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Introduction

Modeling and optimization of real world problems typically require taking into
account considerable and sometimes very large number of variables and parameters
which may interrelate in complex and nonlinear manner. In addition, usually
simultaneous optimizations of several objectives that may have conflict nature
are interested. Increasing the number of variables, objectives and complexity of
structures lead to introducing one of the most challenging optimization problems
which is called multiple objective large scale nonlinear programming problems
(MOLSNLP). In these problems, because of involving large number of variables
in nonlinear objectives and constraints besides multiple conflicting objectives, the
computational complexity increases sharply and obtaining efficient solutions in a
less time and efficient manner becomes harder. However, fortunately when real
world problems are modeled as large-scale programming problems, most of them
usually have some special structures that can be handled efficiently. Block angular
structure is one these special structures. More information about the large scale
programming problems and their common structures can be found in [7,11].

In the large scale programming literature, introducing the decomposition al-
gorithm by Dantzig-Wolfe [5,6] had an influentional impact on the subsequent
researches on large-scale linear and nonlinear programming problems which have
block angular structure. This leads to noticeably increasing the number of re-
searches on the large scale programming problems with block angular
structures [8,9,16]. Some of these works focused on extending and applying MCDM
models to deal with multi-objective nonlinear programming problems in large-
scale context. Abo-sinna et al. [1] extended the TOPSIS method for MOLSNLP
problems. They used the concept of extended TOPSIS for Multiple Objective
Decision Making (MODM) problems introduced by Lai et al. [10]. Recently, be-
cause of the advantages and high potentials of the VIKOR method [14,15], many
researches are conducted to use the VIKOR method for dealing with decision-
making problems in different areas. Opricovic developed a fuzzy VIKOR method
to solve MADM problem in a fuzzy environment where both criteria and weights
could be fuzzy sets [13]. Sayadi et al. [17] extended the VIKOR method for
solving MADM problem with interval numbers. Buyukozkan et al. [3] used the
fuzzy VIKOR method for evaluation of suppliers’ environmental management per-
formances. Tong et al. [18] applied VIKOR method to optimize multi-response
processes. Chu et al. [4] compared the properties of SAW, TOPSIS and VIKOR
methods for knowledge communities’ group-decision analysis. They reveal that the
VIKOR method produces different rankings than those from TOPSIS and SAW,
in addition, it makes easy to choose appropriate strategies.

In this paper, for the first time in continues decision-making literature we extend
the VIKOR method to solve MOLSNLP problem. To do this, the Dantzig-Wolfe
decomposition algorithm is applied to decompose a Y -dimensional objective space
with N decision variables to N sub-problems that have Y objective functions with
one variable. Afterward, for each sub problem, based on the extended concepts
of VIKOR method, objective functions are aggregated as an equation. Finally,
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these N equations are combined into a single objective optimization problem that
can be solved using conventional methods. In the following section, we will give
the formulation of MOLSNLP problem with block angular structure for which
the Dantzig-Wolfe decomposition algorithm has been successfully applied. The
extended VIKOR method is presented in Section 2. For the sake of illustration,
a numerical example is given in Section 3. Finally, conclusion is remarked is
Section 4.

1. Problem formulation

Consider a convex Multi-Objective Large-Scale Non Linear Programming prob-
lem

max (min) Fy(fy1(x1), fy2(x2), . . . , fyN(xN )) y = 1, 2, . . . , Y, Y ≥ 2

S.t. FS =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gm(x1) ≤ 0 m = 1, . . . , s1

gm(x2) ≤ 0 m = s1 + 1, . . . , s2

...
...

gm(xN ) ≤ 0 m = sr−1 + 1, . . . , M

Hi(X) =
∑N

j=1 hij(xj) ≤ 0 i = 1, . . . , t

(1.1)

where X = (x1, . . . , xN )is the N -dimensional decision vector, Fy , y = 1, . . . , Y
are the objective functions. Note that the set of first M constraints are called
common constraints and they are convex real valued functions on RN . The
objective functions and the constraints are also assumed to have an additively
separable form. Note that any (or all) of the functions may be nonlinear.

Using the Dantzig-Wolfe decomposition algorithm the MOLSNLP problem (1.1)
can be decomposed into N sub-problems as shown in the following lines. The kth
sub-problem (Pk) for k = 1, . . . , N is defined as:

max (min) f1k(xk)

max (min) f2k(xk)
...

max (min) fY k(xk)
S.t.

(x1, x2, . . . , xN ) ∈ FS. (1.2)

2. Extension of VIKOR method for MOLSNLP

The VIKOR method was introduced by Opricovic in 1998 [12] as one appli-
cable technique to be implemented within MCDM. It was developed as a multi-
attribute decision-making method to solve a discrete decision making problem with
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incommensurable (different units) and conflicting criteria. This method focuses on
ranking and selecting from a set of alternatives, and determines compromise solu-
tion for a problem with conflicting criteria, which can help the decision makers to
reach a final solution. The compromise solution is a feasible solution, which is the
closest to the ideal, and compromise means an agreement established by mutual
concessions. The multi-criteria measure for compromise ranking is developed from
the l − p metric used as an aggregating function in a compromise programming
method [19].

In this section, we extend the VIKOR method to solve MOLSNLP problems
formulated as (1.1). To do this, first, the MOLSNLP problem is decomposed into
N sub-problems as shown in (1.2). Then the Positive Ideal Solution (PIS) and
Negative Ideal Solution (NIS) for Pk, k = 1, . . . , N are computed. Afterward,
Sk and Rk for k = 1, . . . , N are obtained. In the next step S∗

k , S−
k , R∗

k and
R−

k are computed. Finally, Qk for k = 1, . . . , N are obtained and combined
into a single objective optimization problem. Using this approach, we transfer Y
incommensurable and conflict objectives into a single objective function that can
be solved using the conventional methods. The proposed approach is described as
follows:

for Pk, k = 1, . . . , N , we indexed the benefit and cost objectives as follows:

fbk(xk) = Benefit objective for maximization b ∈ B, B ⊆ Y (2.1)

fck(xk) = Cost objective for maximization c ∈ C, C ⊆ Y. (2.2)

In order to compute PIS and NIS, following formulas are used:

f∗
ik =

{
max

X∈FS
(min) fbk(xk) (fck(xk)), ∀b (∀c)

}
for i = 1, . . . , Y (2.3)

f−
ik =

{
min

X∈FS
(max) fbk(xk) (fck(xk)), ∀b (∀c)

}
for i = 1, . . . , Y (2.4)

where b ∈ B and c ∈ C, B, C ⊆ Y . f∗
k = {f∗

1k, . . . , f∗
Y k} and f−

k = {f−
1k, . . . , f−

Y k}
are the sets of individual positive and negative ideal solutions where each of them
is a point solution in the Y-dimensional objective functional space.

In order to solve discrete decision-making problems using the VIKOR method,
the l − p metric with p = 1 as Sk and p = ∞ as Rk is used. In the same way,
for continues decision-making problems we can use the same formulas. In this
situation, Sk and Rk are functions not discrete real values. Therefore, the concept
of l − p metric distances in continues environment [2,19] are as follows: for Sk:

Sk =
∑
b∈B

wb

(
f∗

bk − fbk(xk)
f∗

bk − f−
bk

)
+
∑
c∈C

wc

(
fck(xk) − f∗

ck

f−
ck − f∗

ck

)
k = 1, . . . , Y (2.5)
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where, wi, i = 1, . . . , Y are the weights of objectives that express their relative
importance. Note that Sk is interpreted as “group desirability” or “majority”
function and can provide the decision makers with information about the measure
of “group desirability” in the decision made. The RK also is the function in
terms of fbk or fck which has maximum distance from the PIS. To obtain Rk, the
following problem should be solved.

min
X∈FS

max
{

wb

(
f∗

bk − fbk(xk)
f∗

bk − f−
bk

)
, wc

(
fck(xk) − f∗

ck

f−
ck − f∗

ck

)}
k = 1, . . . , Y (2.6)

which is equivalent to the following λ-problem:

min λ

S.t. wb

(
f∗

bk − fbk(xk)
f∗

bk − f−
bk

)
≤ λ b ∈ B

wc

(
fck(xk) − f∗

ck

f−
ck − f∗

ck

)
≤ λ c ∈ C

X = (x1, x2, . . . , xN ) ∈ FS. (2.7)

If X∗
k = (x∗

1k, . . . , x∗
Nk) is the optimal point of (2.6) and for this point, the inequal-

ity constraint b+ (or c+) is the active constraint (it is satisfied as equal), then Rk

is the left terms of activated constraint as follows:

Rk = wb+

(
f∗

b+k − fb+k(xk)
f∗

b+k − f−
b+k

) {
or wc+

(
fc+k(xk) − f∗

c+k

f−
c+k − f∗

c+k

)}
(2.8)

where Rk is interpreted as “individual regret” function and can provide the decision
makers with information about the measure of “individual regret” in the decision
made. Note that if more than one constraint is active we choose the constraint
that the values of R∗

k is minimum and if more than one constraint has the same
minimum value, we choose the constraint that the values of R−

k is maximum.
Otherwise, we can choose any of them as Rk.

For the obtained functions, Sk and Rk, the following values are computed:

S∗
k = min

X∈FS
Sk S−

k = max
X∈FS

Sk (2.9)

R∗
k = min

X∈FS
Rk R−

k = max
X∈FS

Rk. (2.10)
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Then Qk as a function of xk, is obtained as follows:

Qk = ν

(
Sk − S∗

k

S−
k − S∗

k

)
+ (1 − ν)

(
Rk − R∗

k

R−
k − R∗

k

)
(2.11)

where, ν is introduced as weight of the strategy of decision-making and can in-
terpreted as “voting by majority rule” (when ν > 0.5), or “by consensus” (when
ν = 0.5) or “with veto” (when ν < 0.5). In this situation, the decision maker(s)
can impose his/her (their) opinions in the process of decision making by choosing
the value of ν.

To obtain compromise solution of (1.1), we choose the closest solution to the PIS
that is equivalent to minimize all of Qk functions for k = 1, . . . , N . This is based
on the assumption that the decision maker would like to choose the decisions that
minimize the sum of weighted distances from the optimal group desirability (S∗

k)
and the optimal individual regret (R∗

k). To do this, N objectives (Qk, k = 1, . . . , N)
are transformed into the following single objective problem.

min α

S.t. Q1 ≤ α

Q2 ≤ α

...
QN ≤ α⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gm(x1) ≤ 0 m = 1, . . . , s1

gm(x2) ≤ 0 m = s1 + 1, . . . , s2

...
...

gm(xN ) ≤ 0 m = sr−1 + 1, . . . , M

Hi(X) =
∑N

j=1 hij(xj) ≤ 0 i = 1, . . . , t.

(2.12)

After solving this problem, the obtained solution is a compromise solution of the
problem (1.1). Then by substituting the compromise solution vector in (1.1), the
values of objective functions are computed.

In special cases where, x1, x2, . . . , xN are independent, we can use the following
model instead of model (2.12).

min Q = Q1 + Q2 + . . . + QN

S.t.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gm(x1) ≤ 0 m = 1, . . . , s1

gm(x2) ≤ 0 m = s1 + 1, . . . , s2

...
...

gm(xN ) ≤ 0 m = sr−1 + 1, . . . , M

Hi(X) =
∑N

j=1 hij(xj) ≤ 0 i = 1, . . . , t.

(2.13)
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3. An illustrative example

In this section, we present a simple example that obviously is not large scale, to
illustrate the steps of the proposed approach. Consider the following Vector Opti-
mization Problem (VOP). This example has been adopted from the reference [1].

max f1(X) = x2
1 + x2

2 + x2
3

max f2(X) = (x1 − 1)2 + x2
2 + (x3 − 2)2

min f3(X) = 2x1 + x2
2 + x3

S.t. FS : {(x1, x2, x3)|x1 − 3x2 + 4x3 ≤ 6, 2x2
1 + 3x2 + x3 ≤ 10,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2}. (3.1)

As mentioned in Section 2, using the Dantzig-Wolfe decomposition algorithm, the
VOP is decomposed into the following sub-problems:

P1 :

max f11(x1) = x2
1

max f21(x1) = (x1 − 1)2

min f31(x1) = 2x1

S.t. (x1, x2, x3) ∈ FS : (3.2)

P2 :

max f12(x2) = x2
2

max f22(x2) = x2
2

min f32(x2) = x2
2

S.t. (x1, x2, x3) ∈ FS : (3.3)

P3 :

max f13(x3) = x2
3

max f23(x3) = (x3 − 2)2

max f33(x3) = x3

S.t. (x1, x2, x3) ∈ FS : (3.4)

Then the following steps are done to solve sub-problems (3.2)–(3.4).

Step 1. Q1 for sub-problem P1 is obtained as follows:
Step 1.1. The PIS and NIS are obtained using (2.3) and (2.4). The results are
shown in Tables 1 and 2 respectively.
Step 1.2. In order to get numerical solutions, let us assume that the relative
importance (weights) of objectives are the same among these objectives (w1 =
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Table 1. PIS payoff table of P1.

f1 f2 f3 x1 x2 x3

max f11(x1) 5.0001∗ 1.5279 4.4722 2.2361 0 0
max f21(x1) 5.0001 1.5279∗ 4.4722 2.2361 0 0
min f31(x1) 0 1 0∗ 0 0 0

PIS: f∗
1 = (5.0001, 1.5279, 0).

Table 2. NIS payoff table of P1.

f1 f2 f3 x1 x2 x3

min f11(x1) 0− 1 0 0 0 0
min f21(x1) 1 0− 2 1 0 0
max f31(x1) 5.0001 1.5279 4.4722− 2.2361 0 0

NIS: f−
1 = (0, 0, 4.4722).

w2 = w3 = 1
3 ). In this step S1 and R1 are obtained using the formulas (2.5)

and (2.7) respectively. The simplified relation of S1 is obtained as follows:

S1 = −0.2848x2
1 + 0.5853x1 + 0.4485

in addition, for R1 we have:

min λ

S.t.
1
3

(
5.0001− x2

1

5.0001− 0

)
≤ λ

1
3

(
1.5279− (x1 − 1)2

1.5279− 0

)
≤ λ

1
3

(
2x1 − 0

4.4722− 0

)
≤ λ

X ∈ FS

where, the optimal point of this problem will be (1.6388, 0, 0) with λ∗ = 0.2443.
In the optimal point, the second and third constraints are active and since the
values of R∗

1 and R−
1 for both constraints are the same, we can choose any of them

as R1. Here we choose the second constraint, so simplified R1 is as follows:

R1 = −0.2181x2
1 + 0.4363x1 + 0.1152.

Step 1.3. S∗
1 , S−

1 , R∗
1 and R−

1 are computed using (2.9) and (2.10). The results
are shown in Table 3.
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Table 3. S∗
1 , S−

1 , R∗
1 and R−

1 for P1.

x1 x2 x3

S∗
1 = 0.3333 2.2361 0 0

S−
1 = 0.7492 1.0276 0 0
R∗

1 = 0 2.2361 0 0
R−

1 = 0.3333 1 0 0

Table 4. PIS payoff table of P2.

f1 f2 f3 x1 x2 x3

max f12(x2) 11.1109∗ 11.1109 11.1109 0 0.3333 0
max f22(x2) 11.1109 11.1109∗ 11.1109 0 0.3333 0
min f32(x2) 0 0 0∗ 0 0 0

PIS: f∗
2 = (11.1109, 11.1109, 0).

Table 5. NIS payoff table of P2.

f1 f2 f3 x1 x2 x3

min f12(x2) 0− 0 0 0 0 0
min f22(x2) 0 0− 0 0 0 0
max f32(x2) 11.1109 11.1109 11.1109− 0 0.3333 0

NIS: f−
2 = (0, 0, 11.1109).

Step 1.4. In this step, assuming ν = 0.5, Q1 is obtained using (2.11). The
simplified result is as follows:

Q1 = −0.6696x2
1 + 1.3582x1 + 0.3112.

Step 2. Similar to step 1, the following steps are done to obtain Q2 for sub-
problem P2.
Step 2.1. Using (2.3) and (2.4), PIS and NIS are computed for p2. The results
are shown in Tables 4 and 5 respectively.
Step 2.2. S2 and R2 are obtained using (2.5) and (2.8) respectively as follows:

S2 = −0.0300x2
2 + 0.6667

also similar to the Step 1.2, R2 is obtained as:

R2 = −0.0300x2
2.

Step 2.3. S∗
2 , S−

2 , R∗
2 and R−

2 are computed using (2.9) and (2.10). The results
are shown in Table 6.
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Table 6. S∗
2 , S−

2 , R∗
2 and R−

2 for P2

x1 x2 x3

S∗
2 = 0.3333 0 3.3333 0

S−
2 = 0.6667 0 0 0
R∗

2 = 0 0 0 0
R−

2 = 0.3333 0 3.3333 0

Table 7. PIS payoff table of P3.

f1 f2 f3 x1 x2 x3

max f13(x3) 4∗ 0 2 0 2 2
max f23(x3) 0 4∗ 0 0 0 0
min f33(x3) 0 4 0∗ 0 0 0

PIS: f∗
3 = (4, 4, 0).

Table 8. NIS payoff table of P3.

f1 f2 f3 x1 x2 x3

min f12(x2) 0− 4 0 0 0 0
min f22(x2) 4 0− 2 0 2 2
max f32(x2) 4 0 2− 0 2 2

NIS: f−
3 = (0, 0, 2).

Step 2.4. Then Q2 is obtained using (2.11) as follows:

Q2 = 0.00001x2
2 + 0.5.

Step 3. Similar to the above steps, we obtain Q3 for P3.
Step 3.1. PIS and NIS are computed using (2.3) and (2.4)for p3. The results are
shown in Tables 7 and 8 respectively.
Step 3.2. Then S3 and R3 are obtained using (2.5) and (2.8 respectively as
follows:

S3 = −0.1667x2
3 + 0.5x3 + 0.3333

and R3 is obtained as:
R3 = −0.0833x2

3 + 0.3333.

Step 3.3. S∗
3 , S−

3 , R∗
3 and R−

3 are computed using (2.9) and (2.10). The results
are shown in Table 9.
Step 3.4. Then Q3 is obtained using (2.11) as follows:

Q3 = −0.3473x2
3 + 0.6668x3 + 0.5.
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Table 9. S∗
3 , S−

3 , R∗
3 and R−

3 for P3.

x1 x2 x3

S∗
2 = 0.3333 0 0 0

S−
2 = 0.7082 0 0 1.4997

R∗
2 = 0.0001 0 2 2

R−
2 = 0.3333 0 0 0

As mentioned before, in order to obtain the compromise solution of (3.1), we need
to minimize Q1, Q2 and Q3. To do this, we use model (2.12).

Now, we use Q1, Q2 and Q3 in the following model:

min α

S.t. − 0.6696x2
1 + 1.3582x1 + 0.3112 ≤ α

0.00001x2
2 + 0.5 ≤ α

−0.3473x2
3 + 0.6668x3 + 0.5 ≤ α

x1 − 3x2 + 4x3 ≤ 6

2x2
1 + 3x2 + x3 ≤ 10

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 4
0 ≤ x3 ≤ 2. (3.5)

As seen, the above problems is a quadratic problem and if we use the Lingo
software to solve this problem, the compromise solution is obtained as X∗ =
(1.7331, 0.7802, 1.6518) with λ∗ = 0.6538, that is the compromise solution of
VOP (3.1). Note that for X∗ the first and second constraints of FS are active.
For this point, the values of objectives are computed as follows:

FExtended VIKOR = (6.3408, 1.2647, 5.7267).

As mentioned in the introduction, Abo Sinna et al. [1] proposed the extended
TOPSIS method to solve MOLSNLP problems. To make comprehensive compar-
isons between extended VIKOR and extended TOPSIS we used above example to
illustrate the solution procedure of the extended TOPSIS in solving the MOLSNLP
problems and clarify the advantages of the proposed method. The solution proce-
dure of the extended TOPSIS summarily is as follows: in the extended TOPSIS,
as similar to extended VIKOR, for each sub-problem Pk using the (2.3) and (2.4)
the PIS and NIS are obtained and then using the l − p metric with p = 2 two
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following distances as function distances from the PIS and NIS are computed.

dPIS
2 =

∑
b∈B

w2
b

(
f∗

bk − fbk(xk)
f∗

bk − f−
bk

)2

+
∑
c∈C

w2
c

(
fck(xk) − f∗

ck

f−
ck − f∗

ck

)2

(3.6)

dNIS
2 =

∑
b∈B

w2
b

(
fbk(xk) − f−

bk

f∗
bk − f−

bk

)2

+
∑
c∈C

w2
c

(
f−

ck − fck(xk)
f−

ck − f∗
ck

)2

· (3.7)

The compromise solution of the extended TOPSIS is a solution that minimizes
dPIS
2 and simultaneously maximizes dNIS

2 . In order to obtain a compromise so-
lution, the following bi-objective problem with two commensurable (but often
conflicting) objectives must be solved:

min dPIS
2

max dNIS
2

S.t. X ∈ FS. (3.8)

Finally, the concept of membership function of fuzzy set theory is used to represent
the satisfaction level for both criteria. Then, by applying the max−min decision
model which is proposed by Bellman and Zadeh and extended by Zimmermann [20]
the compromise solution of extended TOPSIS is obtained.

Following the above steps for the example at hand and solving (3.8) for each
sub-problem P1,P2 and P3, The compromise solution of the extended TOPSIS for
VOP (3.1) is as follows:

X∗
Extended TOPSIS = (0, 0, 1.1722)

where, for this point, the values of objectives are obtained as follows:

F ∗
Extended TOPSIS = (1.3741, 1.6853, 1.1722).

As we can see, the compromise solution of the extended TOPSIS is completely
different from the compromise solution of the proposed approach. This difference
arises from the different philosophies of conventional TOPSIS and conventional
VIKOR methods that elaborately discussed in [14]. Note that, the obtained com-
promise solutions are non-dominated and each of them can be chosen as a pareto
optimal solution of VOP (3.1). However, the proposed approach has advantages
that convince the decision maker or analyzer to choose the proposed method. The
main advantages of this method are as follows:

The extended VIKOR method uses the linear l − p metric (P = 1 and P =
∞) and helps that the complexity (the degree of nonlinearity) of the aggregated
objective function (Q) remains unchanged. Whereas, because of the application
of l−p metric with P = 2, the complexity of aggregated functions in the extended
TOPSIS in comparison with the objective functions of main problem quadratically
increase that is a major concern in the handling of nonlinear problems especially
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large scale ones. In addition, the proposed method reduce a multi-dimensional
objective space to a one-dimensional space whereas, the reduced objective space
in the extended TOPSIS has two dimensions and it is still needs to other reduction
to reduce bi-objective space to a single objective space.

Moreover, in the process of decision making of the proposed approach, two type
weights are considered, one is that of the objective functions and the other is the
weight of the strategy of decision making (ν). The weight of strategy enables the
decision maker to impose his/her thought about the relative importance and the
role of “majority rule” and “individual regret” in the decision-making process.
Clearly, in this situation, the decision maker can choose the value of 0 ≤ ν ≤ 1
that is satisfies his/her willingness in a higher level.

On the other hand, beside the relative advantages of extended VIKOR method,
Extended TOPSIS method is based upon the principle that the compromise so-
lution should have the shortest distance from the PIS and the farthest from the
NIS. While, in the proposed approach the distance from the ideal solution is a
major concern that can be the rationale of human choice. Because, being far away
from negative ideal solution could be a goal only in a particular situations. There-
fore, in general, it is logical that the decision maker wants to choose the closest
compromise solution to the ideal solution.

4. Conclusion

In the present paper, the VIKOR method has been extended to solve Multi-
Objective Large-Scale Nonlinear Programming (MOLSNLP) problems with block
angular structure. In the proposed method, first, the Dantzig-Wolfe decomposi-
tion algorithm was applied to decompose MOLSNLP into sub problems. Then the
extended concepts of VIKOR method was used to obtain an equation for each sub
problem. Afterward, these equations were combined into a single objective prob-
lem that could be solved by conventional methods. The analysis of the proposed
method reveal that, the extended VIKOR method has good advantages in com-
parison with the same methods and it is a good alternative to handle MOLSNLP
problems.
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