αS̃2(h(z)) + (1 − α)]

)
[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.40)

R(z) =
P0(z)(1 − z)S̃1(h(z))[αS̃2(h(z)) + (1 − α)]h(z)[

qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

] · (4.41)

Proof. The probability generating function of the orbit size and system size at an
arbitrary epoch are given by

P (z) = P0(z) + P̃1(z, 0) + ˜̃P2(z, 0, 0) + P̃3(z, 0) + P̃4(z, 0)

+ ˜̃P5(z, 0, 0) + P̃6(z, 0)

R(z) = P0(z) + zP̃1(z, 0) + z ˜̃P2(z, 0, 0) + P̃3(z, 0)

+ zP̃4(z, 0) + z ˜̃P5(z, 0, 0) + P̃6(z, 0).

Using the equations (33)–(38), the probability generating functions P (z) and R(z)
can be found. This completes the proof. �

Some interesting steady state probabilities are derived as follows:

(1) the probability that the server is idle is

P0(1) = 1 −
λE[X ]

(
1 + γ[pE[R1] + qE[R2]](1 − S̃1(qγ)[αS̃2(qγ) + (1 − α)]

)
qγS̃1(qγ)[αS̃2(qγ) + (1 − α)]

·
(4.42)

(2) the probability that the server is busy with FES is

P̃1(1, 0) =
λE[X ](1 − S̃1(qγ))

qγS̃1(qγ)[αS̃2(qγ) + (1 − α)]
· (4.43)
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(3) the probability that the server is down with a customer in the server

˜̃P2(1, 0, 0) =
λpE[X ]E[R1](1 − S̃1(qγ))
qS̃1(qγ)[αS̃2(qγ) + (1 − α)]

· (4.44)

(4) the probability that the server is down without a customer in the server is

P̃3(1, 0) =
λE[X ]E[R2](1 − S̃1(qγ))
S̃1(qγ)[αS̃2(qγ) + (1 − α)]

· (4.45)

(5) the probability that the server is busy with SOS is

P̃4(1, 0) =
αλE[X ](1 − S̃2(qγ))S̃1(qγ)
qγS̃1(qγ)[αS̃2(qγ) + (1 − α)]

· (4.46)

(6) the probability that the server is down with a customer in the server while
doing SOS is

˜̃P5(1, 0, 0) =
λpE[X ]E[R1]α(1 − S̃2(qγ))S̃1(qγ)

qS̃1(qγ)[αS̃2(qγ) + (1 − α)]
· (4.47)

(7) the probability that the server is down without a customer in the server while
doing SOS is,

P̃6(1, 0) =
λE[X ]E[R2]α(1 − S̃2(qγ))S̃1(qγ)

S̃1(qγ)[αS̃2(qγ) + (1 − α)]
· (4.48)

Theorem 4.2. If Tb and Tc be the length of busy period and busy cycle, then
under the steady state conditions, we have

E[Tb] =
exp

[
λ
v

∫ 1

0

(
f1(u)
f2(u)

)
du
]

g2
− 1

λ
(4.49)

and E[Tc] =
exp

[
λ
v

∫ 1

0

(
f1(u)
f2(u)

)
du
]

g2
· (4.50)

where

g2 = λ

(
1 − λE[X ](1 + γ[pE[R1] + qE[R2]](1 − S̃1(qγ))[αS̃2(qγ) + (1 − α)])

qγS̃1(qγ)[αS̃2(qγ) + (1 − α)]

)
·

Proof. By applying the argument of alternating renewal process, the results are
found directly from the well-known result.

E[Tb] =
1
λ

(
1
p0

− 1
)

E[Tc] = 1
λ

(
1
p0

)
·
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From the equation (23) substituting z =0,

p0 = λ

(
1 − λE[X ](1 + γ[pE[R1] + qE[R2]](1 − S̃1(qγ))[αS̃2(qγ) + (1 − α)])

qγS̃1(qγ)[αS̃2(qγ) + (1 − α)]

)

× exp
[
λ

v

∫ 1

0

(
f1(u)
f2(u)

)
du

]
· �

5. Reliability analysis

This section discusses some reliability indexes of the queueing system under
study, specifically the analysis of availability of the server, the failure frequency of
the server The server is available when it is either idle or working on a customer.
The following results concerning the availability of the server.

(1) From the equations (32), (33) and (36), the marginal generating function of
the orbit size when the server is available is given by

P0(z)+P̃2(z, 0) + P̃3(z, 0) =⎛
⎜⎝ [1−S̃1(h(z))((1−α)+αS̃2(h(z))][λ(1−X(z))+qγzR2(λ − λX(z))]

−h(z)[z−S̃1(h(z))[αS̃2(h(z))+(1 − α)]]

⎞
⎟⎠P0(z)

⎡
⎢⎣ qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α)+αS̃2(h(z))]]

−h(z)(z−[αS̃2(h(z))+(1 − α)]S̃1(h(z)))

⎤
⎥⎦

·

(5.1)

(2) Substituting z=1 in the equation (50), the probability that the server is avail-
able is

P0(1) + P̃1(1, 0) + P̃4(1, 0) =

1 − λE[X ](pE[R1] + qE[R2])(1 − S̃1(qγ))[αS̃2(qγ) + (1 − α)])
qS̃1(qγ)[αS̃2(qγ) + 1 − α]

· (5.2)

(3) The failure frequency of the server is

Wf =
∞∑

j=0

∫ ∞

0

γ(P1,j(x) + P4,j(x))dx = lim
z→1

γ[P̃1(z, 0) + P̃4(z, 0)]

=
λ(1 − S̃1(qγ))[αS̃2(qγ) + 1 − α]

qS̃1(qγ)[αS̃2(qγ) + 1 − α]
· (5.3)
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6. Performance characteristics

Some useful results of proposed model are listed below:

(a) The mean number of customers in the orbit LQ is derived using the equa-
tion (39)

LQ = lim
z→1

d
dz

P (z).

Using L’Hospital rule, we have,

LQ =
M4M1 − M3M2

2M2
1

.

where

M1 =(1 − S̃1(qγ)[αS̃2(qγ) + 1 − α]) (γ[pR11 + qR21]

+λE[X ]) − qγS̃1(qγ)[αS̃2(qγ) + 1 − α]

M2 = qγ
[
(R12 + 2R21)(1 − S̃1(qγ)[αS̃2(qγ) + 1 − α])

−2h′(1)
(
S11[αS̃2(qγ) + 1 − α] + αS21S̃1(qγ)

)
(1 + R21)

]
− h′(1)(1 − S̃1(qγ)[αS̃2(qγ) + 1 − α])

− 2h′(1)
[
1 + h(1)S11[αS̃2(qγ) + 1 − α] + h′(1)S̃1(qγ)S21α

]
M3 = − P0(1)qγS̃1(qγ)[αS̃2(qγ) + 1 − α];

M4 = − 2P ′
0(1)qγS̃1(qγ)[αS̃2(qγ) + 1 − α] + 2P0(1)(

λE(X) + γpR11 + γqh′(1)S11[αS̃2(qγ) + 1 − α] + γqh′(1)S21αS̃1(qγ)
)
·

(6.1)

R11 = λE[X ]E[R1]; R21 = λE[X ]E[R2];

R12 = λE[X2]E[R1] + λ2(E[X ])2E[R2
1];

R22 = λE[X2]E[R2] + λ2(E[X ])2E[R2
2];

S11 =
∫∞
0 te−qγts1(t)dt; S̃1(qγ) =

∫∞
0 e−qγts1(t)dt;

S21 =
∫∞
0

te−qγts2(t)dt; S̃2(qγ) =
∫∞
0

e−qγts2(t)dt;

P ′
0(1)=

λP0(1)

⎛
⎜⎜⎜⎜⎜⎝h′(1)−

⎡
⎢⎢⎢⎢⎢⎣

qγ[−h′(1)αS21]S̃1(qγ) + h′(1)S̃1(qγ)[αS̃2(qγ)+1 − α]

+qγ[−h′(1)S11[αS̃2(qγ)+1 − α]

+qγS̃1(qγ)[αS̃2(qγ)+1−α] + qγ(1−E[X ])

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

vM1
·
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(b) Mean waiting time in retrial queue:
Using Little’s formula, the mean waiting time in the retrial queue WQ is ob-
tained as,

WQ = E[W ] =
LQ

λE[X ]
· (6.2)

(c) The mean number of customers in the systems:

Ls = LQ +
λE[X ](1 + γ[pE[R1] + qE[R2]](1 − S̃1(qγ)[αS̃2(qγ) + 1 − α]

qγS̃1(qγ)[αS̃2(qγ) + 1 − α]
·

(6.3)
(d) Mean waiting time in the system

Ws =
Ls

λE[X ]
· (6.4)

7. Stochastic decomposition

This section investigates the stochastic decomposition law. First, we observe the
following relationship between generating functions

limv→∞ R(z) =
R∞(z) = P0(1)(1−z)S̃1(h(z))[αS̃2(h(z))+(1−α)]h(z)⎡

⎣ qγzR̃2(λ − λX(z))[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]
−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

⎤
⎦

where P0(1) = 1 − λE[X](1+γ[pE[R1]+qE[R2]](1−S̃1(qγ)[αS̃2(qγ)+(1−α)])
qγS̃1(qγ)[αS̃2(qγ)+(1−α)]

·

(7.1)

R∞(z) is the generating function of the stationary distribution of the number of
customers in the M [x]/G/1/∞ queueing system with active server breakdowns
and two types of repair time and second optional service. Therefore, when v → ∞
(high rate of retrials), our model behaves as a standard queueing system with
batch arrivals and server breakdowns which agrees the intuitive expectations.

This is to be noted that the generating function of the system size distribu-
tion can be written as R(z) = R∞(z)P0(z)

P0(1)
where the fraction corresponds to the

probability generating function to the system size given that the server is idle.
Indeed the above equality provides the stochastic decomposition property for our
queueing system in an immediate way. i.e., the number of customers in our system
is the sum of two independent random variables: one is the number of customers
in the corresponding standard system with batch arrivals and server breakdowns
and two phase service, and other is the number of repeated customers given that
the server is idle.
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8. Particular cases

Case I. In case, if there is no optional second phase of service and single type of
repair time and single arrival, then

(i) the PGF of distribution of number of customers in the orbit is

P (z) =

[
λ(1 − z) + γp(1 − R̃1(λ − λz) + γqS̃1(h(z))

]
P0(z)(1 − z)

qγzR̃1(λ − λz)(1 − S̃1(h(z))) − h(z)(z − S̃1(h(z)))
· (8.1)

Equation (58) agrees the PGF of the distribution of number of customers in the
orbit of M/G/1 retrial queue with active breakdowns and Bernoulli schedule in
the server obtained by Atencia et al.[7].

Case II. Single server batch arrival retrial queue with Exponential FES time
subject to breakdowns, two types of repair and second optional service

Assume that the service time is exponential with probability density function
s1(t) = μ1e−μ1t, where μ1 is the parameter. Hence the PGF of the orbit size is as
follows when S̃1(h(z)) = μ1

μ1+h(z) ;S̃2(h(z)) = μ2
μ2+h(z) ,

P (z) =

P0(z)(1 − z)

(
λ(1 − X(z)) + γp(1 − R̃1(λ − λX(z)))
+γq μ1

μ1+h(z) [α
μ2

μ2+h(z) + (1 − α)]

)
[

qγzR̃2(λ − λX(z))[(1 − μ1
μ1+h(z) [(1 − α) + α μ2

μ2+h(z) ]]

−h(z)(z − [α μ2
μ2+h(z) + (1 − α)] μ1

μ1+h(z) )

] · (8.2)

Case III. Single server batch arrival retrial queue with two types of k-Erlangian
repair time and second optional service.

It is assumed that the two repair times is an k-Erlang with probability
density function, ri(x) = (kui)

kxk−1e−kuix

(k−1)! ; i = 1, 2, k > 0; where ui is the
parameter. Hence the PGF of the retrial queue size distribution as follows when

R̃i(λ − λX(z)) =
(

uik
uik+λ(1−X(z))

)k

; i = 1, 2

P (z) =

P0(z)(1 − z)

⎛
⎝λ(1 − X(z)) + γp(1 −

(
u1k

u1k+λ(1−X(z))

)k

)

+γqS̃1(h(z))[αS̃2(h(z)) + (1 − α)]

⎞
⎠

⎡
⎣ qγz

(
u2k

u2k+λ(1−X(z))

)k

[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]

−h(z)(z − [αS̃2(h(z)) + (1 − α)]S̃1(h(z)))

⎤
⎦
· (8.3)

Case IV. Single server batch arrival retrial queue with two types of hyper Expo-
nential repair time and second optional service.



26 M. SENTHIL KUMAR AND R. ARUMUGANATHAN

Considering the case of Hyper Exponential repair time random variable, the pdf
of Hyper Exponential vacation time is given as follows, ri(x) = cu1,ie−u1,ix + (1−
c)u2,ie−u2,ix; i = 1, 2. Hence the PGF of the orbit size is given by,

P (z)=

P0(z)(1 − z)

(
λ(1 − X(z))+γp

(
1−
(

cu1,1
u1,1+λ(1−X(z)) +

(1−c)u2,1
u2,1+λ(1−X(z))

))
+γqS̃1(h(z))[αS̃2(h(z))+(1 − α)]

)
[
qγz

(
cu1,2

u1,2+λ(1−X(z)) + (1−c)u2,2
u2,2+λ(1−X(z))

)
[(1 − S̃1(h(z))[(1 − α) + αS̃2(h(z))]]

−h(z)(z−[αS̃2(h(z))+(1 − α)]S̃1(h(z)))

] ·

(8.4)

9. Numerical results

Consider a computer network which consists of a group of processors connected
with a central transmission unit (CTU). Typically, the messages arrive at CTU
following Poisson stream. If the transmission medium is available, the CTU imme-
diately sends a message; otherwise the message will be stored in a buffer (retrial
group) and the messages in CTU must retry for the transmission some time later.
CTU may well be subjected to lengthy and unpredictable breakdowns like sched-
uled backups and unpredictable failures, while transmitting the messages. If CTU
is subjected to unpredictable breakdowns (not so lengthy) while transmitting the
message, CTU gives the priority to transmit that message after being repaired
(type-I repair). In the case of lengthy breakdowns, the messages in buffer must
retry for the transmission some time later after being repaired (type-II repair).
The above situation can be modelled as a batch arrival single server retrial queue-
ing system with active breakdowns, two types of repair time and second optional
service. It is important to study the effect of Bernoulli schedule of the server p and
the effect of failure rate γ with mean orbit size LQ and mean waiting time of a
message in orbit WQ.

9.1. Effect of Bernoulli SOS probability α and the repair rate r1 on

mean orbit size

In Tables 1–3 for repair time parameters r2 = 10, the mean orbit size is com-
pared with varying values of the Bernoulli Schedule probability of the server α
and with varying repair rate r1 when second type of repair, Second type of Repair
and Second optional Service time distribution follow Exponential, Erlangian-2 and
Hyper-Exponential, respectively. It is observed that:

• the mean buffer size is increased if the Bernoulli schedule SOS probability α
increases.

• the mean buffer size is decreased if the repair rate r1 is increased.
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Table 1. Mean Orbit Size LQ versus Bernoulli SOS probability
α and first type of repair rate r1(both repair time and SOS time
follow Exponential with r2 = 10 and SOS rate s2 = 15).

α r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0 0.6767 0.6489 0.6351 0.6268 0.6213 0.6174 0.6145 0.6122 0.6104

0.1 0.6891 0.6613 0.6474 0.6392 0.6337 0.6298 0.6269 0.6246 0.6228

0.2 0.7008 0.6731 0.6593 0.6511 0.6456 0.6417 0.6388 0.6365 0.6347

0.3 0.7118 0.6843 0.6707 0.6625 0.6570 0.6532 0.6502 0.6479 0.6462

0.4 0.7221 0.6949 0.6814 0.6733 0.6679 0.6639 0.6611 0.6589 0.6571

0.5 0.7314 0.7047 0.6913 0.6833 0.6779 0.6742 0.6713 0.6691 0.6673

0.6 0.7398 0.7136 0.7005 0.6926 0.6874 0.6836 0.6808 0.6786 0.6769

0.7 0.7470 0.7216 0.7088 0.7011 0.6959 0.6923 0.6895 0.6874 0.6856

0.8 0.7530 0.7284 0.7160 0.7085 0.7035 0.6999 0.6973 0.6952 0.6935

0.9 0.7576 0.7341 0.7221 0.7149 0.7101 0.7066 0.7040 0.7019 0.7004

Table 2. Mean Orbit Size LQ versus Bernoulli SOS probability
α and first type of repair rate r1(both repair time and SOS time
follow Erlangian-2 with r2 = 10 and SOS rate s2 = 15).

α r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0 0.8181 0.7597 0.7319 0.7156 0.7049 0.6975 0.6919 0.6876 0.6841

0.1 0.8277 0.7702 0.7428 0.7268 0.7163 0.7089 0.7034 0.6991 0.6957

0.2 0.8357 0.7795 0.7526 0.7369 0.7266 0.7193 0.7139 0.7098 0.7064

0.3 0.8419 0.7873 0.7612 0.7458 0.7358 0.7287 0.7234 0.7193 0.7160

0.4 0.8463 0.7936 0.7682 0.7534 0.7436 0.7367 0.7316 0.7276 0.7245

0.5 0.8484 0.7980 0.7737 0.7594 0.7501 0.7434 0.7385 0.7346 0.7316

0.6 0.8481 0.8005 0.7774 0.7638 0.7549 0.7485 0.7438 0.7402 0.7373

0.7 0.8452 0.8008 0.7791 0.7664 0.7579 0.7519 0.7475 0.7440 0.7413

0.8 0.8392 0.7986 0.7787 0.7668 0.7589 0.7534 0.7493 0.7460 0.7435

0.9 0.8299 0.7938 0.7757 0.7649 0.7578 0.7527 0.7489 0.7459 0.7436

9.2. Effect of Bernoulli schedule probability p and the repair rate

r1 on mean orbit size

In Figures 1–2, for repair time parameters r2 = 10, the mean waiting time
of a packet in orbit is compared with varying values of the Bernoulli Schedule
probability of the server p and with varying repair rate r1 when First Type of
Repair, Second type of Repair and Second optional Service time distribution follow
Exponential, Erlangian-2 and Hyper-Exponential, respectively. It is observed that:

• the mean number of packets in buffer LQ is decreased if the repair rate r1

increases.
• the mean buffer size LQ is decreased if the Bernoulli schedule probability p is

increased.
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Figure 1. Mean Orbit Size vs Bernoulli Schedule probability p
if first type and second type of repair time and second optional
service time follow Exponential (r1 = 20; r2 = 10; s2 = 15).

9.3. Effect of Bernoulli schedule probability p and the repair rate

r1 on mean system size Ls

In Tables 4– 6, for second type of repair time with parameterr2 = 10, the mean
number of packets in system is compared with varying values of the first type of
repair timer1 and with varying Bernoulli SOS probability p when First Type of
Repair, Second type of Repair and Second optional Service time distribution follow
Exponential, Erlangian-2 and Hyper-Exponential, respectively. It is observed that:

• the mean number of packets in system LS decreases if the first type of repair
time r1 increases.

• the mean number of packets in system LS decreases if Bernoulli SOS probability
increases.
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Figure 2. Mean Orbit Size vs Bernoulli Schedule probability p
if first type and second type of repair time and second optional
service time follow Erlang-2 (r1 = 20; r2 = 10; s2 = 15).

9.4. Effect of Bernoulli SOS probability α and failure rate γ on

mean waiting time in orbit

In Figures 4–6, for repair time parametersr1 = 20 andr2 = 10, the mean waiting
time of a packet in orbit is compared with varying values of FES rate of the
server μ1 and with varying failure rate γ when First Type of Repair, Second type
of Repair and Second optional Service time distribution follow Exponential and
Hyper-Exponential, respectively. It is observed that:

• the waiting time of a packet in orbit is increased if the failure rate γ increases.
• the waiting time of a packet in orbit decreases if the FES rate is increased.
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Table 3. Mean Orbit Size LQ versus Bernoulli SOS probability
α and first type of repair rate r1(both repair time and SOS time
follow Hyper-Exponential distribution with r2 = 10 and SOS rate
s2 = 15).

α r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0 0.6382 0.6182 0.6084 0.6026 0.5987 0.5959 0.5939 0.5923 0.5911

0.1 0.6508 0.6307 0.6209 0.6150 0.6111 0.6084 0.6063 0.6047 0.6035

0.2 0.6629 0.6428 0.6329 0.6271 0.6232 0.6205 0.6184 0.6168 0.6155

0.3 0.6745 0.6545 0.6447 0.6388 0.6349 0.6322 0.6301 0.6285 0.6272

0.4 0.6855 0.6656 0.6559 0.6500 0.6462 0.6434 0.6414 0.6398 0.6385

0.5 0.6958 0.6762 0.6665 0.6607 0.6569 0.6542 0.6521 0.6506 0.6493

0.6 0.7055 0.6861 0.6766 0.6709 0.6671 0.6644 0.6624 0.6608 0.6595

0.7 0.7143 0.6953 0.6859 0.6803 0.6766 0.6739 0.6719 0.6704 0.6691

0.8 0.7222 0.7037 0.6945 0.6889 0.6853 0.6827 0.6808 0.6793 0.6781

0.9 0.7291 0.7111 0.7022 0.6968 0.6933 0.6907 0.6888 0.6873 0.6862

Table 4. Mean System Size LS versus Bernoulli probability p and
first type of repair rate r1(both repair time and SOS time follow
Exponential distribution with r2 = 10 and SOS rate s2 = 15).

p r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0.1 1.7560 1.7488 1.7452 1.7431 1.7417 1.7407 1.7399 1.7393 1.7388

0.2 1.7028 1.6899 1.6836 1.6798 1.6772 1.6754 1.6741 1.6731 1.6722

0.3 1.6383 1.6215 1.6132 1.6082 1.6049 1.6025 1.6008 1.5994 1.5983

0.4 1.5584 1.5396 1.5303 1.5248 1.5211 1.5185 1.5165 1.5149 1.5138

0.5 1.456 1.4376 1.4285 1.4231 1.4195 1.4169 1.4149 1.4135 1.4123

0.6 1.3164 1.3017 1.2944 1.2901 1.2872 1.2852 1.2836 1.2824 1.2815

0.7 1.1059 1.1000 1.0971 1.0954 1.0943 1.0935 1.0929 1.0924 1.0921

Table 5. Mean System Size LS versus Bernoulli probability p and
first type of repair rate r1(both repair time and SOS time follow
Erlangian-2 distribution with r2 = 10 and SOS rate s2 = 15).

p r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0.1 1.7645 1.7499 1.7432 1.7393 1.7368 1.7349 1.7337 1.7327 1.7319

0.2 1.7299 1.7039 1.6918 1.6848 1.6802 1.6771 1.6747 1.6729 1.6715

0.3 1.6790 1.6450 1.6292 1.6199 1.6140 1.6099 1.6068 1.6044 1.6025

0.4 1.6074 1.5693 1.5515 1.5412 1.5345 1.5298 1.5263 1.5236 1.5215

0.5 1.5065 1.4690 1.4515 1.4414 1.4349 1.4303 1.4269 1.4243 1.4222

0.6 1.3597 1.3291 1.3149 1.3069 1.3017 1.2979 1.2953 1.2932 1.2916

0.7 1.1277 1.1138 1.1079 1.1048 1.1029 1.1016 1.1007 1.0999 1.0994
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Table 6. Mean System Size LS versus Bernoulli probability p
and first type of repair rate r1(both repair time and SOS time
follow Hyper-Exponential distribution with r2 = 10 and SOS rate
s2 = 15).

p r1 = 20 r1 = 30 r1 = 40 r1 = 50 r1 = 60 r1 = 70 r1 = 80 r1 = 90 r1 = 100

0.1 1.7540 1.7488 1.7462 1.7446 1.7437 1.7429 1.7424 1.7420 1.7417

0.2 1.6952 1.6859 1.6813 1.6786 1.6768 1.6755 1.6746 1.6738 1.6732

0.3 1.6265 1.6143 1.6084 1.6048 1.6025 1.6008 1.5996 1.5986 1.5978

0.4 1.5441 1.5305 1.5239 1.5199 1.5173 1.5155 1.5141 1.5130 1.5121

0.5 1.4411 1.4279 1.4214 1.4176 1.4150 1.4132 1.4119 1.4108 1.4099

0.6 1.3039 1.2933 1.2881 1.2850 1.2830 1.2816 1.2805 1.2797 1.2789

0.7 1.0999 1.0958 1.0938 1.0926 1.0919 1.0913 1.0909 1.0906 1.0904

10. Conclusion

This paper concerns about stability analysis and reliability analysis of the single
server batch arrival retrial queue with active breakdowns, second optional service
and impatient behaviour. The impatient behaviour of customer during the failure
of the server leads to many possible research directions in which the customer
allowed to be waited at the service point during breakdowns if the repair time
is expected to be short. Such system increases efficiency in such a way that the
waiting customer is able to perform useful work during the server repair time.
For such systems, numerical illustrations are clearly carried out to illustrate the
influence of various system parameters on important performance measures. Some
interesting particular cases are also discussed. A natural extension of the foregoing
model consists in considering general inter-retrial times and breakdowns indepen-
dently of the server state. It would be very interesting to examine the discrete time
counterpart of our continuous time queueing system, due to the usefulness of the
discrete time queueing theory to model many practical problems.

Acknowledgements. The authors would like to thank to the anonymous referees for their
constructive comments to improve the quality of the paper.

References

[1] A. Aissani, Unreliable queueing with repeated orders. Microelectr. Reliab. 33 (1993) 2093–
2106.

[2] A. Aissani, A retrial queue with redundancy and unreliable server. Queueing Syst. 17 (1994)
431–449.

[3] A. Aissani and J. Artalejo, On the single server retrial queue subject to breakdowns. Queue-
ing Syst. 30 (1998) 309–321.

[4] J.R. Artalejo, Accessible bibliography on retrial queues. Math. Comput. Model. 30 (1999a)
1–6.

[5] J.R. Artalejo, A classified bibliography of research on retrial queues: progress in 1990-1999
Top 7 (1999b) 187–211.



32 M. SENTHIL KUMAR AND R. ARUMUGANATHAN

[6] J.R. Artalejo and G. Choudhury, Steady state analysis of an M/G/1 queue with repeated
attempts and two phase service. Quality Technol. Quantitat. Manag. 1 (2004) 189–199.

[7] I. Atencia, I. Fortes, P. Morena and S. Sanchez, An M/G/1 retrial queue with active break-
downs and Bernoulli schedule in the server. Informat. Manag. Sci. 17 (2006) 1–17.

[8] I. Atencia, G. Bouza and P. Morena, An retrial queue with server breakdowns and constant
rate of repeated attempts. Annal. Operat. Res. 157 (2008) 225–243.

[9] I. Atencia and P. Moreno, A single server retrial queue with general retrial times and
Bernoulli Schedule. Appl. Math. Comput. 162 (2005) 855–880.

[10] B. Avi-Itzhak and P.P. Naor, Some queueing problems with the service station subject to
breakdown. Operat. Res. 11 (1963) 303–320.

[11] G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service.
Top 11 (2003) 141–150.

[12] G. Choudhury and Kailash Madan, A batch arrival Bernoulli Vacation queue with a random
setup time under restricted admissibility policy. Int. J. Oper. Res. 2 (2007) 81–97.

[13] G. Choudhury and D. Kandarpa, An M/G/1 retrial queue with two phases of service subject
to the server breakdowns and repair. Performance Evaluation 65 (2008) 714–724.

[14] G.I. Falin, Aggregate arrival of customers in one line queue with repeated calls. Ukrainian
Math J. 28 (1976) 437–440.

[15] G.I. Falin, A survey of retrial queues. Queueing Syst. 7 (1990) 127–168.
[16] G.I. Falin and J.G.C. Templeton, Retrial Queues. Chapman and Hall, London (1997).
[17] J.C. Ke., Batch Arrival queues under vacation policies with server breakdowns and start-up

/close-down times. Appl. Math. Model. 31 (2007) 1282–1292.
[18] J.C. Ke. An Mx/G/1 system with second optional service and J additional options for

Service. Appl. Math. Model. 32 (2008) 443–458.
[19] B. Krishnakumar, A. Vijayakumar and D. Arivudainambi, An M/G/1 retrial queueing sys-

tem with two-phase service and preemptive resume. Annal. Operat. Res. 113 (2002) 61–79.
[20] B. Krishnakumar, S. Pavai Madheswari and A. Vijayakumar, The M/G/1 retrial queue with

feedback and starting failures. Appl. Math. Model. 26 (2002) 1057–1076.
[21] H. Li and Y.Q. Zhao, A retrial queue with constant retrial rate, server downs and impatient

customers. Stoch. Models 21 (2005) 531–550.
[22] K.C. Madan, An M/G/1 queue with second optional service. Queueing Syst. 34 (2000)

37–46.
[23] J. Medhi, A single server Poisson input queue with a second optional channel. Queueing

Syst. 42 (2002) 239–242.
[24] M. Senthil Kumar and R. Arumuganathan, On the single server Batch Arrival Retrial Queue

with General vacation Time under Bernoulli schedule and two phases of Heterogeneous
service. Quality Technol. Quantit. Manag. 5 (2008) 145–160.

[25] M. Senthil Kumar and R. Arumuganathan, An MX/G/1 retrial queue with two-phase ser-
vice subject to active server breakdowns and two types of repair. Int. J. Oper. Res. 8 (2010)
261–291.

[26] M. Senthil Kumar, A discrete-time Geo[X]/G/1 retrial queue with general retrial time and
M-additional options for service. RAIRO Operat. Res. 45 (2011) 131–152.

[27] Y.H. Tang, A single server M/G/1 queueing system subject to breakdowns. Some reliability
and queueing problems. Microelectr. Reliab. 37 (1997) 315–321.

[28] J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns
and repairs. Queueing Syst. 38 (2001) 363–380.

[29] J. Wang and J. Li, A Repairable M/G/1 retrial queue with Bernoulli vacation and Two
Phase service. Quality Technol. Quantit. Manag. 5 (2008) 179–192.

[30] Wu Xiaoyong, Brill Percy, Hlynka Myron and Wang Jinting, An M/G/1 retrial queue with
balking and retrials during service. Int. J. Oper. Res. 1 (2005) 30–57.

[31] T. Yang and H. Li, The M/G/1 retrial queue with the server subject to starting failures.

Queueing Syst. 16 (1994) 83–96.
[32] D. Yue and J. Cao, Reliability analysis of a Mx

1 , Mx
2 /G1, G2/1 queueing system with a

repairable service station. Microelect. Reliab. 37 (1997) 1225–1231.


	Introduction
	Literature survey
	Model description
	Steady state distribution of the queueing system
	Reliability analysis
	Performance characteristics
	Stochastic decomposition
	Particular cases
	Numerical results
	Effect of Bernoulli SOS probability  and the repair rate r1 on mean orbit size
	Effect of Bernoulli schedule probability p and the repair rate r1 on mean orbit size
	Effect of Bernoulli schedule probability p and the repair rate r1 on mean system size Ls
	Effect of Bernoulli SOS probability  and failure rate  on mean waiting time in orbit

	Conclusion
	References

