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INTERACTIVE COMPROMISE HYPERSPHERE METHOD
AND ITS APPLICATIONS

Sebastian Sitarz
1

Abstract. The paper focuses on multi-criteria problems. It presents
the interactive compromise hypersphere method with sensitivity anal-
ysis as a decision tool in multi-objective programming problems. The
method is based on finding a hypersphere (in the criteria space) which is
closest to the set of chosen nondominated solutions. The proposed mod-
ifications of the compromise hypersphere method are based on using
various metrics and analyzing their influence on the original method.
Applications of the proposed method are presented in four multi-criteria
problems: the assignment problem, the knapsack problem, the project
management problem and the manufacturing problem.

Keywords. Multi-criteria problems, multiple objective linear
programming, sensitivity analysis, decision making, compromise
programming.
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1. Introduction

The aim of this paper is to present a method of ranking the nondominated so-
lutions in multiple objective linear programming problems. The main idea of the
proposed method comes from the work of Gass and Roy [14]. In their work only one
metric is used to generate ranking by compromise hypersphere. We propose to use
various metrics and analyze their influence on the original method. Moreover, we
present the interactive version of the method to include the decision maker’s pref-
erences. The motivation to study various metrics is to show the decision maker’s
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risk aversion by means of the chosen metric. The presented analysis will provide
us with remarks how to choose the proper metric.

The paper consists of the following sections. Section 2 presents multi-objective
linear programming (MOLP) problem and description of the method by using
various metrics. Section 3 gives the properties of the proposed method. Section 4
proposes a new interactive multicriteria method – the ICOH method with sensi-
tivity analysis. Section 5 presents applications of the ICOH method. The paper is
summarized in the final section 6.

Other works considering the problem of metrics in compromise programming are
also worth mentioning. In this article we consider various metrics in compromise
approach, similarly to [2]. In work [2] Ballestero studies the problem of selection
of the compromise programming metric in the view of risk aversion and obtains
a reliable specification of the metric defining the compromise distance. Similar
problem of choosing a metric (a norm) in compromise programming was considered
in work [5] by Carrizosa et al. which considers so called AS norms in the ideal-point
methods.

2. Compromise hypersphere method

2.1. Multi-objective problems

We consider the following (MOP) multi-objective programming problem:

v max{Cx : x ∈ X} (2.1)

where X ⊂ RN is a feasible region, C ∈ Rk×N is a matrix of objective function
coefficients.

We call y∗ ∈ Rk a nondominated solution of problem (2.1) if there is x∗ ∈ X
such that

y∗ = Cx*

and there is no x′ ∈ X such that

Cx* ≤ Cx′ ∧Cx* �= Cx′.

We obtain the MOLP (multi-objective linear programming) problem by using the
following set of feasible region:

X = {x ∈ RN : Ax ≤ b,x ≥ 0}

where A ∈ Rm×N is a matrix of constraint coefficients and b ∈ Rm is a right
hand side vector.

We call y∗ ∈ Rk a nondominated extreme solution of MOLP if y* is an non-
dominated solution and y* is an extreme point of set Y = C(X).
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2.2. Description of the method

The method consists of three steps. The general description of the presented
steps is as follows. Step 1 presents an initial problem of decision making – finding
a set of nondominated solutions. This problem in MOLP was analyzed very often
for example in [30, 37, 38]. In step 2 we look for a hypersphere which we call a
compromise hypersphere. In this case the word compromise means a surface of
compromise over the values of nondominated extreme solutions. Thus, we look for
the points which are closest to this surface. It means that the point closest to this
surface is the best compromise solution. In step 3 we built ranking of points by
using distance to the compromise hypersphere.

The aim of the presented method is to rank the nondominated solutions of
problem (2.1). In detail, the method looks as follows:

Step 1. Determine a finite set of nondominated solutions of problem (2.1) (in
MOLP: nondominated extreme solutions). We will denote these nondominated
solutions as: y1, y2, . . . , yn.

Step 2. Find a hypersphere with the centre y0 ∈ Rk and radius r0 ∈ R by
solving the program

min
y0,r0

lnq
(
[r0, . . . , r0] ,

[
lkp(y1,y0), . . . , lkp(yn,y0)

])
(2.2)

where
p, q ∈[1, ∞] are parameters
lnq and lkp are functions belonging to the family of metrics lsr : Rs × Rs → R

with the following form:

lsr(a,b) =

⎧⎪⎨
⎪⎩

r

√
s∑

i=1

|ai − bi|r, r ∈ [1,∞)

maxi=1,...,s |ai − bi| , r = ∞.

We will denote the optimal solution of (2.2) as y0
p,q

, r0
p,q and the minimal value

of the cost function as min(2.2)p,q. Moreover, wherever it does not cause notion
misunderstanding, we will omit indices p, q i.e. y0, r0 and min(2.2).

Step 3. Find the ranking of the points y1, y2, . . . , yn based on the distance
from the previously found hypersphere in step (2.2), using values∣∣r0 − lkp(yi,y0)

∣∣ .
We will particularly look for the point yi closest to the hypersphere:

min
i

∣∣r0 − lkp(yi,y0)
∣∣ . (2.3)

We will denote the optimal solution of (2.3) as i, the optimal extreme point as yi,
and the minimal value of the cost function as min(2.3).
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2.3. Numerical example

Let us consider the example from the work of Gass and Roy (example 4, [14]),
where the problem of MOLP has the following form:

v max[x1, x2]
x1 + x2 ≤ 8

2x1 + x2 ≤ 12

x1 + 2x2 ≤ 14
9x1 + 7x2 ≤ 63

−4x1 + 10x2 ≤ 61
2x1 − x2 ≤ 8

14x1 + 3x2 ≤ 72
x1, x2 ≥ 0. (2.4)

We will conduct the method described in Section 2.2.
Step 1. The nondominated extreme points have the following form:

y1 = (4.8, 1.6),y2 = (4.5, 3.0),y3 = (4.2, 3.6),y4 = (3.5, 4.5),y5

= (2.0, 6.0),y6 = (1.0, 6.5).

Step 2. Generally, problem (2.2) is a nonconvex problem with a lot of local
optima. In order to solve this problem, genetic algorithms are used. We do not
discuss computational analysis of such problems in this paper, however it is an
interesting issue which needs further research (a separate paper). Let us discuss
the case when p = 1, 2, ∞ and q = ∞. The optimal values of the objective function
of the problem (2.2) are as follows:

min(2.2)1,∞ = 0.25, min(2.2)2,∞ = 0.0516, min(2.2)∞,∞ = 0.65.

Step 3. On the basis of the distance to the previously found hypersphere we obtain
rankings presented in Table 1. Some values of the parameter p generate more
than one ranking, which is the consequence of the alternative optimal solutions of
problem (2.2).

3. Properties of the compromise hypersphere method

We present the properties of the proposed method to highlight the modifica-
tions and improvements proposed to the original algorithm by Gass and Roy [14].
Generally, Step 1 is the same like in the original algorithm, but Steps 2 and 3 are
different by opportunity of choosing the metrics.
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Table 1. Rankings obtained in example 5.1 for p = 1, 2, ∞ and q = ∞.

p = 1 p = 2 p = ∞
1. y1, y3 1. y3 1. y6 1. y3 1. y5

2. y2, y4, y5, y6 2. y1, y6 2. y3 2. y5 2. y3

3. y2, y4, y5 3. y5 3. y6 3. y2

4. y4 4. y2 4. y6

5. y1 5. y1, y4 5. y1, y4

6. y2

3.1. Properties of Step 1

Remark 3.1. The nondominated extreme solutions in MOLP problem may be
generated with the help of some algorithms. One of them is the ADBASE method
proposed by Steuer [30] – it uses the simplex tableaus analysis. Evans and Steuer
in [9] propose a method by using a revised simplex method. Yu and Zeleny in [37]
generate the entire set of all nondominated solutions through the set of all non-
dominated extreme points. Ehrgott in [7] presents the parametric programming
procedure in the case of two objective functions.

Remark 3.2. It is possible to consider any finite subset of the nondominated
solutions preferred by the decision maker.

3.2. Properties of Step 2

Remark 3.3. It is worth noticing that the idea of considering problem (2.2) comes
from the general approach to the compromise methods – the compromise solutions,
see for example: [34, 38, 39].

Before we present next remarks for problem (2.2), let us look at the following
theorem, which is important for the interpretation of problem (2.2).

Theorem 3.4. The distance of the point yi from the hypersphere H with the
centre in y0 and the radius r0 is described with the formula:

inf{lkp(yi,y) : y ∈ H} =
∣∣r0 − lkp(yi,y0)

∣∣ .
Proof. [1.]
We will use the fact that the metric lkp generates the norm:

‖z − w‖k
p = lkp(z,w).

1.2. Let us take y∗ ∈ H , which lies on the line generated by y0 and yi. Thus, the
points y∗, y0, yi are collinear, which means that we get the equation in the
triangular condition:∥∥y0 − yi

∥∥k

p
=

∥∥y0 − y∗∥∥k

p
+

∥∥y∗ − yi
∥∥k

p
(3.1)



240 S. SITARZ

or ∥∥y0 − y∗∥∥k

p
=

∥∥y0 − yi
∥∥k

p
+

∥∥yi − y∗∥∥k

p
. (3.2)

3. Let us consider two cases: 3a and 3b.
3a. The point yi lies outside or on the hypersphere, that is lkp

(
y0,yi

) ≥ r0,
then using (3.1) we get:∥∥y∗ − yi

∥∥k

p
=

∥∥y0 − yi
∥∥k

p
− r0.

It means that
lkp(yi,y∗) =

∣∣r0 − lkp(yi,y0)
∣∣ .

Moreover, we have

lkp(yi,y0) ≤ lkp(yi,y) + lkp(y,y0)

r0 + lkp(yi,y∗) ≤ lkp(yi,y) + r0

lkp(yi,y∗) ≤ lkp(yi,y).

3b. The point yi lies inside the hypersphere, that is lkp(yi,y0) < r0, then
using (3.2) we get: ∥∥y∗ − yi

∥∥k

p
= r0 −

∥∥y0 − yi
∥∥k

p
.

It means that:
lkp(yi,y∗) =

∣∣r0 − lkp(yi,y0)
∣∣ .

Moreover, we have

lkp(yi,y0) + lkp(yi,y∗) = r0 = lkp(y,y0) ≤ lkp(yi,y0) + lkp(yi,y)

hence
lkp(yi,y∗) ≤ lkp(yi,y).

4. The points 2–3 give us the following conclusion:

inf{lkp(yi,y) : y ∈ H} =
∣∣r0 − lkp(yi,y0)

∣∣ . �

Remark 3.5. The interpretation of problem (2.2) looks as follows: we look for
the hypersphere which minimizes the distances from all the points in the sense of
the given metrics lnq and lkp .

Remark 3.5 is based on the following facts:
The distances of the points y1, y2, . . . , yn from the hypersphere with the centre

in y0 and the radius r0 are described with the following formula (using Thm. 1)∣∣r0 − lkp(y1,y0)
∣∣ , . . . ,

∣∣r0 − lkp(yn,y0)
∣∣ .

If we want to minimize all the above values, then we get the multi-objective prob-
lem:

v min
y0,r0

∣∣r0 − lkp(y1,y0)
∣∣ , . . . , ∣∣r0 − lkp(yn,y0)

∣∣ . (3.3)
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The ideal point in the criteria space of the problem (3.3) is (0, . . . ,0) ∈ Rn. Thus,
using the metric lnq we obtain the compromise program for (3.3) in the following
form:

min
y0,r0

lnq ((0, . . . , 0), (
∣∣r0 − lkp(y1,y0)

∣∣ , . . . , ∣∣r0 − lkp(yn,y0)
∣∣). (3.4)

It is obvious that (3.4) is equivalent to the problem (2.2):

min
y0,r0

lnq ((r0, . . . , r0), (lkp(y1,y0), . . . , lkp(yn,y0)).

Remark 3.6. It is worth mentioning that in special cases problem (2.2) is con-
sidered. For example Anthony et al. [1] and Butler et al. [4] analyze problem (2.2)
with p = 2 and q = ∞. Whereas, an approximation of problem (2.2) with p = 2 and
q = ∞ is considered by Gass and Roy in [14]. The quality of this approximation
may be found in [15].

3.3. Properties of step 3

Remark 3.7. The problem in step 3 is trivial, it means the review of n numbers:

∣∣r0 − lkp(yi,y0)
∣∣ i = 1, 2, . . . , n

and their array from the smallest up. The minimal value relates to the compromise
solution yi. Moreover, the ranged numbers have been used in step 2.

Remark 3.8. By omitting the module in the values
∣∣r0 − lkp(yi,y0)

∣∣, that is con-
sidering the values:

r0 − lkp(yi,y0)

we get the following interpretation of these values:

– a negative value means that the point yi lies outside the hypersphere;
– a positive value means that the point yi lies inside the hypersphere;
– a value which equals zero means that the point yi lies on the hypersphere.

4. Interactive compromise hypersphere method – ICOH

method

We are going to present a new multicriteria method – the ICOH method. This
method is based on the compromise hypersphere method. We modify the initial
method by including the decision maker’s preferences concerning the risk aversion.
In our model the risk aversion is represented by choosing the metric.
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4.1. Choice of the parameter p

Let us notice that the choice of parameter p generates the shape of the hyper-
sphere (when p = 2 it is a k-dimensional ball, for special case k = 2 we get a
circle). Our aim is to place the hypersphere closest to the points y1, y2, . . . , yn.
Our modification allows us to review the parameters p in order to choose the one
which generates the closest hypersphere.

Let us assume that the parameters p and q have been given. Moreover, the
optimal solution with the optimal value of the cost function has been found:

y0
p,q

, r0
p,qmin(2.2)p,q.

Together with the given parameter q∗, value min(2.2)p,q∗ is shown by the compro-
mise distance of the points y1, y2, . . . , yn from the hypersphere depending on p.
The natural consequence is to choose pwhich minimizes the above value, that is:

min
p

min(2.2)p,q∗
. (4.1)

Problem (4.1) aims to match the shape of the compromise hypersphere with the
position of the given points y1, y2, . . . , yn. By using the case of two objectives
(k = 2) we present the illustration of this idea in Figure 1. In this figure the points
lie close to the square, it means that p close to ∞ would be the best choice.

Remark 4.1. Using problem (4.1) leads directly to the choice of optimal value of
parameter p, without the interference of the decision maker. On the other hand,
the decision maker wants to find the best compromise solution, so we generate
the best compromise value of parameter p. Therefore, we set parameter p as an
optimal solution of problem (4.1), in that way we place the hypersphere closest to
the nondominated solutions.

4.2. Choice of the parameter q

In our approach the parameter q represents the way of choosing the distance in
the compromise programming. Thus, this parameter is important and has influence
on the final solution. On the other hand we can look at the problem of choosing
the parameterq analogically to the subsection 4.1. In this case, the choice of the
parameter q is based on the following problem :

min
q

min(2.2)p∗,q
. (4.2)

Such a method leads directly to the choice q = ∞, which is shown in the following
proposition.
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Figure 1. The comparison of the compromise hyperspheres with
p = 1, p = 2 and p = ∞ in the case of two objectives.

Proposition 4.2. If p∗ ∈ [1,∞], then

min
q

min(2.2)p∗,q = min(2.2)p∗,∞

Proof. 1. We will use the following fact for a family of metrics lsr.
For all s ∈ [1,∞] and z, w∈ Rs we have:

1 ≤ r ≤ t ≤ ∞ ⇒, lsr(z,w) ≥ lst (z,w).

2. Let y0
p∗,q

, r0
p∗,q be the optimal solution of (2.2) with q ∈ [1,∞], that is:

min(2.2)p∗,q = lnq

(
(r0

p∗,q, . . . , r0
p∗,q),

(
lkp∗

(
y1,y0

p∗,q
)

, . . . , lkp∗
(
yn,y0

p∗,q
)))

.

3. Using points 1−2, we have for all q ∈ [1,∞]:

min(2.2)p∗,q ≥ ln∞
(
(r0

p∗,q, . . . , r0
p∗,q),

(
lkp∗

(
y1,y0

p∗,q
)

, . . . , lkp∗
(
yn,y0

p∗,q
)))

.
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4. It is obvious that

ln∞
(
(r0

p∗,q, . . . , r0
p∗,q),

(
lkp∗

(
y1,y0

p∗,q
)

, . . . , lkp∗
(
yn,y0

p∗,q
)))

≥ min(2.2)p∗,∞
.

5. From the points 2−4 follows the fact that for all q ∈ [1,∞] we have:

min(2.2)p∗,q ≥ min(2.2)p∗,∞

thus
min

q
min(2.2)p∗,q = min(2.2)p∗,∞

. �

4.3. Risk aversion measure

Proposition 1. leads directly to the choice q = ∞, but assuming that q = ∞ at
once narrows the compromise method because the choice of q is an arbitrary case,
similarly as in the ordinary compromise programming. The choice of the metric
(the value of q) should go along with some preferences of the decision maker, which
is described by Ballestero in [2] who concludes his works by sentence: “the greater
risk aversion the greater q-metric to use. Metric q = ∞ corresponds to extremely
high risk aversion”. Thus the preferences of the decision maker can be incorporated
in the presented method by choosing the parameter q – representation of the risk
aversion.

By using the above theory, we can formulate the following comments to setting
parameter q:

– q =1 corresponds to extremely low risk aversion;
– q = ∞ corresponds to extremely high risk aversion;
– q ∈(1, ∞) corresponds to risk aversion between low and high.

The above scale, [1, ∞], can be hard to use in practice. Thus, we propose to
transform interval [1, ∞] to interval [0, 1] by a given bijection f , for example by
f(q) = (2/π) arctan(q−1) After using such a transformation f , the decision maker
gives a value from interval [0, 1] to describe his risk aversion in the following way:

– f(q) = 0 corresponds to extremely low risk aversion;
– f(q) = 1 corresponds to extremely high risk aversion;
– f(q) ∈ (0, 1) corresponds to risk aversion between low and high.

4.4. Sensitivity analysis

Sensitivity analysis in MOLP problems is considered in many works. Gal and
Wolf in [10] give a survey of the literature focusing on this problem. Hansen
et al. [17] and Hladik [18] present sensitivity analysis by means of a tolerance
approach. Sitarz ([23, 25]) presents the standard sensitivity approach in MOLP
and in [28] presents volume-based sensitivity analysis. Moreover, sensitivity anal-
ysis of weak efficiency is given in [27].
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Here, we are going to use the following approach to sensitivity analysis: as
decision maker chooses parameter q∗ he or she wants to know for which values of q
the obtained solution is still the compromise solution. Thus, we proceed sensitivity
analysis of the compromise solution by means of the values of q. In other words
we solve problem (2.2) with the given parameter p∗ and parameters q from the
neighborhood of the given parameter q∗ and check if a given compromise solution
is optimal for (2.2). In order to solve this problem, simulation techniques are used.
These methods consists of review parameters q and solve problem (2.2) with p*
and chosen q.

The similar procedure of sensitivity analysis is used also for parameter p∗. It
means that we solve problem (2.2) with the given parameter q∗ and parameters p
from the neighborhood of the given parameter p∗ and check if a given compromise
solution is still optimal for problem (2.2).

4.5. ICOH method

On the basis of the previous sections we can formulate interactive compromise
hypersphere (ICOH) method. The ICOH method consist of the following steps:

ICOH 1. Decision maker chooses the finite set of nondominated solutions for the
given multi-objective problem (MOP).

ICOH 2. Decision maker chooses the parameter q as the representation of his
risk aversion following the rule: the greater risk aversion the greater q.
We obtain parameter q∗ (see Sect. 4.3).

ICOH 3. Solve problem (4.1) with fixed parameter q∗ and some parameters p
and obtain parameter p∗ (see Sect. 4.1). We propose to review three
most popular parameters p = 1, 2, ∞.

ICOH 4. Choose the compromise solution yi for compromise hypersphere
method with p∗, q∗ (see Sect. 2.2)

ICOH 5. Sensitivity analysis of the found compromise solution by means of
changing parameters q and p (see Sect. 4.4).

5. Applications and numerical examples of ICOH method

5.1. Assignment problem

We consider the multi-criteria assignment problem. In this problem we have a
number of persons and a number of activities. Any person can be assigned to any
activity, incurring some criteria (for example cost, time, distance). It is required to
perform all activities by assigning exactly one person to each activity in such a way
that the criteria are minimized. Methods of computing the nondominated solutions
of the problem are considered in many papers, see for example: [31,33,35]. Let us
consider a bi-criteria example from work by White [35]. To make this example more
interesting, we extend it by adding one person and one activity. The considered
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multi-objective programming problem has the following form:

v min

⎡
⎢⎣

3x11 + 2x12 + x13 + 2x21 + 3x22 + 100x23

+x24 + x31 + 100x32 + 3x23 + x41 + x42

x11 + 4x12 + 3x13 + 4x14 + x21 + x22

+100x23 + 3x31 + 100x32 + x33 + 2x34 + 3x42

⎤
⎥⎦ (5.1)

4∑
j=1

xij = 1, i = 1, . . . , 4

4∑
i=1

xij = 1, j = 1, . . . , 4

xij ∈ {0, 1} , i, j = 1, . . . , 4.

We will conduct the ICOH method described in Section 4.5.

ICOH 1. Decision maker chooses all nondominated solutions of the prob-
lem (5.1):

y1 = [4, 7], y2 = [5, 6], y3 = [6, 4], y4 = [9, 3].

The solutions can be obtained by using methods presented in [35].
ICOH 2. Decision maker chooses the parameter q∗ = ∞ as the representation of

his extremely high risk aversion.
ICOH 3. For q∗ = ∞. and p = 1, 2, ∞ we solve problem (4.1) and obtain the

following results:

min{min(2.2)1,∞
, min(2.2)2,∞

, min(2.2)∞,∞}=min{0.500, 0.264, 0.502}
=0.264 = min(2.2)2,∞

.

It means that p =2 suits better than p = 1 and p = ∞. Thus we choose
p∗ = 2.

ICOH 4. On the basis of the distance to the previously found hypersphere we
obtain the following ranking.

1.y4, 2.y1, 3.y3, 4.y2.

Thus we have y4 as the compromise solution.
ICOH 5. We obtain the that y4 is the compromise solution for all q ∈ [1,∞)

and p∗ = 2. It means that the compromise solution y4 is not sensitive
to changing the parameter q∗. Furthermore, we obtain the that y4 is the
compromise solution for all p ∈ [1, 3] and q∗ = ∞. It means that the
compromise solution y4 is sensitive to changing the parameter p∗.
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5.2. Knapsack problem

We consider the multicriteria knapsack problem. In this problem we have a
set of items, each with a weight and multi-values (multi-criteria optimized). We
determine the number of each item to include in a collection so that the total weight
is less than or equal to a given limit and the given values (criteria) are maximized.
Methods of computing the nondominated solutions of the multi-criteria knapsack
problem are considered in papers by [3,6,11]. Let us consider a bi-criteria knapsack
problem from [16]. The considered multi-objective programming problem has the
following form:

v max
[

85x1 + 31x2 + 33x3 + 25x4 + 28x5 + 15x6 + 29x7

72x1 + 17x2 + 47x3 + 83x4 + 49x5 + 88x6 + 78x7

]
(5.2)

98x1 + 74x2 + 94x3 + 91x4 + 51x5 + 57x6 + 57x7 ≤ 261
xi ∈ {0, 1} , i = 1, . . . , 7.

We will use the ICOH method described in Section 4.5.

ICOH 1. Decision maker chooses all nondominated solutions of the prob-
lem (5.2):

y1 = [97, 298],y2 = [139, 233],y3 = [147, 197], y4 = [105, 262],
y5 = [125, 243],y6 = [129, 238],y7 = [142, 199].

The above nondominated solutions can be obtained by using methods
presented in [16].

ICOH 2. Decision maker chooses the parameter q∗ = 1 as the representation of
his extremely low risk aversion.

ICOH 3. For q∗ = 1. and p = 1, 2, ∞ we solve problem (4.1) and obtain the
following results:

min{min(2.2)1,∞, min(2.2)2,∞, min(2.2)∞,∞} = min{40.02, 24.296, 99.70}
= 24.296 = min(2.2)2,∞

It means that p = 2 suits better than p = 1 and p = ∞. Thus we choose
p∗ = 2.

ICOH 4. On the basis of the distance to the previously found hypersphere we
obtain the following ranking.

1.y1, 2.y5, 3.y6, 4.y3, 5.y2, 6.y4, 7.y7.

Thus we have y1 as the compromise solution.
ICOH 5. We obtain the that y1 is the compromise solution for q ∈ [1, 1.755] and

p∗ = 2. It means that the compromise solution y1 is very sensitive to
changing the parameter q∗. Furthermore, we obtain the that y1 is the
compromise solution for all p ∈ [1, 6.5] and q∗ = 1. It means that the
compromise solution y1 is not sensitive to changing the parameter p∗.
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Table 2. Data of the project management.

Activity Depends on Normal time Crash cost Maximal
with Description (days) per day crashed days
A - Prepare technical - 10 5.5 2
specifications
B- Tender Processing A 25 30 1
C- Release of work orders B 3 13 1
D- Supply of boiler C 60 7 2
equipment
E- Supply of auxiliaries C 20 10 1
F- Supply of pipes C 10 2.2 1
& pipe fittings
G- Civil work C 15 10 2
H- Installation of auxiliary E, F, G 5 10 1
equipment and piping
I- Installation of boiler D, H 10 10 1
J- Testing and I 2 10 1
commissioning

5.3. Project management problem

We consider the project management problems by means of time-cost analysis.
General models of project management are presented in [19]. The time-cost anal-
ysis is a generalization of CPM method (critical Path method) a well-known ap-
proach to the project managements, (CPM approach is given for example in [36]).
Let us consider a management project from work by Elmabrouk in [8]. Table 2
shows a list of various activities needed for replacing an existing boiler with an en-
ergy efficient boiler. This table also presents the rest of data used in the time-cost
analysis in project management. We take into account two criteria:

– minimizing the time of finishing the project;
– minimizing the crash cost.

The MOLP problem built for the project from Table 2 has the following form:

v min
[

5.5xA+ 30xB+ 13xC + 7xD+ 10xE +2.2xF +10xG +10xH +10xI+ 10xJ

yfinish

]
(5.3)

yB + xA ≥ 10, yC − yB + xB ≥ 25, yD − yC + xC ≥ 3, yE − yC + xC ≥ 3,

yF − yC + xC ≥ 3, yG − yC + xC ≥ 3, yH − yG + xG ≥ 15, yH − yF + xF ≥ 10,

yH − yE + xE ≥ 20, yI − yH + xH ≥ 5, yI − yD + xD ≥ 60, yJ − yI + xI ≥ 10,

yfinish − yJ + xJ ≥ 2,

0 ≤ xA ≤ 2, 0 ≤ xB ≤ 1, 0 ≤ xC ≤ 1, 0 ≤ xD ≤ 2, 0 ≤ xE ≤ 1,

0 ≤ xF ≤ 1, 0 ≤ xG ≤ 2, 0 ≤ xH ≤ 1, 0 ≤ xI ≤ 1, 0 ≤ xJ ≤ 1,

yB, yC , yD, yE , yF , yG, yH , yI , yJ ≥ 0.
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We will use the ICOH conduct described in Section 4.5.

ICOH 1. Decision maker chooses all nondominated solutions of problem (5.3):

y1 = [88, 102],y2 = [58, 103],y3 = [45, 104],y4 = [35, 105],y5 = [25, 106],
y6 = [0, 110].

ICOH 2. Decision maker chooses the parameter q∗ = 2 as the representation of
his low risk aversion.

ICOH 3. For q∗ = 2. and p = 1, 2, ∞ we solve problem (4.1) and obtain an
optimal solution p∗ = 2.

ICOH 4. On the basis of the distance to the previously found hypersphere we
obtain y4 as the compromise solution.

ICOH 5. We obtain the that y4 is the compromise solution for q ∈ [1.422, 2.814]
and p∗ = 2. It means that the compromise solution y4 is sensitive to
changing the parameter q∗ = 1. Furthermore , we obtain the that y4 is
the compromise solution for all p ∈ [1, 2.563] and q∗ = 2. It means that
the compromise solution y4 is sensitive to changing the parameter p∗.

5.4. Manufacturing problem (activity-analysis problem)

We consider a well-known problem of linear programming – the manufactur-
ing problem. This problem is analysed in case of one-criterion for example in
works [12, 13] by Gass. We extend the one-criterion manufacturing problem to
multi-objective problem in the following way. By using the initial description of
Gass [13] we formulate the following problem. A manufacturing company has at its
disposal fixed amounts of different resources. These resources, such as raw material,
labour etc. can be combined to produce any one of several different commodities.
The company knows how much of resources should be taken to produce commodi-
ties. It also knows how much profit it makes for each commodity. The company
desires to produce the combination of commodities with multiple criteria:

– maximizing the total profit;
– minimizing the usage of given deficient resources.

As a numerical example we use an example from work [13]. A bakery starts the
day with a certain supply of flour, shortening, eggs, milk, and yeast. It specializes
in making four types of cakes (we assume that these products can be made in arbi-
trary amount of weights – pounds). Furthermore, it has to make at least 50 pounds
of each cakes. We consider two criteria: maximizing the profit and minimizing the
usage of flour. The recipes are given in Table 3 (we ignore such plentiful supplies
as salt, water, etc.).
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Table 3. Data for the manufacturing problem.

cake 1 cake 2 cake 3 cake 4 available resources
shortening 2 12 3 4 4000

eggs 0 3 3 1 3000
sugar 0.25 1.5 0.125 1 500
milk 2 0.75 1 0 2000
yeast 1 0 1 0 1000
flour 12 3 4.5 1.5 MIN
profit 2 3 4 2 MAX

The above problem can be formulated in MOLP form. The description is as
follows:

v max
[

2x1 + 3x2 + 4x3 + 2x4

−12x1 − 3x2 − 4.5x3 − 1.5x4

]
(5.4)

2x1 + 12x2 + 3x3 + 4x4 ≤ 4000
3x2 + 3x3 + x4 ≤ 3000

0.25x1 + 1.5x2 + 0.125x3 + x4 ≤ 500
2x1 + 0.75.5x2 + x3 ≤ 2000

x1 + x3 ≤ 1000x1, x2, x3, x4 ≥ 50.

We will use the ICOH method described in Section 4.5.

ICOH 1. Decision maker chooses all nondominated solutions of problem (5.4):

y1 =[575, 1050],y2 =[1287.5, 1584.4],y3 =[3575, 4215],y4 =[4175, 5025],
y5 =[4259.1, 5515.9].

ICOH 2. Decision maker chooses the parameter q∗ = 1 as the representation of
his extremely low risk aversion.

ICOH 3. For q∗ = 1. and p = 1, 2, ∞ we solve problem (4.1) and obtain an
optimal solution p∗ = 2.

ICOH 4. On the basis of the distance to the previously found hypersphere we
obtain y2 as the compromise solution.

ICOH 5. We obtain the that y2 is the compromise solution for q ∈ [1,∞] and
p∗ = 2. It means that the compromise solution y2 is not sensitive to
changing the parameter q∗. Furthermore we obtain the that y2 is the
compromise solution for all p ∈ [1, 3.1] and q∗ = 1. It means that the
compromise solution y2 is sensitive to changing the parameter p∗.

6. Conclusions and further research

The paper focused on the decision support in the MOLP problems. We have
presented a method to ranking of the chosen nondominated solutions. The pre-
sented method is based on finding a hypersphere which is closest to the set of
the chosen solutions. The method proposed by Gass and Roy in [14] has been
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developed by using different ways of measuring the distance. The motivation to
study other metrics was to give the decision maker more opportunities to choose
the metric and in this way show his risk aversion. The presented analysis gave
some remarks how to choose the proper metric. Moreover, we presented the in-
teractive version of the method to include the decision maker preferences – the
ICOH method with sensitivity analysis. This method is a decision tool in multiple
objective linear programming problems. The aim of the ICOH method is to choose
a compromise solution, which is based on choosing proper metrics by the decision
maker. We presented applications of the ICOH method in the form of the assign-
ment problem, the knapsack problem, the project management problem and the
manufacturing problem. Further research and problems to solve, according to the
author, are as follows:
– numerical analysis of algorithms searching for the optimal solutions of problem

(2.2) by using various optimization methods: [22, 24];
– extension using the augmented Tchebycheff metric: [29];
– comparison with outranking methods based on compromise programming: [20,

21];
– including more general structure to describe the preferences of decision maker

like fuzzy numbers or stochastic dominance: [26, 32].
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