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CLIQUE-CONNECTING FOREST AND STABLE SET
POLYTOPES

DENIS CORNAZ!

Abstract. Let G = (V, E) be a simple undirected graph. A forest
F C FE of G is said to be clique-connecting if each tree of F spans a
clique of G. This paper adresses the clique-connecting forest polytope.
First we give a formulation and a polynomial time separation algorithm.
Then we show that the nontrivial nondegenerate facets of the stable
set polytope are facets of the clique-connecting polytope. Finally we
introduce a family of rank inequalities which are facets, and which
generalize the clique inequalities.
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1. INTRODUCTION

Let G = (V, E) be a simple undirected graph (without loop or multiple edge). A
stable set of G is a subset of pairwise nonadjacent vertices, the stable set polytope
of G is the convex-hull of the characteristics vectors (in {0,1}") of the stable sets
of G. This polytope has been extensively studied in litterature (see e.g. [11]).

A subset of edges F' C F is called a forest of G if the number k of the connected
components of the partial subgraph (V, F') of G satisfies |F| +k = |V|. (Note that
some components of (V, F') may be isolated vertices.) In other words, F' is a forest
of G if and only if |[F(U)| < |U| — 1 for every nonempty subset of vertices U C V
(where F(U) denotes the subset of the edges of F' with both vertices in U). Given
a weight vector ¢ € Z¥ associated to the edges of G, several well-known greedy
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algorithms (e.g. Kruskal, Prim, see [11]) find a forest F' maximizing its weight
c(F') = > .cp Ce in polynomial time. The forest polytope of G is the convex-hull
of the characteristic vectors (in {0,1}¥) of the forests of G. Edmonds [5] showed
that for any graph G, its forest polytope is described by the following system of
linear inequalities:

0<z.<1 foree E, (1)
x(E(U)) <|U| =1 for nonempty U C V. (2)

Optimizing over (1)—(2) is, given a vector ¢ € QF, to determine max cz over z € QF
satisfying (1)-(2). Separating over (1)—(2) is, given a vector € QF, to decide
if z satisfies (1)—(2) or to find a constraint violated by . The greedy algorithms
together with the result by Edmonds show that we can optimize over (1)—(2) in
polynomial time (see e.g. [11]). A consequence of the optimization-separation
theorem by [6] is that separating over (1)—(2) can be done in polynomial time.
Independently, Picard and Queyranne [9] and Padberg and Wolsey [8] gave a
polynomial combinatorial algorithm separating (1)—(2).

A matching of G is a subset of pairwise disjoint edges. After giving a combina-
torial algorithm finding a matching optimizing any linear function, Edmonds [4]
showed that the matching polytope is described by the following system of linear
inequalities:

x>0 fore€ E, (3)
z(0(v)) <1 forveV, (4)
2¢(E(U)) < |U| =1 for odd cardinality U C V. (5)

(Where, as usual, §(v) is the set of the edges of G incident with the vertex v.)

A clique of G is a subset of vertices any two of which are adjacent. Determining
the minimum number of cliques in a partition of V into cliques of G is NP-hard,
see e.g. [11] (it is equivalent to the graph coloring problem). A forest I C E
of G = (V,E) is said to be clique-connecting if each tree of F spans a clique
of G, that is, if each connected component of the partial subgraph (V,F) of G
induces a complete subgraph of G. Clique-connecting stars are considered in [1]
for the representative formulation of graph coloring. It is also used, with additional
restrictions, in [2] to show a one-to-one correspondence beetween the colorings of
G and the stable sets of G, where G is a partial subgraph of the line graph of the
complementary G of G.

This paper adresses the clique-connecting forest polytope of G, that is the
convex-hull of the incidence vectors of the clique-connecting forests of G. A
first motivation for studying that polytope is that it is a “coloring polytope”,
in the sense that optimizing 17z over it is equivalent to determining the chro-
matic number [2]. A second motivation for studying the clique-connecting forest
polytope is that it lays beetween two well described polytopes. Indeed, it is ob-
vious that the forest polytope of G contains the clique-connecting forest polytope
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of G. Futhermore, since any matching of G is a clique-connecting forest of G, the
clique-connecting forest polytope contains the matching polytope.

In this paper, we give a formulation for the clique-connecting forest polytope.
That is, we define a polyhedron the integer vectors of which are precisely the
characteristic vectors of the clique-connecting forests. The number of linear in-
equalities defining the polyhedron may be exponential with respect to the size of
G, but we give a polynomial time combinatorial algorithm separating over them.
Consequently, by [6], there is a polynomial time algorithm optimizing over the
polyhedron.

Then we study the facial structure of the polytope. We show that every non-
trivial nondegenerate facet of the stable set polytope corresponds to a facet of
the clique-connecting forest polytope. Futhermore, we give a set of rank facets
of the clique-connecting forest polytope which cannot be deduced from facets of
the stable set polytope. These facets, called the K-complete set inequalities, are
associated with each (not necessarily maximal) clique K and they generalize the
clique facets.

2. FORMULATION AND SEPARATION

Let G = (V,E) be a graph. For each edge subset ' C E the characteristic
vector of F is the vector x € {0,1}¥ such that for each ¢ € E, then z. = 1 if
e € F,and 7. = 0 if e ¢ F. We claim that an integer vector z € ZF is the
characteristic vector of a clique-connecting forest of GG if and only if = satisfies:

0<z.,<1 foreachec F, (6)

z(E(U)) <|U| - { ; gt}(fe;f,v?s;hque of G for nonempty U C V. (7)
To see sufficiency, first observe that if = satisfies (6)—(7) then it satisfies (1)—(2).
Hence, since x is integer, it is the characteristic vector of a forest F' of G. Now if
U is the vertex set of a connected component of F, then x(E(U)) = |U|—1. Since
z(E(U)) < |U| — 2 for each subset U C V' which is not a clique of G, hence U is
a clique of G. It follows that F' is clique-connecting. To see necessity, let « be the
characteristic vector of a clique-connecting forest F' of G. Clearly, z is integer and
satisfies (1)—(2). Given a subset U C V which is not a clique of G, then no tree of
F spans U. Tt follows that |F(U)| < |U| — 2, and hence z satisfies (6)—(7).

Now let us consider the polyhedron defined by the vectors of R¥ satisfying (6)-
(7). We claim that one can optimize over that polyhedron in a polynomial time.
By [6] we only need to solve in polynomial time the separation problem which can
be stated as follows:

Separation problem. Given z € Q¥ decide if Z satisfies (6)—(7), and if not, find
an inequality violated by z.

One can adapt the proof in [8,9] for the separation problem associated with (1)—
(2) in order to prove that separating over (6)—(7) can be done in a polynomial time.
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The proof of [8,9] is based on Theorem 2.1 below. For the sake of completeness
we give a proof (similar to that by Schrijver in [11], Vol. B, p. 880). For any
graph G = (V, E) and U C V, let 6¢(U) be the cut composed by the edges of G
incident with one vertex in U and the other vertex in V' \ U outside.

Theorem 2.1 (Rhys [10]). Given a graph G = (V, E), two vectors x € (@f and
y € QV, and a subset S C V', we can find in a strongly polynomial time a set U
with S CU CV minimizing x(6¢(U)) + y(U).

Proof. We transform the graph G into a graph H by the following operations:
First we extend the graph by two new vertices s and ¢, by new edges {s,v} for
each v € V with y, > 0, and by new edges {v,t} for each v € V with y, < 0, so we
obtain a new graph with edge set E ; Then we replace the vertices in SU{s} by the
vertex s, that is, we contract S U {s} (we can assume that the loops are deleted).
For each e € F define the capacity ¢, of e by ¢, := z.. For each {s,v} € E\ E
define the capacity c, of e by ¢. := y,. For each {v,t} € E \ E define the capacity
¢ce of e by ¢ := |yy|. Then one has for any U C V' \ S:

GuUUL) = 260N+ S vt S Iul

veEU:y, >0 veV\U:y, <0

=200c0) +yU) + > lwl.

veEV:iY, <0

Since ¢y, <o Yo is a constant, it follows that minimizing z(éc(U)) + y(U)
reduces to finding a minimum-capacity cut separating s and ¢ in H; which can be
done in a strongly polynomial time with a max-flow algorithm (see e.g. [11]). O

For the sake of completeness we give a proof (similar to that by Schrijver in [11],
Vol. B, p. 881) of the corollary below.

Corollary 2.2 [8,9]. Given a graph G = (V,E) and a vector x € QF, we can
decide if x satisfies (1)—(2) (that is, if © belongs to the forest polytope of G), and if
not, find the most violated inequality among (1)—(2), in strongly polynomial time.

Proof. We can assume that x satisfies (1). Define y, := 2 — 2(6({v})) for v € V.
Then 2(x(E(U)) — |U|) = —z(6(U)) — y(U). So any set U C V, such that U
contains a given vertex u, minimizing z(6(U)) + y(U), maximizes x(E(U)) — |U].
By Theorem 2.1 (with S = {u}), we can find such a U in polynomial time. Hence,
by finding |V| such sets, one for each u € V', we can assume that U is a nonempty
subset of V' maximizing z(E(U)) — |U|. If (E(U)) — |U| < —1, then z satisfies
(2), and otherwise U gives a most violated inequality. |

Now we can state Corollary 2.3 below, which implies that optimizing over (6)—
(7) is polynomial.

Corollary 2.3. The separation problem for (6)—(7) can be solved in polynomial
time.
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4

FIGURE 1. A graph G = (V, E) with E = {1,2,3,4,5,6,7}.

Proof. By Corollary 2.2, we can assume that z satisfies (1)—(2). Hence we only
need to separate

2(E(U)) <|U|—2 for each subset U C V which is not a clique of G.  (8)

Let S be the set of the stable sets of G with cardinality 2. Note that the cardinality
of § is polynomial. As in Corollary 2.2, we define y,, := 2—x(5({v})) forv € V. So,
for any S € S, any set U with S C U C V minimizing (6(U)) + y(U) maximizes
z(E(U)) — |U|. By Theorem 2.1, we can find such a U in polynomial time. By
finding |S| such sets, one for each S € S, we can assume that U is a nonempty
subset of V maximizing x(E(U)) — |U|. If z(E(U)) — |U| < —2, then x satisfies
(8), and otherwise U gives a violated inequality. O

3. FACETS

In this section we focus on the vectors of the polyhedron (6)—(7) which are not
in the clique-connecting polytope of G. Our aim is to find new wvalid inequalities,
that is, cutting some of these vectors out of the polyhedron but keeping the vectors
of the polytope in the polyhedron.

First we remark that if each component of G is a complete graph, then the
clique-connecting forests of G are the forests of G, so (6)—(7) is equal to (1)—
(2) and it decribes the clique-connecting forest polytope of G. Futhermore, we
remark that if G has no triangle, then the clique-connecting forests of G' are the
matchings of G and so the polytope is described by (3)—(5). Finally, we note that
the clique-connecting polytope is full-dimensional, since it contains the matching
polytope.

Now let us consider for instance the graph of Figure 1.

Assume that the edges 4 and 5 have a weight ¢4 = ¢5 = 3, and that the other
edges have a weight 2. It is easily seen that the maximum of cx over z in the
clique-connecting forest polytope is 8 (the maximum is obtained by a forest with
4 edges with weight 2). However the maximum of cx over z satisfying (6)—(7) is
strictly greater since the vector T with Z. = 1/2 for each e € E satisfies (6)—(7)
and it gives cx = 9. Now let us give a description of the clique-connecting forest
polytope of the graph of Figure 1. It has 18 facets each of which is defined by one
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of the 18 linear inequalities below:

Xy, T2, T3, T4, Ts, Te, I7, xSEO

1 +x4 <1
) +x5 <1

T3 +T4 <1

T3 +x5 <1

Ty +x6 <1

Ty +x7 <1

Trs +Tg <1

Ts +xg <1

T, +xo +x3 +14 +I5 <2

T4 +r5 tx6 +17 +3 < 2.

(To see this first note that the 18 inequalities are valid and that they imply (6)—
(7). So, one must check that each vector satisfying at least 8 linearly independant
inequalities with equality among the 18 is integer.) Of course the vector & with
components 1/2 does not belong to the polytope. Indeed, it violates the last
two constraints with right-hand-side 2. (The other constraints are of type (6)—
(7).) One can already remark that the inequalities of type xz. > 0, namely the
nonnegativity constraints, always define facets. Indeed, these are already facets
of the forest polytope and of the matching polytope. To make it even clearer, the
vector x = 0 together with the vectors x; with all components 0 except Z; = 1 for
f € E\{e} form |E| affinely independant vectors in the clique-connecting forest
polytope such that x. = 0.

In a general context, a valid inequality with 0-1 coefficients and integer right-
and-side (up to multiplying by a scalar) is called a rank inequality. For instances,
(2) for the forest polytope, and (4)—(5) for the matching polytope. A rank inequal-
ity with right-and-side 1 is called a clique inequality. A clique inequality is said to
be maximal if it is not dominated by another clique inequality. Very often, e.g. the
stable set polytope [7], the maximal clique inequalities define facets. In contrast,
a rank inequality generally does not define a facet even if it is dominated by no
other rank inequality. For instance for the clique-connecting forest polytope of
the graph of Figure 1: sz z; < 4. Futhermore, of course, the rank inequalities
does not describe the polytope in general, e.g. the wheel inequalities are non-rank
facets of the stable set polytope [3].

In the following we enlight a strong link beetween the clique-connecting forest
polytope and the stable set polytope.

For any vertex u of G, let N(u) be the set of the vertices in V' adjacent with v.
For any F' C §(u), we let Np(u) denotes the set of the vertices in N(u) incident
with an edge in F'. For any U C V, let Gy be the subgraph of G induced by the
vertices in U. As usual, G is the complementary graph of G. It is not hard to see
that this lemma holds:

Lemma 3.1. For any vertex u of G, FF C 6(u) is a clique-connecting forest of G
if and only if Np(u) is a clique of Gy, that is, a stable set of G (y)-
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Note now that, given a vertex u, there is a natural one-to-one correspondence
beetween the vectors in R and the vectors in RV (). It follows from the above
lemma that a vector z € RF with z, = 0 for each e € E \ §(u) is in the clique-
connecting forest polytope of G if and only if its corresponding vector in RV (%) is
in the stable set polytope of G N(u)- A facet of a polytope is called trivial if it has
at most one nonzero coefficient. For instance the trivial facets of the stable set
polytope are those of the form x, > 0 or, if v is isolated, x, < 1. Suppose that G
is composed of tree vertices u, v, w and two edges uv,vw. Then the facets of the
clique-connecting forest polytope of G corresponds to the stable set polytope of
EN(W) but not to the the facets of the stable set polytope of EN(u). Indeed, z, <1
is a trivial facet of this polytope but x,, < 1 is not a facet of the clique-connecting
forest polytope. Suppose now that G is the graph of Figure 1. One can observe
that each of the eight facets with two nonzero coeflicients of the clique-connecting
forest polytope is one of the two nontrivial facets of the stable set polytope of
61\,(“), where u is one of the four degree 3 vertices.

Let us define one classe of facets:

Definition 3.2. Let G = (V,E) be a graph and let ) i auz, < a be an
inequality which defines a nontrivial facet of the stable set polytope of G. If
there exists two nonadjacent vertices v,w of G such that every stable set S with
> ues Gu = o contains either v or w, then the facet is called degenerate.

Note that classical nontrivial facets, namely the clique inequalities, the odd-
cycle inequalities and the wheel inequalities, are nondegenerate. Actually the
following problem is open:

Open problem 1. Is there a graph the stable set polytope of which has degenerate
facets?

Theorem 3.4 below shows that for each vertex v, each nontrivial and nondegen-
erate facet of the stable set polytope of Gy, is a facet of the clique-connecting
forest polytope. In order to prove the theorem we need the following lemma.

Lemma 3.3. Let G = (V, E) be a graph and let )\, a,z, < o be an inequality
which defines a nontrivial and nondegenerate facet of the stable set polytope of G.
Then
(i) For any vertex v of G, there exists a stable set of G whose incidence vector
is in the facet, which does not contains v.
(ii) For any nonadjacent vertices v and w of G, there exists a stable set of G
which contains neither v nor w, and the incidence vector of which is in
the facet.

Proof. (i) If every stable set whose incidence vector is in the facet contains the
vertex v, then the facet is included in the hyperplan z, = 1. Since the stable set
polytope is full-dimensional, it follows that ) _, a,z, < a is equivalent to the
trivial valid inequality x, < 1, leading to a contradiction.

(74) Trivial since the facet is nondegenerate. O

Now we can prove Theorem 3.4.
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Theorem 3.4. Let u be a vertex of G, and let us denote each edge uv in 6(u)
by ey. If an inequality ZyeN(u) ay Ty < a defines a nontrivial and nondegenerate

facet of the stable set polytope of EN(U), then the corresponding inequality

Z AyTe, < O (9)

ey, €6(u)

defines a facet of the clique-connecting forest polytope of G.

Proof. By Lemma 3.1, (9) is valid for the clique-connecting forest polytope. We
only need to show that there are |E| affinely independant vectors x in the clique-
connecting forest polytope satisfying (9) with equality. There are already d :=
|6(u)| such vectors, since 3, ¢ () GvTv < a defines a facet of the stable set poly-

tope of EN(u), which is full-dimensional. We can take the d vectors in {0, 1}6(“)
and we let Fy,...,Fy C §(u) be the corresponding clique-connecting forests. Now
let e € E\ 6(u). We claim that there is some i € {1,...,d} such that F; U {e}
is a clique-connecting forest. If the claim holds, it makes |E| affinely independant
vectors satisfying (9) with equality and the proof is done. If e is incident with no
vertex in N (u) the claim is clearly true. If e is incident with one vertex v in N (u),
by Lemma 3.3(i), we can assume that there is a n F; which does not contains
e,. Hence F; U {e} is a clique-connecting forest. We can suppose now that e is
incident with two vertices v and w in N(u). By Lemma 3.3(ii), there is an F;
which contains neither e, nor e,. Hence F; U {e} is a clique-connecting forest.
Hence the claim holds, and then the theorem is true also. O

Our aim for the rest of the paper is to present a family of rank inequalities
defining facets of the clique-connecting forest polytope and which are not facet of
the stable set polytope of G N(u) for some vertex u. The rank of a subset of edges E’
of G, denoted by r(E’), is equal to the maximum cardinality of a clique-connecting
forest F' of G such that F' C E’. So, a rank inequality for the clique connecting-
forest polytope of G is an inequality x(E’) < r(E’) for some E' C E. Let us
identify briefly the most natural ones. First, it is not hard to see that a subset of
edges E’ of G has rank 1 if and only if it is an induced star of G (that is, there is a
stable set {v1,...,vg/} of G and a vertex u such that £ = {uv; :i = 1,...,|E'|}).
Second, for every v € V, the rank of d(u) is equal to the maximum cardinality
of a clique of Gy(y). Finally, for every U C V, then r(E(U)) = |U| — X(Gv),
where X(Gy) is the minimum number of cliques in a clique partition of Gy. In
the following we present a family of rank inequalities associated with edge subsets
which are not necessarily of the form §(u) for some v € V or of the form E(U) for
some U C V. The form of these subsets is described in the definition below:

Definition 3.5. Let K C V be a clique of G with at least two vertices and let
E(K) be the set of the edges of K. A subset @ C E containing F(K) is said to
be a K-complete set of G if it is an inclusionwise maximal subset such that:

(i) Every edge in @ is incident with a node in K.
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(ii) If there exist two edges in @ \ E(K) incident to a same vertex in K, then
the other extremities of the two edges are nonadjacent in G.

(iii) For every edge in @ with one vertex v ¢ K, there exists at least one vertex
u € K which is incident to no edge in @ \ E(K) and such that u and v are
nonadjacent in G.

The complete set inequalities are

2(Q) < |K|—1 for every clique K with |K| > 1 and every K-complete set Q.
(10)
Notice that the K-clique-complete sets with |K| = 2 are precisely the maximal
induced stars. So, the complete set inequalities generalize the clique inequalities.

Example 3.6. For the clique-connecting forest polytope of the graph of Figure 1,
the complete set inequalities are precisely the 10 facets with non-zero right-hand-
side.

Proposition 3.7 below states the main property of K-complete sets, which as-
serts that the complete set inequalities are valid.

Proposition 3.7. Let K be a clique with at least two vertices and let Q C E be a
subset with E(K) C Q. Then r(Q) = |K| — 1 if and only if Q satisfies (i)—(iii) of
Definition 3.5.

Proof. Necessity. Suppose r(Q) = |K| — 1. Assume that there is an edge e €
Q\E(K) disjoint from K. Taking a tree T' spanning K, we have a clique-connecting
forest T U {e} C Q. So r(Q) > | K| — 1, which is impossible; hence @ satisfies ().
Suppose that there are two edges e, f € Q \ F(K) incident to a same vertex w
of K whose extremities are adjacent in G. Taking a tree T” spanning K \ {w},
we have a clique-connecting forest 7" U {e, f} C Q. Again impossible, hence Q
satisfies (7). Now let e € @\ E(K) be incident to v ¢ K. Let K’ be the set of the
vertices of K which are not adjacent with v. If every vertex of K’ is incident with
an edge in @ \ E(K), then taking e, taking a tree spanning K \ K’ and taking one
edge in Q \ E(K) for each vertex in K’ one finds a clique-connecting forest with
| K| edges. This is a contradiction, hence Q satisfies (4i7).

Sufficiency. Suppose that @ satisfies the three properties of Definition 3.5. Let
F be a clique-connecting forest of G such that F C @ with |F| maximum, so
r(Q) = |F|. Since K is a clique, then |F| > |K| — 1. To show that |F| < |K| -1,
we assume that F' has been chosen with |F'N E(K)| maximum, and we only have
to prove that F'\ E(K) is empty. Suppose on the contrary that there is an edge
vw € F\ E(K). By (i) we can assume that w € K (and v ¢ K). By (4i%) there is
a vertex u € K which is not adjacent with v and which is incident with no edge
in @\ E(K). Since u and v are not adjacent, no path in F links « and w, and in
particular vw € E(K) \ F. Since |F N E(K)| is maximal, then (F'\ {vw}) U {uw}
is not a clique-connecting forest. It follows, since u is incident with no edge in
F\ E(K), that there is an edge wv’ € F'\ E(K) (where v' ¢ K is not adjacent
with u). But then v and v’ are adjacent; this contradicts (i7). O
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Corollary 3.8. Let K be a clique with at least two vertices. Then Q is an inclu-
stonwise mazximal subset containing E(K) with rank |K|— 1 if and only if it is a
K -complete set.

A consequence of the corollary is that no complete set inequalities is dominated
by another rank inequality. Now we can state the main result of the section.

Theorem 3.9. Let G be a graph. Each complete set inequality (10) defines a facet
of the clique-connecting forest polytope of G

Proof. Let K be a clique of G with at least two vertices and ) a K-complete set.
Since by Proposition 3.7, r(Q)) = |K| — 1, then inequality (10) is valid. To see
that (10) determines a facet, let ) . acve = B be satisfied by all z in the clique-
connecting forest polytope of G with z(Q) = |K|— 1. We only need to prove that
Y ek Gee = [ is some multiple of 2(Q) = |K| — 1. So a(F) := ) . pac = 8 for
each clique-connecting forest F' with |[FNQ| = |K|—1. If | K| = 2, there is a clique-
connecting forest {e} where e is the unique edge in F(K), then a, = (3. Otherwise
let ey, ez be two distinct edges in F(K). Since K is a clique, we can assume that
there exists two trees spanning K, say Ty and Tb, such that 77 \ To = e; and
To\Th = ez. Then a(Ty) — a(Tz) = ae — ae, = B — B = 0. It follows that
ae = B/(|K| — 1) for every e € E(K). (If |[K| = 2 this still holds.) Now let
e € Q\ E(K). Since every edge in @ is incident to at least one node in K, we
can suppose that e = vw with w € K. Let T be a spanning tree of K \ {w}.
Since F = T U {e} is a clique-connecting forest such that |[FF N Q| = |K| — 1,
a(F) =a(T)+a. = 8. Since a(T) = (|K|—2)x /(] K|—1), then a. = B/(|K|—1).
Also, ay = 0 for each f € E\ Q. Indeed, since by Corollary 3.8, @) is maximal,
then (Q U {f}) = r(Q) + 1, and then there is a clique-connecting forest F' such
that F\ Q = {f} and |[FNQ| = |K| — 1, and hence a(F) = 8 = a(F \ {f}). So
ay = 0. In conclusion, ) . acx. = (3 is some multiple of 2(Q) = [K| — 1, and
hence (10) define facets. O

As it is implied by the proposition below, unsurprisingly, one cannot separate
the complete set inequalities.

Proposition 3.10. It is NP-complete to separating the clique inequalities.

Proof. Recall that z(Q) < 1 is a clique inequality if and only if @ is a maximal
induced star of G. Hence if we could separate the clique inequalities in polynomial
time, we could decide if G contains an induced star with a weight >1 with respect
to a weight function z. In particular we could find an induced star with maximum
cardinality in polynomial time. Suppose that we want to find a stable set with
maximum cardinality in a graph H. It suffices to finding an induced star with
maximum cardinality in the graph obtained from H by adding a (universal) vertex
adjacent to all the other vertices of H. Since finding a maximum cardinality stable
set is NP-hard, it follows that separating the clique inequalities is NP-hard. [
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4. CONCLUSION

We have studied a coloring polytope, namely the clique-connecting forest poly-

tope, and we have showed its link with the stable set polytope. In light of the 1-to-1
correspondence in [2], this is not too surprising to have a stronk link between these
two polytopes. An open problem raises naturally concerning the clique-connecting
polytope: Does this polytope have other rank facets than the ones mentionned in
the present paper? Also, concerning the stable set polytope, we raised one open
problem: Can it have degenerate facet? Where a “degenerate facet” is a nontrivial
one with a pair of nonadjacent vertices intersecting every stable set saturating the

facet.
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