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WEIGHTED TARDINESS MINIMIZATION ON PARALLEL
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Abstract. This paper deals with the parallel-machine scheduling
problem with the aim of minimizing the total (weighted) tardiness un-
der the assumption of different release dates. This problem has been
proven to be NP-hard. We introduce some new lower and upper bounds
based on different approaches. We propose a branch-and-bound algo-
rithm to solve the weighted and unweighted total tardiness. Computa-
tional experiments were performed on a large set of instances and the
obtained results showed that our algorithms are efficient.
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1. Introduction

In this paper, we study the identical parallel-machine scheduling problem to
minimize the total (weighted) tardiness with release dates. This problem is denoted
as the P |rj |

∑
(wj)Tj in the standard scheduling terminology.

The objective of this paper is to develop an exact method to solve this problem.
The tardiness of a job j is defined as Tj = max(0, Cj − dj), and the corresponding
weighted tardiness is defined as wjTj = wj max(0, Cj − dj), where Cj , dj and
wj are respectively the completion time, the due date and the weight of job j.
Each machine cannot process more than one job at a given time and no job can
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be preempted. The problem considered in this paper is at least NP-Hard, since
the unweighted case on a single-machine was proved to be NP-hard by Rinnooy
Kan [17].

Despite the importance of this criterion, a lot of research has been carried out on
the single-machine problem. Given the aim of this paper, we can cite the following
references.

Tiang et al. [22] presented some optimality properties based on the optimality
of a special case, where the release dates and the due dates are agreeable.

Chu [9], developed some dominance rules and provided a lower bound by using
the job preemption for the single-machine with release dates when the weights
are equal. He also proposed a branch-and-bound algorithm for the same problem
1|rj |

∑
Tj and he incorporated the previous lower bound and an upper bound

derived from a constructive heuristic algorithm. This procedure can solve difficult
problems with up to 30 jobs and easy problems with up to 230 jobs.

Baptiste et al. [5] presented a branch-and-bound algorithm to minimize the to-
tal tardiness on a single-machine with arbitrary release dates. The lower bound
used is an improvement of Chu’s lower bound [9]. Some dominance properties are
introduced based on the Emmons rules [11]. The computational results showed
that the proposed branch-and-bound algorithm outperforms the best known pro-
cedures, especially the algorithm proposed by Chu. Several tests have been done
to show the efficiency of the dominace properties.

Su and Chen [21] adapted some dominance properties from the literature to
build a branch-and-bound algorithm and a heuristic procedures. They proposed
a lower bound by combining Baptiste’s lower bound procedure with Lawler’s dy-
namic programming. The computational results showed the efficiency of their ap-
proach that can solve hard problems with up 50 jobs and easy problems with up
to 500 jobs.

Recently, Baptiste et al. [6] presented some lower bounds for the parallel machine
scheduling problem with release dates. The authors computed a lower bound for the
problem P |rj |

∑
(wj)Tj using some relaxation techniques: release dates relaxation,

reducing the problem to flow problems. They presented also a time mixed-integer
formulation.

In the litterature, some papers dealt with the tardiness minimization problem on
parallel-machines without release dates. We can cite: Elmaghraby and Park [10],
Azizoglu and Kirka [3], Yalaoui and Chu [23] and Shim and Kim [18] that have
proposed exact resolution.

Several heuristic algorithms have been developed also for the same problem,
we have Alidaee and Rosa [1], Koulamas [12], Lee and Pinedo [13] and Mosheiov
and Oron [14]. Finally, it is worthy to mention several references on tardiness
minimization for shop scheduling (for example, Chen and Lin [7], Anderson and
Nyirenda [2]).

This work proposes an exact algorithm for the identical parallel-machine
scheduling problem in order to minimize the total weighted tardiness with release
dates. In such an algorithm, several lower and upper bounds are incorporated.



WEIGHTED TARDINESS MINIMIZATION ON PARALLEL MACHINES 127

The paper is organized as follows. Section 2 describes the problem formulation.
Section 3 presents the proposed lower bounds. Section 4 describes two resolu-
tion methods: heuristics and a branch-and-bound algorithm. Section 5 reports the
computational results. Finally, some concluding remarks are given in Section 6.

2. Problem formulation

We have to schedule a set J of n jobs on m parallel machines. Each job j has a
processing time pj , a due date dj , a weight wj and a release date rj . Each machine
can process only one job at a given time and preemption is not allowed. A job can
be scheduled on the machines at time t if t is greater or equal than its release date.
For a given sequence, a job j is called tardy if its completion time Cj is strictly
larger than its due date, its tardiness is Tj = max(0, Cj − dj) and its weighted
tardiness is wj max(0, Cj − dj).

Therefore, the total tardiness of the n jobs is given in equation (2.1).

n∑
j=1

Tj =
n∑

i=1

max(0, Cj − dj) (2.1)

and the corresponding total weighted tardiness is given in equation (2.2)

n∑
j=1

wjTj =
n∑

i=1

wj max(0, Cj − dj). (2.2)

The objective is to find a sequence that minimizes
∑n

j=1 Tj and
∑n

j=1 wjTj. There-
fore, we can formulate our problems, as follows:

(P ) minimize
n∑

j=1

Tj

Tj ≥ (Cj − dj) (2.3)
Cj ≥ rj + pj , (2.4)

(Pw) minimize
n∑

j=1

wjTj

Tj ≥ (Cj − dj) (2.5)
Cj ≥ rj + pj , (2.6)

where (Cj)1≤j≤n is a feasible completion time vector.

3. Lower bounds

In this section we present several lower bound procedures for the problem (P )
(noted P |rj |

∑
Tj) and the problem (Pw) (noted P |rj |

∑
wjTj). Note that these



128 I. KACEM ET AL.

procedures can be applied to compute lower bounds on the tardiness of a partial
schedule. Let SP = ([1], [2], . . . , [k]) denote a partial schedule of k jobs where [h]
denotes the job scheduled in the hth position. Note that J − {[1], [2], . . . , [k]} are
the unscheduled jobs and jobs of SP are scheduled one by one according to the
earliest available machine rule.

We apply the same rules used for the problem P ||∑ wjTj (see [20]) in order to
take the scheduled jobs into account.

The lower bounds relying on similar techniques are described in the same sec-
tion.

3.1. Solving assignment problem

3.1.1. The total tardiness case: LB1

This lower bound is based on the splitting relaxation (i.e., every job can be
performed simultaneously on several machines). The principle is based on an as-
signment problem involving a lower bound on the completion times of jobs. The
lower bound is computed in two steps. In the first step, we compute an earliest
completion time C[j] of job scheduled in position j (i.e., for every j, C[j] is a lower
bound on the jth smallest completion time in any feasible schedule). In the second
step, we define an assignment problem between jobs and the above completion
times C[j] that we solve optimally. The lower bound LB1 is given by

LB1 =
n∑

j=1

max(0, C[j] − d[j]),

where (d[1], d[2], . . . , d[n]) obtained by sorting dj in the nondecreasing order.
In order to compute the completion times C[j], we use the lower bound intro-

duced by Nessah and Chu [15] for the problem Pm|rj |
∑

Cj . This bound is the
improved lower bound of Yalaoui and Chu [24] based on the ASRPT rule.

Let Cj(S∗) be the completion time of the job j obtained by the ASRPT rule,
zj = pj + rj and (z[1], z[2], . . . , z[n]) obtained by sorting zj in the nondecreasing
order.

The completion time used for the assignment problem is given by

C[j] = max(C[j](S∗), z[j]). (3.1)

ASRPT rule: at any time, a job with the SRPT (shortest remaining process-
ing time) among available jobs is simultaneously processed on all the available
machines. The processing is interrupted if another job becomes available with a
processing time strictly shorter than the remaining processing time of the job in
process.

Example. Let us consider an instance of 5 jobs and 2 machines where the data
are given in Table 1.

The schedule obtained according to ASRPT rule is shown in Figure 1.
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Figure 1. Scheduling of jobs obtained by ASRPT rule.

Table 1. Instance data

j 1 2 3 4 5
rj 2 2 5 6 9
pj 5 16 12 8 13
dj 7 18 14 8 19
zj 7 18 17 14 22

Table 2. Completion times given by ASRPT rule.

j 1 2 3 4 5
C∗

j 4.5 29 15 10 21.5

From Table 2 and Figure 1, we have the completion times Cj(S∗) given by
the ASRPT rule. The completion times used on the lower bound are (C[j] =
max(C∗

[j], z[j])): C[1] = 7, C[2] = 14, C[3] = 17, C[4] = 21.5 ≈ 22, C[5] = 29.
By sorting the due dates on the nondecreasing order, we obtain the following

lower bound

LB1 =
5∑

j=1

max(0, C[j] − d[j]) = 23.

3.1.2. The total weighted tardiness case: LB2

It is based on an assignment problem involving lower bounds on the completion
times of jobs. The lower bound LB2 is computed in two steps. In the first step,
we compute an earliest completion time C[j] of job scheduled in position j (we
use the same completion time given by the ASRPT rule like for the previously
lower bound). In the second step, we define an assignment problem between jobs
and the above completion times C[i] that we solve by using the algorithm pro-
posed by Baptiste and Le Pape [4]. The cost of assigning job j to date C[i] is
wj ∗ max(0, C[i] − dj).
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3.2. Lagrangian relaxation based lower bounds

3.2.1. Lower bound LB3 for P |rj |
∑

Tj

The principle of this lower bound is to solve the lagrangian relaxation of the con-
straints (2.3) and (2.4) in problem (P ). From Potts [16], the lagrangian relaxation
of the problem (P ), yields the problem (Pλγ)

(Pλγ) : L(λ, γ) = min
n∑

j=1

(Tj + λj(Cj − dj − Tj) + γj(rj + pj − Cj))

γj ≤ λj ∀ j = 1, . . . , n

Tj ≥ 0 ∀ j = 1, . . . , n

where λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn) are the vectors of the corresponding
nonnegative multipliers.

We impose to λj to satisfy the condition λj ≤ 1 and γj ≤ λj for all j in order to
avoid that the Lagrangian function decreases as Tj and Cj increases which gives
L(λ, γ) = −∞.

The problem (Pλγ) is equivalent to

(
P ′

λγ

)
: min

n∑
j=1

(λj − γj)Cj +
n∑

j=1

(γj(rj + pj) − λjdj)

0 ≤ γj ≤ λj ≤ 1 ∀ j = 1, . . . , n.

To find the best possible λ and γ, we have to apply the subgradient method. We
use the variant proposed by Sherali and Ulular [19] referred to as the Average
Direction Search (ADS) strategy.

3.2.2. Lower bound LB4 for P |rj |
∑

wjTj

In this section we extend the lower bound LB3 obtained for the unweighted
problem Pm|rj |

∑
Tj to the problem Pm|rj |

∑
wjTj. We can formulate our prob-

lem, denoted by (Pw), as follows:

(Pw) minimize
n∑

j=1

wjTj

Tj ≥ (Cj − dj) (3.2)
Cj ≥ rj + pj , (3.3)

where (Cj)1≤j≤n is a feasible completion time vector.
The lagrangian relaxation of the constraints (3.2) and (3.3) in problem (Pw)

yields the problem (Pwλγ)

(Pwλγ) min
n∑

j=1

(wj − λj)Tj + (λj − γj)Cj + γj(rj + pj) − λjdj

γj ≤ λj ≤ wj ∀ j = 1, . . . , n
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where λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn) are the vectors of the corresponding
nonnegative multipliers.

The problem (Pwλγ) is equivalent to

(
P ′

wλγ

)
: min

n∑
j=1

(λj − γj)Cj + γj(rj + pj) − λjdj

0 ≤ γj ≤ λj ≤ wj ∀j = 1, . . . , n.

To find the best possible λ and γ, we have to apply the subgradient method.

3.2.3. Lower bound LB5 for P |rj |
∑

wjTj

In this section we describe a lower bound for the problem (Pw) which exploits
the lower bounds presented previously. This bound is computed in four steps.

Step 1. We consider the problem of minimizing total weighted tardiness on parallel
machines denoted by P ||∑wjTj treated in [20]. This problem can be formulated
as follows

(Q) minimize
n∑

j=1

wjTj

Tj ≥ (Cj − dj) (3.4)
Tj ≥ 0,

where (Cj)1≤j≤n is a feasible completion time vector.
We recall the lower bound LB1 computed for the problem (Q). This lower

bounds is obtained by lagrangian relaxation of constraint (3.4), then the problem
(Q) is reduced to

(PLR) : min
n∑

j=1

λj(Cj − dj)

λj ≤ wj ∀j.

λ = (λ1, . . . , λn) is the vector of the corresponding nonnegative multipliers. This
lower bound is computed by choosing special values of λj . These values of la-
grangian multipliers λj will be used in the next steps.

Step 2. Our goal in this step is to find a lower bound for the problem
Pm|rj |

∑
wjTj . This is formulated as follows

(Pw) minimize
n∑

j=1

wjTj

Tj ≥ (Cj − dj) (3.5)
Cj ≥ rj + pj . (3.6)
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The objective function can be written as follows:
n∑

j=1

wjTj =
n∑

j=1

λjTj +
n∑

j=1

(wj − λj)Tj .

Let (P1w) be the following problem:

(P1w) minimize
n∑

j=1

λjTj

Tj ≥ (Cj − dj)
Cj ≥ rj + pj,

and (P2w) the following problem

(P2w) minimize
n∑

j=1

(wj − λj)Tj

Tj ≥ (Cj − dj)
Cj ≥ rj + pj.

Let be lb51 a lower bound for the problem (P1w) and lb52 a lower bound for
the problem (P2w). Therefore, the lower bound LB5 for the problem (Pw) is
LB5 = lb51 + lb52.

In the next steps, we compute the lower bounds lb51 and lb52.

Step 3. We consider the problem (P1w).
As Tj ≥ Cj −dj , then

∑n
j=1 λjTj ≥ ∑n

j=1 λj(Cj −dj). Therefore, a lower bound
for the problem with objective function

∑n
j=1 λj(Cj − dj) is a lower bound for the

problem (P1w). Then, our problem now is

(P1w1) minimize
n∑

j=1

λj(Cj − dj)

Cj ≥ rj + pj. (3.7)

We compute two lower bounds for this problem lb511 and lb5′11
, then we set lb51 =

max(lb511, lb5′11
).

First lower bound lb511

The lagrangian relaxation of the constraints (3.7) in problem (P1w1) yields the
problem

minimize
n∑

j=1

λj(Cj − dj) + βj(rj + pj − Cj)

βj ≤ λj . (3.8)

Therefore, to find the best possible βj , we apply the Eastman’s lower bound and
the multiplier adjustment method (see [20]).
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Second lower bound lb5′11

This lower bound has the same principle of lower bound LB2: solving an assign-
ment problem on the completion time using the Baptiste’s algorithm. The cost of
assigning job j to date C[i] is λj(C[i] − dj). The completion times C[i], are given
by Nessah and Chu [15] like in the lower bound LB1.

Step 4. In this step, we compute a lower bound lb52 for the problem (P2w)
by using the same techniques as for lb51. We compute two lower bounds based
on Lagrangian relaxation and assignment problem, then we take the maximum of
them.

Finally, the lower bound LB5 = lb51 + lb52.

3.3. Splitting based lower bound

The principle of this lower bound is based on the splitting of jobs. The idea is
to decompose each job j into pj pieces. Hence, we transform the original instance
problem with n jobs to an instance problem with

∑n
j=1 pj pieces. Each piece has a

processing time pk
j , a weight wk

j ,a due date dk
j and a release date rk

j ∀k = 1, . . . , pj

as follows:

pk
j = 1

wk
j =

wj

pj

dk
j = dj − (pj − k)

rk
j = rj + k − 1.

Then, we define an assignment problem between pieces and their completion time
Ck

j which we solved with the Hungarian algorithm to obtain the lower bound
LBSplit.

The completion times Ck
j are obtained as follows. We bound the position of

each piece (j, k) by a lower bound Ck
j and an upper bound for its completion time

given by Ck
j .

Ck
j ≤ Ck

j ≤ Ck
j ∀k = 1, . . . , pj . (3.9)

For each piece, the possible completion times are the values of Ck
j given by (3.9).

The weighted tardiness of assignment piece (j, k) to completion time Ck
j is defined

as follows:

weighted tardiness =

{
wk

j max(0, Ck
j − dk

j ) if Ck
j ≤ Ck

j ≤ Ck
j

+∞ otherwise.

The inconvenience of this lower bound is the computational time because the size
of the problem is great. Indeed, when using the splitting, we generate a large num-
ber of pieces. Therefore, in order to exploit this lower bound in a branch and bound
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algorithm, we will adapt this scheme to the unweighted problem Pm|rj |
∑

Tj . In-
deed, the data generation of the unweighted problem is more adapted to this lower
bound because when applying the splitting we obtain a set of pieces containing
sharply fewer elements than with the data generation for the weighted problem
(Pw).

4. Branch-and-bound algorithm

In this section, we suggest a branch-and-bound algorithm for the problems (P )
and (Pw) considered in this study. The algorithm starts by computing an initial
solution which provides the first upper bound UB. In order to obtain UB, we
apply a heuristic that consists in choosing the best solution from those given by
the following priorities rules:

(1) the nondecreasing order of due dates (EDD);
(2) the nondecreasing order of pi + ri (ECT );
(3) the minimum slack order (nondecreasing order of di − pi).

Note that the assignment of the jobs is done on the earliest available machine.
As the computational tests prove that these heuristics do not usually give a good
solution, we have improved this initial upper bound by a classical genetic algorithm
which the tests demonstrate its effectiveness.

We have adapted this procedure to the problems (P ) and (Pw) to obtain an
upper bound.

For branching, every node represents a partial schedule and the depth-first strat-
egy is used. It consists in scheduling a new job after a partial schedule on the
earliest machine available. Before the creation of a new node, a lower bound is
calculated. If the value of the lower bound obtained is larger than or equal to the
value of the upper bound, then this node is removed.

5. Computational results

The objective of the computational experiments described in this section is
to evaluate the efficiency of all lower bounds as well as the performance of the
branch-and-bound algorithm proposed for each problem treated. Computational
experiments were done on a personal computer with an Intel Pentium IV 1.8 GHz
processor and 3G RAM, running under Windows XP. The lower bounds and the
branch-and-bound algorithm were coded in the C language.

5.1. Data generation

The test examples were randomly generated. For the total tardiness problem,
the instances have been generated with the scheme of Chu [9] for single machine
by adaptation to our problem. For total weighted tardiness we adopt the scheme
of Chu [8].
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Table 3. Problem groups.

β α 0.0 0.5 1.0 1.5
0.05 1 4 7 10
0.25 2 5 8 11
0.5 3 6 9 12

For the experiments, 10 problems for each of all combinations. For each combi-
nation the parameters are as follows:

– three levels of the number of machines m = 2, m = 3 and m = 4;
– eight levels for the number of jobs (n = 10, 15, 20, 25, 30, 40, 50);
– four levels for α = 0.0, 0.5, 1.0, 1.5;
– three levels for β = 0.05, 0.25, 0.5.

For the total tardiness, we generate, for each job, an integer processing time pi

using a uniform distribution from [1, 10], an integer release date ri in the interval
[0, αP ] and an integer due date in the interval [pi + ri, pi + ri + βP ], where P =∑n

i=1 pi.
For the total weighted tardiness, we generate, for each job, an integer processing

time pi using a uniform distribution from [1, 100], an integer weight wi using
uniform distribution from [1, 10], an integer release date ri in the interval [0, αP ]
and an integer due date in the interval [pi + ri, pi + ri + βP ], where P =

∑n
i=1 pi.

We generate 120 instances for each pair of (n, m) divided into 12 representative
groups with all the possible combinations of the two parameters α and β as shown
in Table 3.

5.2. Results of lower bounds

5.2.1. Lower bounds for Pm|rj |
∑

Tj

To evaluate the performance of the lower bounds presented in this paper, we
computed the average value obtained from 10 instances for each combination.

From Figures 2–4, we can conclude that the lower bound LBsplit based on split-
ting of jobs outperforms the lower bounds LB1 and LB3. Moreover, by comparing
the gap between each lower bound and the upper bound obtained by genetic algo-
rithm in Tables 4–9, we can conclude that LBsplit has the best gap where the gap
is calculated as follows gap = UB−LB

UB × 100. These tables show also the influence
of the two parameters α and β on problem hardness. Indeed, we can identify the
difficult groups and easy groups to solve next.

Finally, we can conclude that LBsplit represents a good alternative to build a
branch and bound algorithm.

5.2.2. Lower bounds for P |rj |
∑

wjTj

In this section we present the same analysis given for the problem Pm|rj |
∑

Tj.
The results for the performance of lower bounds are given in Figures 5–7. We
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Figure 2. Mean values of lower bounds for Pm|rj |
∑

Tj with 2 machines.

Figure 3. Mean values of lower bounds for Pm|rj |
∑

Tj with 3 machines.

can notice that the behaviours of lower bounds LB2 and LB4 are close to those
obtained from the same techniques, for the problem Pm|rj |

∑
Tj. Indeed, the tech-

niques used for these lower bounds do not give a good result.

The lower bound LB5 dominates largely the other bounds. This remark is con-
firmed by comparing the gap between each lower bound and upper bound given in
Tables 10–15. From these experimental results, we can conclude that lower bound
LB5 is the best candidate to build a branch-and-bound algorithm in the next step.
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Figure 4. Mean values of lowers bounds for Pm|rj |
∑

Tj with 4 machines.

Figure 5. Mean values of lower bounds for P |rj |
∑

wjTj with 2 machines.

5.3. The performances of the branch-and-bound algorithm

The computational results of the branch-and-bound algorithms for the two prob-
lems treated are given in Tables 10–24 where “Node”, “Time”, “NS” and “Gap”
represent respectively, the average of nodes generated, the computation time in
seconds the number of problems not solved over the 10 problems of the corre-
sponding class in a period of 30 min and the gap between the value of the lower
bound computed at the root and the optimal solution (if can be obtained). A “–”
in the columns of “Gap” indicates that all instances are not solved in time and we
do not calculate the gap since we do not have the optimal solution.
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Figure 6. Mean values of lower bounds for P |rj |
∑

wjTj with 3 machines.

Figure 7. Mean values of lower bounds for P |rj |
∑

wjTj with 4 machines.

5.3.1. Branch and bound algorithm for Pm|rj |
∑

Tj

The branch and bound algorithm (BAB) takes into account the upper bound
given by the genetic algorithm and the lower bound LBsplit presented previously.

Throughout the computational tests, we note that the effectiveness of the BAB
algorithm depends on the average tardiness factor α and the relative range of
due dates β. Indeed, the problem difficulty is higher for groups 1 and 2 that is
corresponding to value of α = 0.0. It can be shown especially when the number of
jobs is large (n = 40, 50). Indeed, when α is small (α = 0) the problem becomes
without release dates, then all the jobs are available at time 0 and the majority



142 I. KACEM ET AL.

Table 10. Performance of the BAB for P |rj |
∑

Tj with n = 10.

n = 10 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 470.60 6.34 1.35 0 10 720.00 157.57 6.27 0 30 955.70 38.83 9.73 0
2 979.50 13.98 7.90 0 6043.50 87.38 12.50 0 1.00 0.00 0.00 0
3 1772.90 34.26 19.05 0 49.10 0.68 4.00 0 1.00 0.00 0.00 0
4 610.00 15.62 35.61 0 1375.40 48.41 30.00 0 5442.20 89.97 26.67 0
5 149.00 3.13 22.22 0 489.50 15.95 10.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 304.20 12.74 42.08 0 69.90 3.70 10.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 106.10 9.69 22.50 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 11. Performance of the BAB for P |rj |
∑

Tj with n = 15.

n = 15 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 97 633.70 416.67 0.57 2 361 618.10 1445.88 1.08 8 417 860.10 1800.02 – 10
2 389 261.80 1049.79 4.08 3 317 012.30 1460.95 31.75 7 25 539.00 182.09 3.70 1
3 70 943.70 364.92 6.67 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
4 8687.90 67.17 30.24 0 27 622.10 636.82 45.24 3 1769.90 180.00 0.00 1
5 23 464.40 213.01 22.93 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 2389.80 62.32 29.10 0 2334.60 186.21 14.81 1 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 753.50 42.03 43.33 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 12. Performance of the BAB for P |rj |
∑

Tj with n = 20.

n = 20 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 173 817.00 1440.03 0.00 8 218 229.60 1620.02 0.00 9 275 503.20 1800.03 – 10
2 253 412.10 1800.03 – 10 220 751.50 1800.03 – 10 52 820.10 360.01 0.00 2
3 128 489.10 737.40 11.94 4 486.30 1.30 6.00 0 1.00 0.00 0.00 0
4 57 659.90 1011.78 36.41 4 38 746.20 1541.00 28.57 8 6194.20 180.02 0.00 1
5 2839.40 37.82 21.25 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 9672.50 732.61 21.15 3 2320.60 360.13 0.00 2 1.00 0.00 0.00 0
8 2806.80 137.93 1.67 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 1040.50 288.39 16.67 1 355.20 180.04 0.00 1 1.00 0.00 0.00 0
11 1430.70 182.41 11.11 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 13. Performance of the BAB for P |rj |
∑

Tj with n = 25.

n = 25 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 76 171.90 1260.66 0.13 7 161 299.30 1800.09 – 10 212 678.40 1800.07 – 10
2 126 332.00 1800.12 – 10 140 603.40 1800.07 – 10 48 966.00 540.47 14.29 3
3 45 374.90 720.09 8.33 4 42 335.00 180.00 0.00 1 1.00 0.00 0.00 0
4 48 660.60 1744.86 12.00 9 8223.10 517.38 12.50 2 3787.10 180.05 0.00 1
5 3410.50 106.00 7.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 8322.60 1635.37 22.22 9 1.00 0.00 0.00 0 471.20 180.16 0.00 1
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 2764.70 1081.21 0.00 6 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 572.80 180.33 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
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Table 14. Performance of the BAB for P |rj |
∑

Tj with n = 30.

n = 30 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 86 684.00 1620.70 0.12 9 98 198.80 1800.16 – 10 120 435.00 1800.11 – 10
2 95 722.70 1800.17 – 10 92 488.60 1800.18 – 10 55 225.90 659.62 4.76 3
3 60 634.00 1261.33 16.67 7 555.10 2.83 2.86 0 1.00 0.00 0.00 0
4 33 965.10 1800.43 – 10 6958.80 720.24 0.00 4 776.90 180.03 0.00 1
5 5717.10 360.03 0.00 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 4755.00 1277.93 33.33 7 695.50 360.25 0.00 2 1.00 0.00 0.00 0
8 508.30 180.03 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 490.90 403.62 15.63 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 15. Performance of the BAB for P |rj |
∑

Tj with n = 40.

n = 40 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 47 660.80 1800.77 – 10 51 791.70 1800.37 – 10 53 340.90 1800.75 – 10
2 51 920.70 1800.53 – 10 51 341.00 1800.64 – 10 20 050.90 540.08 0.00 3
3 45 757.80 1260.25 0.00 7 88.40 1.55 0.00 0 1.00 0.00 0.00 0
4 14 635.20 1801.31 – 10 4716.60 901.85 0.00 5 1133.00 541.60 0.00 3
5 1872.10 379.62 0.00 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 2249.50 1445.45 0.00 8 1.00 0.00 0.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 357.40 730.77 0.00 4 39.20 180.37 0.00 1 1.00 0.00 0.00 0
11 228.00 181.47 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 16. Performance of the BAB for P |rj |
∑

Tj with n = 50.

n = 50 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 26 246.40 1801.39 – 10 29 596.10 1800.81 – 10 30 078.80 1801.49 – 10
2 29 492.30 1801.54 – 10 35 278.00 1800.82 – 10 21 230.70 1080.56 0.00 6
3 22 864.80 1260.57 0.00 7 30 346.80 540.08 0.00 3 1.00 0.00 0.00 0
4 7303.40 1804.14 – 10 1.00 0.00 0.00 0 1.00 0.00 0.00 0
5 2598.10 540.27 0.00 3 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 774.90 935.37 6.67 4 1.00 0.00 0.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 169.90 500.94 12.50 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 49.70 184.18 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 17. Percentage of solved problem for the problem P |rj |
∑

Tj .

n 10 15 20 25
m 2 3 4 2 3 4 2 3 4 2 3 4

Solved problems 100 100 100 96.8 92.4 95.2 88 88 94.8 81.6 90.8 94

n 30 40 50
m 2 3 4 2 3 4 2 3 4

Solved problems 80.8 89.6 94.4 79.2 89.6 93.6 81.2 90.8 93.6
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Table 18. Performance of the BAB for P |rj |
∑

wjTj n = 10.

n = 10 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 1069.00 0.02 7.24 0 9279.40 0.20 20.78 0 60 629.80 1.44 33.26 0
2 6763.50 0.11 43.82 0 15 480.90 0.29 0.00 0 1.00 0.00 0.00 0
3 290.30 0.01 27.91 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
4 2068.70 0.03 88.85 0 2332.80 0.05 60.00 0 3049.40 0.08 10.00 0
5 896.40 0.02 78.11 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 636.40 0.01 70.00 0 966.00 0.03 40.00 0 1.00 0.00 0.00 0
8 280.40 0.01 10.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 541.60 0.01 30.00 0 2983.80 0.05 20.00 0 1.00 0.00 0.00 0
11 340.20 0.01 20.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 19. Performance of the BAB for P |rj |
∑

wjTj n = 15.

n = 15 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 9245.20 0.34 3.78 0 19 7861.30 7.65 7.93 0 1 303 250.40 57.31 16.72 0
2 158 589.60 4.43 22.02 0 24 683 289.40 501.55 68.77 2 2 056 065.60 62.39 10.00 0
3 14 269 655.70 238.77 70.76 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
4 23 789.10 0.72 89.28 0 537 125.70 10.69 70.00 0 757 543.50 27.48 20.00 0
5 10 5473.50 1.95 56.55 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 8601.60 0.25 76.35 0 87 909.60 2.77 40.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 9952.20 0.26 68.40 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 20.70 0.00 10.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 20. Performance of the BAB for P |rj |
∑

wjTj n = 20.

n = 20 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 107 741.90 5.75 2.28 0 2 749 833.80 175.58 4.96 0 22 783 601.60 1534.29 7.46 8
2 4 927 664.90 231.74 15.65 0 32 041 345.80 1219.70 63.77 6 3 945 412.60 180.00 0.00 1
3 26 568 730.60 814.20 45.71 4 2 935 313.40 180.00 0.00 1 1.00 0.00 0.00 0
4 1 124 611.70 46.27 80.43 0 7 624 014.40 264.90 77.78 1 11 148 261.30 360.00 0.00 2
5 4 244 826.80 125.50 30.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 31 045.00 2.16 68.37 0 50 697.10 4.31 10.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 69 932.20 2.48 48.22 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 21. Performance of the BAB for P |rj |
∑

wjTj n = 25.

n = 25 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 1 131 337.20 68.22 1.41 0 16 824 218.60 1533.86 3.90 7 21 502 052.30 1800.02 – 10
2 16 141 179.60 1444.06 12.69 7 21 221 369.50 1720.49 13.43 9 3 300 856.20 360.00 0.00 2
3 14 626 604.00 722.68 16.67 4 1.00 0.00 0.00 0 1.00 0.00 0.00 0
4 5 452 748.50 330.26 80.81 1 18 360 401.90 957.91 59.27 5 8 509 888.50 399.85 25.00 2
5 7 399 806.10 180.00 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 831 422.80 44.80 86.98 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 135 239.00 13.15 47.35 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
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Table 22. Performance of the BAB for P |rj |
∑

wjTj n = 30.

n = 30 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 10 248 492.30 914.24 1.20 3 13 904 428.40 1659.32 2.00 8 9 904 774.40 1800.02 – 10
2 11 577 740.50 1502.87 5.91 8 12 588 941.70 1800.02 – 10 4 340 458.30 900.01 0.00 5
3 9 634 430.50 1080.01 0.00 6 1 020 291.90 180.00 0.00 1 1.00 0.00 0.00 0
4 16 344 455.50 1338.35 84.62 5 15 891 698.90 900.01 0.00 5 1.00 0.00 0.00 0
5 5 684 548.80 393.95 10.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 20 138 140.80 1120.26 76.17 5 2527.00 0.93 10.00 0 1.00 0.00 0.00 0
8 1521.30 0.39 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 7 706 450.40 542.36 84.56 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 23. Performance of the BAB for P |rj |
∑

wjTj n = 40.

n = 40 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 15 198 104.50 1800.02 – 10 5 987 535.80 1800.02 – 10 4 282 411.20 1800.02 – 10
2 5 900 499.90 1800.02 – 10 6 120 558.20 1800.02 – 10 3 166 532.60 1080.01 0.00 6
3 7 063 749.90 1669.27 100.00 9 383 472.00 180.00 0.00 1 1.00 0.00 0.00 0
4 9 728 259.30 1620.02 91.39 9 7 123 206.30 1068.69 20.00 5 2 007 170.40 180.00 0.00 1
5 5 704 909.70 360.06 0.00 2 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 6 087 544.60 583.73 42.86 3 547 577.80 180.00 0.00 1 1.00 0.00 0.00 0
8 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 9 982 081.20 720.20 0.00 4 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

Table 24. Performance of the BAB for P |rj |
∑

wjTj n = 50.

n = 50 m = 2 m = 3 m = 4
Groups Nodes Time Gap NS Nodes Time Gap NS Nodes Time Gap NS

1 8 588 834.70 1800.02 – 10 2 264 079.30 1800.02 – 10 2 250 650.90 1800.02 – 10
2 3 270 285.90 1800.02 – 10 2 958 550.20 1800.02 – 10 1 555 676.10 1260.02 0.00 7
3 1 953 241.10 1440.02 0.00 8 208 704.80 180.00 0.00 1 1.00 0.00 0.00 0
4 6 118 179.50 1800.02 – 10 5 664 468.00 531.92 12.50 2 1.00 0.00 0.00 0
5 3 845 140.70 900.01 0.00 5 1.00 0.00 0.00 0 1.00 0.00 0.00 0
6 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
7 13 665 269.40 1243.60 47.12 6 272 861.00 180.00 0.00 1 1.00 0.00 0.00 0
8 4759.60 5.58 10.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
9 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
10 457 626.30 185.53 0.00 1 1.00 0.00 0.00 0 1.00 0.00 0.00 0
11 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0
12 1.00 0.00 0.00 0 1.00 0.00 0.00 0 1.00 0.00 0.00 0

of jobs are performed in time which gives a small lower bound or equal to zero in
much cases. Therefore, the branch-and-bound algorithm cannot solve the problem
in 30 min.

However, for large values of α and β, the problem is very easy to solve and we
obtain the optimal solution at the root. We can notice also that when the number
of machines increases, the problem difficulty decreases even for the large number
of jobs.

The columns “Gap” of Tables 10–16 prove that the effectiveness of the lower
bound LBsplit since the average gap between the lower bound and the optimal
solution is equal to zero for many instances.

In summary, the branch-and-bound algorithm presented is efficient to solve
93.6% of problems with 50 jobs and 4 machines (see Tab. 17). Unfortunately, the
proposed algorithm could not solve the hardest problems with large size.
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Table 25. Percentage of solved problem for the problem P |rj |
∑

wjTj .

n 10 15 20 25
m 2 3 4 2 3 4 2 3 4 2 3 4

Solved problems 100 100 100 99.6 99.2 100 98.4 96.8 95.6 94.8 91.6 94.4

n 30 40 50
m 2 3 4 2 3 4 2 3 4

Solved problems 88.4 90.4 94 81.2 93.2 93.2 80 90.4 93.2

5.3.2. Branch-and-bound algorithm for Pm|rj |
∑

wjTj

In this section we present the computational results of the branch-and-bound
algorithm for the problem Pm|rj |

∑
wjTj . This algorithm uses the lower bound

LB5 and the genetic algorithm presented previously.
The tables presented are analogous to Tables given for the problem Pm|rj |

∑
Tj.

From Tables 18–24, we notice that the hardness to solve the problem depends
on the two parameters α and β like for the problem (P ): Pm|rj |

∑
Tj. We can

observe also that the hard problems to solve are the same as for the problem (P ).
Indeed, the groups 1 and 2 (α = 0 and β = 0.05, 0.25) are the most difficult to
solve and for a great number of jobs, the majority of instances are not solved in
30 min.

However, for the rest of problem groups, the branch-and-bound algorithm can
solve the most of instances within a reasonable amount of time and from the gap
between the optimal solution (when it is founded) and the lower bound used we
can see the effectiveness of LB5 since it gives the optimal solution in many cases.

The proposed algorithm can solve 98.4% of instances for problem with 20 jobs
and 2 machines and 93.2% of the 250 instances for problem with 50 jobs and
4 machines.

Table 25 gives the percentage of solved problem above the 250 instances gener-
ated for each combination of n and m. The results obtained prove the effectiveness
of our algorithm.

6. Conclusion

In this paper, we studied the identical parallel-machine scheduling problem to
minimize the total (weighted) tardiness with release dates. We provided some
lower bounds for the P |rj |

∑
Tj and P |rj |

∑
wjTj scheduling problems based on

different principles. Some of these lower bounds are efficient and allowed us to
construct a branch-and-bound method. Such a method incorporates constructive
rules and a genetic algorithm. The computational result show that the proposed
procedure is efficient and it can solve problems of a large size.

The extension of our lower bounds to shop scheduling problems is an interesting
perspective. Moreover, we aim to study other techniques such as the branch-and-
price approach.
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