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LEXICOGRAPHIC α-ROBUSTNESS: AN APPLICATION
TO THE 1-MEDIAN PROBLEM
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Abstract. In the last decade, several robustness approaches have
been developed to deal with uncertainty. In decision problems, and
particularly in location problems, the most used robustness approach
rely either on maximal cost or on maximal regret criteria. However, it
is well known that these criteria are too conservative. In this paper, we
present a new robustness approach, called lexicographic α-robustness,
which compensates for the drawbacks of criteria based on the worst
case. We apply this approach to the 1-median location problem under
uncertainty on node weights and we give a specific algorithm to de-
termine robust solutions in the case of a tree. We also show that this
algorithm can be extended to the case of a general network.
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regret.
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1. Introduction

Robustness analysis looks for solutions in a context where the imprecise, un-
certain and generally ill-defined parameters of a problem make inappropriate the
search for optimal solutions [28,34]. In such a case, uncertainty or imprecision on
parameters is modelled by scenarios represented either by a discrete set or by a
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cartesian product of intervals. The most used robustness criteria rely either on
the maximal cost or on the maximal regret [19]: a robust solution is one that
minimizes the maximal cost or regret among all scenarios. Nevertheless, grasping
the notion of robustness through only one measure (the maximal cost or regret) is
questionable, since this leads to favor only the worst case scenario which is quite
conservative. Furthermore, no tolerance is considered in this measure.

These major drawbacks of the criteria founded on the worst case suggest con-
sidering alternative robustness criteria. In the case of deterministic public location
problems where a maximum cost function has to be minimized, Ogryczak departs
from considering only the worst case by introducing the notion of lexicographic
minimax [22]. In this paper, we use and extend this idea in order to define a new
robustness approach when the set of scenarios is discrete. Such a representation
of uncertainty is commonly used in strategic problems like location problems to
represent future alternatives [14,25,31].

Our paper is organized as follows. In Section 2, we define the 1-median problem
and review the main works on robustness for this problem. In Section 3, we
introduce a relation called α-leximax, and use it to define a set of robust solutions.
In Section 4, we apply our robustness approach to the 1-median problem on a tree
for which we present a specific algorithm that finds the robust points of the tree.
In Section 5, we extend our results to general networks. In the final section, we
summarize the important points of this work and suggest some perspectives.

2. Literature review

Network location problems are aimed at locating new facilities in order to meet
the demand of a certain number of customers [8]. Demand and travel between
demand sites and facilities are assumed to occur only on a graph G = (V, E)
composed of a set V = {vi, i = 1, . . . , n} of n nodes (or vertices) and a set E of m
edges. The length of each edge (vi, vj), i.e. the distance between site vi and site
vj , is denoted cij . We assume that demands occur only at the nodes of the network
and that they can be characterized by a weight vector W = (w1, w2, . . . , wn) where
wi is the weight associated with node vi for i = 1, . . . , n.

The absolute 1-median problem is to locate the absolute median of a graph G,
that is the point of G which minimizes the total weighted distance to all nodes of
the graph. A point of the graph corresponds either to a node or to any point on
an edge. Let us denote d(a, b) the minimum distance between two points a and b
of G. The 1-median problem is formulated as follows:

min
x∈G

C(x) =
n∑

i=1

wid(x, vi). (2.1)

As shown in [13], an absolute median of a graph necessarily lies on a vertex of the
graph. The absolute 1-median problem is then equivalent to the vertex 1-median
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problem which can be written as:

min
v∈V

C(v) =
n∑

i=1

wid(v, vi). (2.2)

Consequently, given all distances d(vi, vj), the problem can be solved in O(n2)
time by enumerating and evaluating the n possible solutions.

Deterministic approaches assume that the problem parameters (node weights
and edge lengths) are fixed and well known. In practice, however, it often appears
difficult to determine in a reliable and irrevocable way all the data of a given
problem. The decision-maker is often confronted by uncertainty that makes the
deterministic reasoning inappropriate.

Let us assume that the node weights and the edge lengths can take many dif-
ferent values and that there is a set S of possible scenarios (possible values of the
parameters). For a given scenario s and a point x of G, the cost function under
scenario s is defined as follows:

Cs(x) =
n∑

i=1

ws
i d

s(x, vi) (2.3)

where ws
i and ds(a, b) denote respectively the weight of node vi and the minimum

distance between points a and b under scenario s. The regret of solution x (also
called opportunity loss or absolute deviation [19]) is the difference between the cost
of x under scenario s and the cost of the best solution under the same scenario:

Rs(x) = Cs(x) − Cs(x∗s) (2.4)

where x∗s is the optimal solution of the 1-median problem under scenario s.
To determine the robust solutions for the 1-median problem, authors often

attempted to optimize the worst case performance of the system by minimizing
the maximal cost or the maximal regret, see for example [1–3,7,19,33]. The minmax
1-median problem is defined as follows:

min
x∈G

max
s∈S

Cs(x) (2.5)

and the minmax regret 1-median problem has the following expression:

min
x∈G

max
s∈S

Rs(x) = min
x∈G

max
s∈S
{Cs(x)− Cs(x∗s)}. (2.6)

In the literature on minmax (regret) 1-median problem, the authors distinguished
many models according to the graph structure (tree, network), the location sites
(on nodes or on edges) as well as the nature of the scenario set. In the case of
a discrete set of scenarios, Kouvelis and Yu [19] proposed an O(nq) algorithm
for the problem on a tree, where n is the number of nodes and q the number of
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scenarios. In the case of uncertainty modelled by intervals, many researchers stud-
ied the minmax-regret 1-median problem on a tree with uncertain node weights:
Kouvelis et al. [18] first proposed an O(n4) algorithm, Chen and Lin [7] gave an
algorithm in O(n3) time, and Averbakh and Berman [2,3] proposed two algorithms
in O(n2) and O(n log2 n) time. Recently, Brodal et al. [5] presented an O(n log n)
version of the Averbakh and Berman’s algorithm for this specific problem. When
weights can be negative, Burkard and Dollani gave an algorithm in O(n2) for the
problem on a tree [6]. As for the minmax regret 1-median problem on a general
network, Averbakh and Berman presented in [2] two approaches in O(nm4) time
and O(mn2 log n) time for the absolute problem (location anywhere on the graph),
the vertex problem having an order of complexity of O(n3). When edge lengths
are uncertain, Chen and Lin [7] showed that, in the case of a tree, the problem
can be reduced to the deterministic problem under the scenario with maximal
lengths. On the other hand, on a general network, the problem with uncertain
lengths becomes NP-hard [1].

It is generally admitted that minmax cost and minmax regret criteria are too
conservative since they are based only on the worst case. Besides, the worst
case performance is often reached for a scenario with a small likelihood of oc-
currence, especially when uncertainty is represented by intervals. Many authors
tried to remedy the conservatism of the minmax model by proposing alternative
approaches [4,21,23,24,35]. In the context of location and specifically for the P-
median problem, Daskin et al. [9] introduced a new variant of this problem in
which the decision-maker associates a probability with each scenario. The model
then identifies the solution that minimizes the maximum regret with respect to
a subset of scenarios whose total probability of occurrence is less than a fixed
reliability level. The main drawback of this approach is that it uses subjective
probabilities. In a recent work, Puerto et al. [26] focused on the uncertainty about
the objective function to be optimized, and applied a minmax regret approach to a
family of ordered median functions which includes notably the median and center
objectives functions.

Following a different perspective, Snyder and Daskin [32] used a measure called
p-robustness which was first introduced by Kouvelis et al. in [17]. This measure
imposes a constraint dictating that the cost under each scenario must be within
(100 + p)% of the optimal cost for that scenario, where p ≥ 0 is an external pa-
rameter1. Moreover, the authors assign a probability to each scenario. Thus, they
build a new robustness measure consisting in determining the p-robust solutions
which minimize the expected-cost.

According to this review, we can distinguish two families of approaches to find
robust solutions for a given problem. The first family looks for solutions which
optimize a certain objective function (e.g. minmax approaches) whereas the second
one imposes conditions that solutions must satisfy in order to be considered as
robust (e.g. p-robustness). In the following, we define a new robustness approach
which belongs to the second family of approaches.

1p is completely independent of the number of facilities P .
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3. Definition of a new robustness approach

Let us suppose that, for a given problem, one (or several) of the parameters
cannot be determined in a certain and definite way and that there is a finite set
S of scenarios. Let X denote the set of feasible solutions and q the number of
scenarios. Since the reasoning and the results are valid both for costs and for
regrets, we use in what follows the term “cost” and the notation C indifferently
for cost or regret. A robust solution according to the maximal cost criterion is a
solution that verifies:

min
x∈X

max
s∈S

Cs(x). (3.1)

As mentioned above, this criterion gives too much weight to the worst scenario.
It is reasonable to look for an approach which takes into account the other costs,
while keeping the maximal cost as the most important one. Moreover, this ap-
proach should offer some tolerance in relation to cost values. This tolerance can
be interpreted as an indifference threshold [29].

In the next subsections, we introduce a new preference relation that we call
α-leximax and use it to define a set of robust solutions.

3.1. The α-leximax relation

Let x be a solution of X . We associate to x a cost vector denoted by C(x) =
(Cs1

(x), . . . , Csq

(x)) where Csj

(x) is the cost of solution x under scenario sj ,
1 ≤ j ≤ q. By ordering the coordinates of C(x) in a non-increasing order, we get
a vector Ĉ(x) called disutility vector [20]. We have Ĉ1(x) ≥ Ĉ2(x) ≥ . . . ≥ Ĉq(x).
Thus, Ĉj(x) is the jth largest cost of x.

Definition 3.1. Let x and y be two solutions of X , Ĉ(x) and Ĉ(y) the asso-
ciated disutility vectors. The leximax relation, denoted by �lex, is defined as
follows [11,12]:

x �lex y ⇔
{ ∃k ∈ {1, . . . , q} : Ĉk(x) < Ĉk(y), and
∀j ≤ k − 1, Ĉj(x) = Ĉj(y)

x is said to be (strictly) preferred to y in the sense of the leximax relation.

x ∼lex y ⇔ ∀k ∈ {1, . . . , q}, Ĉk(x) = Ĉk(y)

x and y are said to be equivalent in the sense of the leximax relation.

In other words, comparing two cost vectors in the sense of the leximax relation
is equivalent to comparing the first distinct coordinates of the disutility vectors.
Remark that reordering cost vector implies that we implicitly assume that the
vector obtained by the permutation of the cost vector coordinates is equivalent to
the original cost vector (the leximax relation is said to be anonymous [20]). This
is justified by the fact that, in a situation of true uncertainty, none of the scenarios
can be distinguished.
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The previous definition of the leximax relation requires a perfect equality be-
tween the disutility vector coordinates of two solutions in order to consider them
equivalent. Taking an indifference threshold α into account leads to the following
definition:

Definition 3.2. Let x and y be two solutions of X , Ĉ(x) and Ĉ(y) the associated
disutility vectors, and α a positive real value. The α-leximax relation, denoted by
�α

lex, is defined as follows:

x �α
lex y ⇔

{ ∃k ∈ {1, . . . , q} : Ĉk(x) < Ĉk(y)− α, and
∀j ≤ k − 1, |Ĉj(y)− Ĉj(x)| ≤ α

x is said to be (strictly) preferred to y in the sense of the α-leximax relation.

x ∼α
lex y ⇔ ∀k ∈ {1, . . . , q}, |Ĉk(y)− Ĉk(x)| ≤ α

x and y are said to be indifferent in the sense of the α-leximax relation.

In the following subsection, we define a new robustness approach based on the
α-leximax relation.

3.2. Lexicographic α-robust solutions

Let x∗ be an ideal solution, most of the time fictitious, such that:

Ĉ(x∗) = (Ĉ1(x∗
1), Ĉ

2(x∗
2), . . . , Ĉ

q(x∗
q)) (3.2)

where x∗
k = arg minx∈X Ĉk(x) for all k ∈ {1, . . . , q}. Let us consider the following

set:

A(α) = {x ∈ X : not(x∗ �α
lex x)}

= {x ∈ X : x ∼α
lex x∗} (3.3)

where the second equality results from the fact that �α
lex is complete and that

we cannot have x �α
lex x∗ by definition of x∗. Using the definition of α-leximax

relation, the set A(α) can also be written as follows:

A(α) = {x ∈ X : ∀k ≤ q, Ĉk(x)− Ĉk(x∗
k) ≤ α}. (3.4)

Any solution of A(α) performs well with regard to the disutility vector since A(α)
is the set of solutions whose kth largest cost is close to the minimum for all k ≤ q.
If we consider this last condition as a robustness property, then we can consider
A(α) as a set of robust solutions that we will call set of lexicographic α-robust
solutions. Notice that this set is monotonic with regard to parameter α:

Property 3.1. α ≤ α′ ⇒ A(α) ⊆ A(α′).
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Proof. Let x ∈ A(α). Then, we have for all k ≤ q, Ĉk(x)− Ĉk(x∗
k) ≤ α ≤ α′ which

gives the result. �
Moreover, it is obvious that for small values of α, this set can be empty. We

consider that it is legitimate to require such a property of a robustness approach
since, in some situations, the different instances of a problem can be such that no
solution can be considered as robust.

Property 3.2. The minimum value of α that guarantees the existence of lexico-
graphic α-robust solutions is:

αmin = min
x∈X

max
1≤k≤q

{Ĉk(x)− Ĉk(x∗
k)}. (3.5)

Proof. Any solution x in A(α) should satisfy max1≤k≤q{Ĉk(x) − Ĉk(x∗
k)} ≤ α.

Then, αmin = minx∈X max1≤k≤q{Ĉk(x)− Ĉk(x∗
k)}. �

From property 3.1, we deduce that all solutions in A(αmin) belong to any set
of lexicographic α-robust solutions when it is not empty.

In general, set A(α) can be found using an iterative procedure which determines,
at each iteration k ∈ {1, . . . , q}, the subset:

Ak(α) = {x ∈ Ak−1(α) : Ĉk(x) − Ĉk(x∗
k) ≤ α}. (3.6)

In the case of a finite set of solutions, the procedure requires O(|X |q) elementary
operations where |X | is the number of elements of X and q the number of scenarios.
For instance, if we consider the vertex 1-median problem defined in Section 2, we
have X = V and |X | = n where V is the set of all nodes of the graph and n the
number of nodes. For this problem, A(α) can be determined in O(nq) time if we
assume all solutions costs already computed.

In Section 4, we present an algorithm to solve the lexicographic α-robust 1-
median problem on a tree, and, in Section 5, we extend it to general graphs. In
both cases, X is infinite.

4. Lexicographic α-robust 1-median problem on a tree

4.1. Preliminaries

We consider the 1-median problem on a tree T in the case of uncertainty on
node weights. The removal of any edge (vi, vj) of T partitions the tree into two
connected components made up of node subsets Vi and Vj . For each point x on
edge (vi, vj) of length cij , we denote by y the distance between node vi and x
(0 ≤ y ≤ cij). The cost under scenario s of point x is indifferently denoted by
Cs

ij(x) or Cs
ij(y). Cs(x∗s) is the minimum cost under scenario s. For the 1-median

problem on a tree, cost Cs
ij(y) on edge (vi, vj) can be written as [19]:

Cs
ij(y) = λs

ij + μs
ijy (4.1)
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where:

μs
ij =

∑
vk∈Vi

ws
k −

∑
vk∈Vj

ws
k (4.2)

λs
ij =

∑
vk∈Vi

ws
kd(vi, vk) +

∑
vk∈Vj

ws
k

(
d(vj , vk) + cij

)
. (4.3)

Equation (4.3) is suitable when C represents the cost. In the case of regret, λs
ij

has the following expression:

λs
ij =

∑
vk∈Vi

ws
kd(vi, vk) +

∑
vk∈Vj

ws
k

(
d(vj , vk) + cij

)
− Cs(x∗s). (4.4)

Kouvelis and Yu [19] consider the minmax cost and the minmax regret versions
of this problem. In their approach, they determine, for a given edge (vi, vj), the
solution y∗

ij which minimizes the maximal cost on the edge. They describe a
procedure that computes y∗

ij by solving:

Cij(y∗
ij) = min

0≤y≤cij

max
s∈S

Cs
ij(y). (4.5)

This procedure, which takes advantage of the convexity of the function
maxs∈S Cs

ij(.) on [0, cij ], is applied to all edges of the tree, and a solution of
minimal maximal cost (regret) is selected among all solutions y∗

ij found.
Instead of finding a unique robust 1-median on the tree, we want to determine

the lexicographic α-robust set A(α), if it is not empty, in order to define robust
segments of the tree. We present, hereafter, a specific algorithm for the lexico-
graphic α-robust 1-median problem on a tree. We remark again that the notation
C and the word “cost” refer indifferently to cost or to regret.

4.2. Determination of the robust segments of the tree

4.2.1. Principle and notations

We want to find the robust segments of a tree T , that is the set of lexicographic
α-robust solutions when X = T . For a given edge (vi, vj) of length cij and a point
x ∈ (vi, vj) , Ĉk

ij(x) represents the kth largest cost of x, 1 ≤ k ≤ q. Unlike cost
functions Cs

ij(.), costs Ĉk
ij(.) are not linear functions on [0, cij ].

We define the following subsets for k ∈ {1, . . . , q} and (vi, vj) ∈ E:

Ik
ij(α) = {y ∈ [0, cij ] : Ĉk

ij(y)− Ĉk(x∗
k) ≤ α} (4.6)

where x∗
k = argminx∈X Ĉk(x). Subsets Ik

ij(α) are called acceptable intervals of
order k.
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Let Ak
ij(α) be the acceptable subsets defined as follows:

Ak
ij(α) =

k⋂
t=1

It
ij(α). (4.7)

Then, the acceptable subset Ak(α), k ≥ 1, defined in equation (3.6) can be written
as:

Ak(α) =
⋃

(vi,vj)∈E

Ak
ij(α). (4.8)

Therefore, in order to determine the set of lexicographic α-robust solutions, we
use the following algorithm.

Algorithm α-LEXROB(1MT)
begin

A0(α)← X ;
A0

ij(α)← [0, cij ] for all (vi, vj) ∈ E;
for k ← 1 to q do compute x∗

k;
k ← 1;
while (k ≤ q and Ak−1(α) 
= ∅) do

for all (vi, vj) ∈ E do
Determine Ik

ij(α);
Determine Ak

ij(α)← Ak−1
ij (α) ∩ Ik

ij(α);
Determine Ak(α)← ⋃

(vi,vj)∈E

Ak
ij(α);

k ← k + 1;
end

If for a given k ≤ q, Ak(α) = ∅, then it is obvious that A(α) = ∅.
In the following, we explain the algorithm in more detail.

4.2.2. Determination of all points x∗
k

For each k ≤ q, let y
∗(k)
ij be the solution which minimizes the cost Ĉk

ij on edge

(vi, vj). Hence, the point x∗
k corresponds to the solution y

∗(k)
ij with minimum

cost Ĉk
ij among all edges (vi, vj). Functions Ĉk

ij(.) are piecewise linear; they are
convex only for k = 1. As a result, it is not possible to use Kouvelis and Yu’s
procedure which is based on the convexity of Ĉ1

ij(.). Let us notice that, if y
∗(k)
ij

is different from 0 and cij , it is bound to be one of the points where the function
slope changes (see Fig. 1). We call these points z

h(k)
ij , 1 ≤ h ≤ hk

ij , where hk
ij is

the number of breakpoints of function Ĉk
ij(.) on [0, cij ]. Points z

1(k)
ij and z

hk
ij(k)

ij

correspond respectively to 0 and cij .
In computational geometry [30], the kth largest of the numbers Cs1

ij (x), . . .,
Csq

ij (x) is called the k-level of point x. Therefore, function Ĉk
ij(.) corresponds to
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Figure 1. Illustration of cost Ĉk
ij(.) when k = 2.

the k-level of cost functions Cs1

ij (.), . . . , Csq

ij (.). In [10], Edelsbrunner and Guibas
presented an approach based on a topological plane sweep, to compute all inter-
section points of an arrangement of q lines, as well as their levels, in O(q2) time2.
Using this approach, we can, hence, determine all points z

h(k)
ij , h ∈ {1, . . . , hk

ij}
and k ∈ {1, . . . , q}, in O(q2) time. For a given edge (vi, vj) and for each k, y

∗(k)
ij

is determined among points z
h(k)
ij , h ∈ {1, . . . , hk

ij}. Then, determining all points

y
∗(k)
ij on edge (vi, vj) requires O(q2) elementary operations since there are O(q2)

intersection points. As a tree has n− 1 edges and

x∗
k = argmin

x∈X
Ĉk(x) = argmin

(vi,vj)∈E

Ĉk
ij(y

∗(k)
ij ). (4.9)

We have the following result:

Lemma 4.1. Finding all points x∗
k requires O(nq2) elementary operations.

2In [10], the O(q2) time complexity was presented in the case of simple arrangements, that is
if any two lines intersect at a point, but no three do so. Nevertheless, this result was extended
to the degenerate cases such that parallel or multiple concurrent lines in [27].
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4.2.3. Determination of acceptable intervals Ik
ij(α)

Unlike acceptable intervals of order 1, subsets Ik
ij(α), 2 ≤ k ≤ q, are not nec-

essarily connected because of the non convexity of functions Ĉk
ij(.). Nevertheless,

for the sake of convenience, we will continue to call them acceptable intervals.
If it is not empty, the acceptable interval Ik

ij(α) can be represented by the union
of pk

ij elementary intervals as follows:

Ik
ij(α) =

[
y
1(k)
ij , y

2(k)
ij

]
∪ . . . ∪

[
y
2pk

ij−1(k)

ij , y
2pk

ij(k)

ij

]
(4.10)

with 0 ≤ y
1(k)
ij ≤ . . . ≤ y

2pk
ij(k)

ij ≤ cij and pk
ij ∈ IN∗.

Remind that z
h(k)
ij , 1 ≤ h ≤ hk

ij , are the breakpoints of Ĉk
ij(.) on [0, cij]. It is

obvious that for a given h ∈ {1, . . . , hk
ij−1}, if we have Ĉk

ij(z
h(k)
ij ) > Ĉk

ij(x
∗
k)+α and

Ĉk
ij(z

h+1(k)
ij ) > Ĉk

ij(x
∗
k)+α, that is z

h(k)
ij and z

h+1(k)
ij do not belong to Ik

ij(α), then

[zh(k)
ij , z

h+1(k)
ij ] ∩ Ik

ij(α) = ∅. Similarly, if z
h(k)
ij and z

h+1(k)
ij belong to Ik

ij(α), then

[zh(k)
ij , z

h+1(k)
ij ] ⊂ Ik

ij(α) (see Fig. 2). On the other hand, if one of them belongs

to Ik
ij(α) and not the other, then only a subinterval of [zh(k)

ij , z
h+1(k)
ij ] is included

in Ik
ij(α). This subinterval is delimited by z

h(k)
ij (or z

h+1(k)
ij ) and the crosspoint

between function Ĉk
ij(.) and the horizontal line of value Ĉk

ij(x
∗
k) + α. Therefore,

we just have to scan points z
h(k)
ij in a non-decreasing order for h varying from 1

to hk
ij − 1 in order to determine the parts of intervals [zh(k)

ij , z
h+1(k)
ij ] which belong

to Ik
ij(α) and afterwards deduce the set Ik

ij(α).

Since for each k, we scan all breakpoints z
h(k)
ij , 1 ≤ h ≤ hk

ij , the determina-
tion of all acceptable intervals on a given edge (vi, vj) requires O(q2) elementary
operations.

Lemma 4.2. Given all points x∗
k, finding all acceptable intervals of the tree for k

varying in {1, . . . , q} requires O(nq2) elementary operations.

4.2.4. Determination of the acceptable subsets Ak
ij(α)

We have A1
ij(α) = I1

ij(α). For k ≥ 2,

Ak
ij(α) = Ak−1

ij (α) ∩ Ik
ij(α). (4.11)

If it is not empty, Ak
ij(α) is the union of rk

ij subintervals of [0, cij ]:

Ak
ij(α) = [a1(k)

ij , a
2(k)
ij ] ∪ . . . ∪ [a

2rk
ij−1(k)

ij , a
2rk

ij(k)

ij ] (4.12)

with 0 ≤ a
1(k)
ij ≤ . . . ≤ a

2rk
ij(k)

ij ≤ cij and rk
ij ∈ IN∗.
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Figure 2. Illustration of acceptable interval Ik
ij(α) when k = 2.

To find the bounds of Ak
ij(α), we have to look for them among those of Ak−1

ij (α)
and Ik

ij(α) (see Fig. 3). A detailed procedure, Find(Ak
ij), is presented in Appen-

dix I. The complexity of this procedure is O(q2) as shown in Appendix II. Using
equations (3.6) and (4.8), we conclude that:

Lemma 4.3. Given x∗
k for all k ∈ {1, . . . , q}, finding the set A(α) requires O(nq3)

elementary operations.

4.2.5. Complexity of lexicographic α-robust 1-median on a tree

Theorem 4.1. Lexicographic α-robust 1-median on a tree can be solved in O(nq3)
time.

Proof: Theorem 4.1 follows immediately from Lemmas 4.1, 4.2 and 4.3. �

4.3. Example

Let us consider the tree T of Figure 4 where values on edges represent lengths.
Uncertainty on node weights is modelled by four scenarios as shown in Table 1
(v∗s is the median under scenario s, s ∈ {s1, s2, s3, s4}).

The minmax median x∗ of the tree is the point of (v1, v4) at a distance 2.5 from
node v1 and the minmax cost is 197. We present in Figure 5 the cost functions on
edge (v1, v4) (Cs

14 denotes the cost function on interval [0, 7] under scenario s).
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Figure 3. Illustration of acceptable subset Ak
ij(α) when k = 2.

Figure 4. Example.

The points which minimize costs Ĉk, k = 1, . . . , 4, are x∗
1 = x∗, x∗

2 the point of
edge (v1, v3) at a distance 2.5 from node v1, x∗

3 = v3 and x∗
4 = v1. If we choose a
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Table 1. Weight scenarios.

Weights v1 v2 v3 v4 v5 v6 v7 v∗
s

s1 1 1 1 1 1 1 1 v1

s2 1 10 1 1 1 1 1 v2

s3 1 1 10 1 1 1 1 v3

s4 1 1 1 1 10 1 1 v5

Figure 5. Cost functions on edge (v1, v4).

threshold α = 45, the first iteration of algorithm α-LEXROB(1MT) gives the set:

A1(45) = {x ∈ T : Ĉ1(x) − 197 ≤ 45} (4.13)

represented by bold segments in Figure 6.
After four iterations, we get the set A(45) of lexicographic α-robust solutions

of the tree. A(45) is represented by the union of three segments (v1, v
′
2), (v1, v

′
3)

and (v1, v
′
4) where v′2 is the point of edge (v1, v2) at a distance 1.78 from node

v1, v′3 the point of edge (v1, v3) at a distance 1 from node v1 and v′4 the point
of edge (v1, v4) at a distance 0.83 from node v1 (see Fig. 7). Remark that x∗,
the minmax robust solution, does not belong to the lexicographic α-robust set.
Indeed, it performs well for the maximal cost function, but not well enough for
Ĉ2, Ĉ3 and Ĉ4, compared with node v1 for example as shown in Table 2.

The minimum value of parameter α which guarantees the existence of lexi-
cographic α-robust solutions is αmin = 35, that is α < 35 ⇒ A(α) = ∅ and
α ≥ 35 ⇒ A(α) 
= ∅. For α = αmin, the set of robust solutions is reduced to
node v1.
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Figure 6. Set A1(45).

Figure 7. Minmax robust solution (x∗) and lexicographic α-
robust solutions of the tree for α = 45.

Table 2. Comparison of x∗ and v1.

Disutility costs k = 1 k = 2 k = 3 k = 4

Ĉk(x∗) 197 197 152 84.5

Ĉk(v1) 212 167 122 77

Ĉk(x∗) − Ĉk(v1) -15 30 30 7.5

5. Lexicographic α-robust 1-median problem on general

graphs

We consider now the problem on a general network G = (V, E). We want to
determine the lexicographic α-robust segments of G. We recall that for any two
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Figure 8. Plots of d(., v) on a given edge (vi, vj).

points a and b, d(a, b) denotes the minimum distance between a and b. Observe
that, on a general network, the distance d(x, v) between a point x varying on an
edge (vi, vj) and a given node v ∈ V has three possible plots as shown in Figure 8.
The third case occurs when none of the shortest paths from v to vi and from v to
vj contains edge (vi, vj). In the two other cases, the point of (vi, vj) farthest from
v is either node vi or node vj . In [2], Averbakh and Berman call all these farthest
points pseudonodes. They also define a basic interval as a subinterval [a, b] of an
edge such that a and b are pseudonodes and there are no pseudonodes inside [a, b].

Since the distance d(x, .) as a function of x is linear on a given basic interval
[a, b], cost (or regret) functions Cs(.) are linear on such a subinterval, for all s ∈ S.
Thus, algorithm α-LEXROB(1MT) can be easily extended to a general graph using
these basic intervals instead of the edges.

Theorem 5.1. Lexicographic α-robust 1-median on a general network can be
solved in O(mnq3) time.

Proof. Given an edge e of G, the number of pseudonodes of e cannot exceed the
number of nodes by definition. Therefore, the number of basic intervals of the
graph is at most mn, where n is the number of nodes and m the number of edges.
The remainder of the proof follows from Lemmas 4.1, 4.2 and 4.3. �

6. Conclusions and perspectives

In this paper, we introduced a new robustness approach, called lexicographic
α-robustness, suitable when uncertainty is represented by a discrete set of scenar-
ios. We applied this approach to the 1-median location problem and presented
a specific algorithm to solve the problem when the underlying graph is a tree.
We showed that the algorithm is easily extended to the case of a general net-
work. These algorithms are polynomial if the number of scenarios is polynomially
bounded, and especially when it is constant. We would like to point out that the
algorithm presented here can be adapted to the 1-center location problem using a
decomposition similar to the one presented in Section 5 [15].

Compared with minmax criteria, the new approach has several advantages.
First, it considers several measures, that is to say costs or regrets, from the worst
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one to the best one respecting the aversion of the decision maker to risk. Second,
it offers some tolerance since it includes an indifference threshold α, taking into
account the subjective dimension of robustness. Finally, it can give an empty set of
robust solutions depending on the threshold chosen. Indeed, it seems desirable to
highlight that some instances do not contain any solution that can be considered
as robust.

The approach presented here could be extended in many ways. The threshold α
could be variable and differentiated for each measure. Moreover, robustness could
be studied in relation to the k (k ≤ q) largest costs instead of all ordered costs.
Since the search for robust solutions is not always possible, such studies are in line
with the determination of what Roy calls robust conclusions [28].

It is obvious that lexicographic α-robustness is more arduous to implement
than minmax criteria. Nevertheless, we showed in this paper that this approach
remains attractive in the case of 1-median location problem which is a polynomial
problem. It is interesting to notice that this is also the case for some combinatorial
problems. Indeed, Kaläı and Vanderpooten [16] and Kaläı [15] proved that lexi-
cographic α-robustness approach does not change the complexity of the knapsack
and the shortest path problems compared with their minmax (regret) versions.
Therefore, we consider the application of this new robustness approach to some
other polynomial and combinatorial problems to be an avenue for future research.

Appendix I

Procedure Find(Ak
ij)

Input: pk
ij , Ek

ij = {yt(k)
ij , t∈{1, . . . , 2pk

ij}}, rk−1
ij , Bk−1

ij ={al(k−1)
ij , l∈{1, . . . , 2rk−1

ij }}.
Output: rk

ij , Bk
ij = {al(k)

ij , l ∈ {1, . . . , 2rk
ij}}.

begin
if Ek

ij = ∅ then Bk
ij ← ∅

else
= Bk

ij ← ∅;
r ← 0;
a
0(k−1)
ij ← 0;

for t← 1 to pk
ij do

Find the largest a
l(k−1)
ij (0 ≤ l ≤ 2rk−1

ij ) such that a
l(k−1)
ij < y

2t−1(k)
ij ;

Find the largest a
h(k−1)
ij (0 ≤ h ≤ 2rk−1

ij ) such that a
h(k−1)
ij < y

2t(k)
ij ;

if l is odd then
Put(y2t−1(k)

ij );

if y
2t(k)
ij ≤ a

l+1(k−1)
ij then Put(y2t(k)

ij )
else

for s← l + 1 to h do Put(as(k−1)
ij );

if h is odd then Put(y2t(k)
ij );

if l is even then
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if y
2t(k)
ij ≥ a

l+1(k−1)
ij then Put(al+1(k−1)

ij );

if y
2t(k)
ij ≤ a

l+2(k−1)
ij then Put(y2t(k)

ij )
else

for s← l + 2 to h do Put(as(k−1)
ij );

if h is odd then Put(y2t(k)
ij );

rk
ij ← r/2;

end

Procedure Put(x) is ”Put x in Bk
ij and increment r”.

Appendix II

Proof of lemma 4.3. Let us consider an edge (vi, vj) and a fixed order k.
pk

ij is the number of subintervals of [0, cij ] given by the intersection of a straight
line (D = Ĉk(x∗

k) + α) with at most q lines and possibly the lines yij = 0 and
yij = cij . Therefore, pk

ij ≤ q+2
2 .

Let Bk
ij = {al(k)

ij , l ∈ {1, . . . , 2rk
ij}} and Ek

ij = {yt(k)
ij , t ∈ {1, . . . , 2pk

ij}}. Since
we have Bk

ij ⊂ (Ek
ij ∪Bk−1

ij ), then:

rk
ij ≤ pk

ij + rk−1
ij ≤ q + 2

2
+ rk−1

ij ≤ . . . ≤ (k − 1)
(

q + 2
2

)
+ r1

ij .

As r1
ij = 1 and k ≤ q, we get rk

ij ≤ q( q+2
2 ) + 1, for all k ∈ {1, . . . , q}.

As a result, we have O(pk
ij) = O(q) and O(rk

ij) = O(q2) for all k ≤ q.

To determine the largest a
l(k−1)
ij such that a

l(k−1)
ij < y

2t−1(k)
ij (t being fixed), one

can use a binary search on the set {a0(k−1)
ij , . . . , a

2rk−1
ij (k−1)

ij }. Such an approach

has a complexity of O(log(rk−1
ij )) = O(log(q2)) = O(log q). Idem for a

h(k−1)
ij .

In addition, the elements of Bk−1
ij are compared to those of Ek

ij only one time
during the whole procedure.

Consequently, the procedure Find(Ak
ij) is in O(pk

ij log(rk−1
ij ) + rk−1

ij ) = O(q2)
time. �
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