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COMBINING ODOMETRY AND VISUAL LOOP-CLOSURE
DETECTION FOR CONSISTENT TOPO-METRICAL

MAPPING

S. Bazeille1 and D. Filliat1

Abstract. We address the problem of simultaneous localization and
mapping (SLAM) by combining visual loop-closure detection with met-
rical information given by a robot odometry. The proposed algorithm
extends a purely appearance-based loop-closure detection method based
on bags of visual words [A. Angeli, D. Filliat, S. Doncieux and J.-A.
Meyer, IEEE Transactions On Robotics, Special Issue on Visual SLAM
24 (2008) 1027–1037], which is able to detect when the robot has re-
turned back to a previously visited place. An efficient optimization
algorithm is used to integrate odometry information and to generate
a consistent topo-metrical map much more usable for global localiza-
tion and path planning. The resulting algorithm which only requires a
monocular camera and robot odometry data, is real-time, incremental
(i.e. it does not require any a priori information on the environment),
and can be easily embedded on medium platforms.

Keywords. SLAM, monocular vision, odometry, mobile robot, topo-

metrical map.
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1. Introduction

To navigate in their environment, humans and animals use several strategies,
from reactive guidance towards a visible goal to larger scale planning to reach
distant goals. These last strategies require the cognitive ability to build a map
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and to self-localize in it [31]. Maps-based navigation seems quite natural to humans
because using a map is a very convenient way to describe an environment but it
requires a lot of high level cognitive processes in order to interpret the map and
to establish correspondences with the real world. However, many ethological and
neurological studies showed that animals made also use of maps for navigation.

Building and using maps is based on two distinct sources of information. The
first is the internal information about the movements: speed, acceleration, leg
movements. The second provides external information about the environment. It
may be derived from vision, odor, or touch. For the animals, the integration of
these information for map building appear to take place in a part of the brain
called hippocampus [12]. The navigation problem for robots is very similar and
make use of the same information (e.g. odometry calculated from wheel rotation
and perceptions taken rotation and laser-range finders or camera), which lead
several author to propose navigation systems for robots inspired by neurobiological
findings (e.g. [22]). The approach proposed in this paper is not directly inspired
by biology, but has some key similarities with biological systems by using the same
subjective information and being completely autonomous and incremental without
requiring any information that would not be available for a human or an animal
in the same scenario.

In Sections 2 and 3 we present some related work and our previous work on
topological SLAM. In Section 4 we describe the new topo-metrical framework.
In Section 5 we show some experimental results and we finish in Section 6 by
discussing about this work and presenting some future work.

2. Related work

Over the last years, the increase in computing power pushed forward the use
of visual information in robotic applications. The camera sensor is often used
to replace the traditional range and bearing sensors because it provides many
advantages such as smaller size, lighter weight, lower energy consumption, and
above all a richer environmental information. The vision sensor is suitable for many
robotic applications such as user interaction or object and place recognition [1,4],
and has also been used in many SLAM solutions (e.g. [5,13,29]). SLAM [2] is
the process of localizing a mobile robot while concurrently building a map of its
environment.

The field of SLAM can be divided into topological and metrical approaches.
The topological approach which models the environment as a graph of discrete
locations often leads to simpler solutions. It is an abstract representation giving
just relations between environment locations. It is an easy to build map, suitable
for many kinds of environment and for human interactions. Its main drawback
comes from lack of geometric information that only allows a global localization
in previously mapped areas and local navigation with non optimal path planning.
On the contrary, the metrical map is explicitly based on measures (distances, po-
sitions, lengths). The representation of the environment is geometric and clearly
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Figure 1. (a) An example of topological map. (b) Inverted in-
dex structure used to estimate the likelihood between the current
image and images stored in the map.

corresponds to the real world. The localization can be done continuously and
planned navigation is easier. The major problem of this kind of map is due to
the required geometric consistency between position and perception which makes
the map hard to build. To overcome those problem, number of approaches have
attempted to use a combination of the two representations. For example, metrical
maps can be embedded into graphs of higher level to enhance scalability [9] or
other graph-based solutions can be used to infer a precise metrical position for
the robot, while still allowing for large scale mapping [18]. In our previous work,
we have developed [1] a real-time vision-based topological SLAM which presents
many advantages such as its incremental, real-time and easy embedded, but the
topological map created is not suitable for robot guidance (Fig. 1) because local-
ization is only possible in previously mapped areas and no information is stored
about the guidance of the robot between places. To enable global localization
and navigation we decide to extend our topological map to a topo-metrical maps
adding the metrical information given by the odometry data. The integration of
metrical information to the existing topological map and loop-closure detection
algorithm can be done in several ways. The most appealing solution to this prob-
lem is probably the use of visual odometry, where images coming from neighboring
nodes or image sequences taken between nodes are matched to estimate the robot
displacement [13,17,24,28,29]. Instead of estimating node positions, another solu-
tion is to use visual servoing, also known as vision-based robot control which uses
feedback information extracted from a vision sensor to control the motion of a
robot [6]. The robot can then be directly guided to the neighboring nodes without
explicitly computing their relative positions. The advantage of these solutions is to
use only vision, but they require a lot of processing and are not robust in absence
of visual information, in dark areas for example. Like several authors [8,11,27], we
have chosen the simpler solution of using the information given by robot odom-
etry. Odometry is often provided by robots, whether they be legged or wheeled,
to estimate their position relative to a starting location. The main drawback
of odometry is the continuous growth of error in the position estimate due to
the integration of noisy measurements over time. As a consequence, efficiently
using odometry information requires complementary information to enable a cor-
rection of this cumulative drift errors. This correction can be obtained through
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the position constraint given by the visual loop-closure detection when the robot
has returned at the position of a previous passing. These constraints, integrated
through the application of a relaxation algorithm, will make it possible to build a
topo-metrical map globally consistent. Different relaxation methods exist to deal
with this problem [7,14,16]. To solve the particular graph-based formulation of
SLAM problem in which the poses of the robots are modeled by nodes in a graph,
and constraints between poses resulting from observations or from odometry are
encoded in the edges between the nodes, recent solutions are more efficient [15,25].

3. Previous work: topological SLAM using Bayesian
filtering

Several vision-based techniques consider the problem of topological SLAM [13,
26] or topological localization [3,32], the main idea is to seek for the past images
that look similar to the current one and consider they come from close viewpoint.
To solve the image-to-node matching problem (based on a similarity measure be-
tween the current image and the images of a node previously visited), we decided
to use a maximum a posteriori scheme which exploits the similarity of image
sequences to reduce false alarms and ensure the temporal consistency of the esti-
mation (e.g. [21]). A complete description of the approach is given in [1], but a
short overview is provided here for clarity.

This method searches for the node Ni of the map that is the more similar to
the current image It, in other words, it searches for the node Ni that maximizes
the probability of loop-closure with the current image:

Ni = argmaxi=0,...,np(St = i|It, M) (1)

where St = i is event “It comes from Ni” and M = N0, ..., Nn is the map of the
environment. Bayes rule, marginalization and Markov assumption [1] lead to the
incremental computation of the a posteriori probability as follow:

p(St|It, M) = η. p(It|St, M)︸ ︷︷ ︸
likelihood model

.

n∑
j=0

p(St|St−1 = j, M)︸ ︷︷ ︸
transition model

p(St−1 = j|It−1, M)︸ ︷︷ ︸
a priori probability︸ ︷︷ ︸

prediction

. (2)

In this equation, the prediction is computed using the a priori probability (i.e. the
probability at the previous time step) multiplied by an evolution model diffusing
the probability of a node to its neighbors to take into account the robot motion
since last localization. Then, the result of this computation called prediction is
multiplied by the likelihood (number of correspondences between images through
a voting scheme) to obtain the a posteriori probability. The likelihood model is
computed using a representation of images as a set of unordered elementary visual
features (SIFT [20] and local color histograms) taken from a dictionary (i.e. the
bags of visual words model [10]). An inverted index makes it possible to very
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efficiently compute this likelihood in time linear with the number of visual words
of the current image (Fig. 1b).

To discard outliers we select the best loop-closure candidates after voting with
a multiple view geometry stage like [19,32]. In details we sort the probabilities
higher than a threshold and we verify in the descending order the potential loop-
closure detection by multiple-view geometry [23] (we try to find the fundamental
matrix between the two loop-closure images).

The presented topological SLAM method is simple real-time and fully incre-
mental (i.e. the environment model is learned on-line as the robot discovers its
surroundings) and uses only appearance information from a single camera to build
a topological map of the places the robot is visiting. But it suffers from the lack
of metrical information that makes the map ill-posed for robot guidance.

4. System overview

To add the metrical information in the map and make the graph more usable for
global localization and navigation, we have chosen the simpler solution of using the
information given by odometry data. Because we dispose of such an information we
also change the Bayesian framework including a much more informative evolution
model to make the prediction more accurate and so make the loop-closure detection
reliable. An overview of the new algorithm is detailed in Figure 2. Although
this solution requires a second sensor for odometry, the information provided also
efficiently complements the image data in situations where visual information is
unusable or unavailable (e.g. sensor occlusion, strong lighting change, dark areas),
giving an estimating of the robot position. The inclusion of metric information
in our previous algorithm to obtain a consistent topo-metrical mapping required
four main modifications:

• images previously acquired at 1 Hz are now acquired with the relative
odometry when the robot has moved enough from its previous position
(images do not need to be processed when the robot do not move);

• the Gaussian transition model is replaced by an odometry based transition
model in the Bayesian filter;

• the geometry validation stage is modified to constrain loop-closure to be
detected only for very close locations;

• the relative position between nodes is recorded on each link of the graph
and we apply a relaxation algorithm each time a loop-closure is detected
to correct cumulative odometry drift.

4.1. Adding coherent metrical information

The topological map is a graph constituted of a set of nodes associated with
an image and linked by edges. We integrated metrical information in two forms
in order to produce a topo-metrical map. First, each node is associated with
an absolute position in the map (x, y, θ), where x and y are the 2D position
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Figure 2. Processing diagram of the topo-metrical map construction.

coordinates and θ an angle representing the direction of the robot when the image
was taken. Secondly, the edges are associated with a relative position between two
nodes defined by (d, α, φ), where d and α are the polar coordinates of the second
node in the coordinate space of the first, and φ is the difference angle between the
two nodes direction.

During the localization and mapping process, each time a new image is acquired,
a new location is created. When a loop-closure is detected this location is added
as a similar location to the existing loop-closing node and we apply a relaxation
algorithm to estimate the position of nodes that best satisfied the loop-closure
constraints (Fig. 3). The relaxation algorithm we choose is the Tree-based network
optimizer (TORO) [15], because of its speed and its high efficiency. TORO is an
extension of Olson’s algorithm [25] which introduced a tree-based parametrization
for the nodes in the graph. It is based on a graph-formulation of the SLAM
problem and applies a gradient descent-based optimization schemeto estimate the
consistent node configuration which maximally satisfies the odometry constraints
between nodes.

4.2. Including odometry in the evolution model

In the original framework, the evolution model used to obtain the prediction
given the a priori probability applied a diffusion of the probability over the neigh-
boring locations in the graph. The weight was defined as a sum of Gaussian
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Figure 3. Illustration of the graph relaxation process.

centered on the current location (Fig. 5, top). The limitation of this model is that
diffusion is done in all directions without preference, because it only assumes that
the neighboring images in time are close together, without any information about
the real robot movement.

Because a reliable metrical information is now available, we can integrate odom-
etry in the evolution model to predict more precisely the evolution of the proba-
bility. Thus, the evolution model can then takes into account not only the nodes
topological proximity, but also their relative position. To do so, starting from a
given node, we distribute the probability to each neighboring location in the map
depending on the deviation of these nodes relative positions with the robot dis-
placement since the last update du, αu, φu measured by odometry (Fig. 5, bottom).
We used the standard motion model for robot odometry [30], assuming gaussian
noise on the robot displacement measured in polar coordinates:

p(d, α, φ|du, αu, φu) = Gμd,σd
(d − du)Gμθ ,σθ

(α − αu)Gμφ,σφ
(φ − φu) (3)

where d, α gives the odometry displacement in polar coordinates in the frame of the
previous robot position and φ is the variation of robot direction during movement.
Gμ,σ(X) is the gaussian distribution of mean μ and variance σ2. Using this model,
the evolution model becomes:

p(Si|Sj , ut, M) = Gμd,σd
(dij − du)Gμθ,σθ

(θij − θu)Gμφ,σφ
(φij − φu) (4)

where ut = du, θu, φu gives the odometry displacement and dij , θij , φij is the rela-
tive position between nodes i and j. The substitution makes the prediction of the
a posteriori probability more precise, improving robustness and responsiveness
of the algorithm. This will make it possible to enhance the reactivity of loop-
closure detection, which required several consecutive effective loop-closure before
detection in the original approach.
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Figure 4. (a) Samples of the images used in our experiment
(Museum). (b) Examples of the loop-closure validation images
(on two couples of images previously accepted by the epipolar
geometry the first one is now rejected with the new validation
stage) (Office sequence).

Figure 5. Illustration of the modification of the evolution model.
Top: the original model only takes the graph connectivity into ac-
count when propagating probability from node j to node i. Bot-
tom: including odometry, the new evolution model is more precise
and preferentially propagates probability from node j to the nodes
i that corresponds to a movement coherent with the odometry.

4.3. Validating loop-closures

When a loop-closure is detected by the Bayesian filter, the robot is assumed to
have returned exactly at the position of a previous passing. By constraining the
two nodes of the graph to have the same position, we correct the cumulative noise
of odometry but we make the map incoherent if the loop-closure is not valid (false
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Figure 6. Two topo-metrical maps generated though our algo-
rithm (Museum sequences). On the left the raw odometry, on the
right the corrected topo-metrical map.

alarm) or not accurate (important translation or rotation between the two images).
That is why the acceptance policy of loop-closure has been modified to only accept
loop-closure with very close views thereby allowing only small variations between
the corresponding positions and orientations (Fig. 4, right). This acceptance policy
requires that 90% of the SIFT points matched between the two images validate
the epipolar geometry constraints, and additionally, that the total displacement
of these points in the image space is below a threshold.

5. Experimental results

To demonstrate the quality of the approach we have used data acquired with a
Pioneer 3 DX mobile robot. The robot was guided to do some loops in an indoor
environment showing strong perceptual aliasing conditions (several distinct places
looks similar). Figure 4 shows image samples taken from the run (Museum and
Office). As a landmark we stop the run precisely on the path previously taken
(and with the same direction). The images and the odometry relative information
were taken each time the robot moves at least 50 cm or turns of at least 30 degrees
(Figs. 6, right, 7, top). We can clearly see in Figure 7 the work of the relaxation
to correct the odometry drift.
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Figure 7. Example of topo-metrical map generated (Office sequence).

Besides the build of consistent topo-metrical map, the use of odometry in the
evolution model improves the responsiveness and the robustness of the algorithm:
during the experiment, only two consecutive similar frames are now required before
effective loop-closure detection, instead of three or four with the original model
and successive loop-closure are always detected when taking a path that has al-
ready been taken (Fig. 8). Multiple loop-closure detection on the same node while
the robot is moving and loop-closure detection from distant places which make the
map not consistent with the environment are also discarded, thanks to the odom-
etry consideration and the use of drastic loop-closure acceptance conditions. The
new image acquisition policy enforces a more regular sampling of positions in the
environment, independent of the robot velocity and also reduces the computational
burden of the algorithm when the robot is not moving.

6. Conclusion and future work

We have introduced in this paper a system that is able to build a topo-metrical
map in real time while a robot is discovering an unknown environment. The
developed framework is an extension of our previous work on real time visual
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Figure 8. Comparison between the previous and the novel evo-
lution model on the first loop-closure of the sequence (Museum).
We can consider on this 1.5 m of the run four loop-closure lo-
cations. The loop-closure detected using the odometry evolution
model corresponds to the ground truth, but those using the Gauss-
ian transition model are visually correct but are inconsistent with
the robot trajectory as they present a gap between detections
(image 47 is not matched).

loop-closure detection [1] to which we added metrical information given by robot
odometry. It builds topo-metrical map instead of the existing topological map and
replaced the evolution model of the Bayesian filter with a new odometry-based
model.

The extended algorithm, which only requires a monocular camera and odome-
try data, is more robust, more responsive and still does not require any a priori
information on the environment. It is a simple solution, which works in real-time
and which can be easily embedded on medium platforms. The resulting map is
geometrically consistent and is usable for robot guidance.

Our future work will be to optimize visual processing to reduce computational
cost and to implement this framework on mobile toy robots using remote process-
ing methods. Using remote processing will notably requires to embed odometry
processing and guidance on the platform while performing image processing and
relaxation on remote servers in an asynchronous process.
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