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NEW RESULTS ABOUT IMPARTIAL SOLITAIRE
CLOBBER ∗

Eric Duchêne1, Sylvain Gravier2 and Julien Moncel3

Abstract. Impartial Solitaire Clobber is a one-player version of the
combinatorial game Clobber, introduced by Albert et al. in 2002. The
initial configuration of Impartial Solitaire Clobber is a graph, such that
there is a stone placed on each of its vertex, each stone being black or
white. A move of the game consists in picking a stone, and clobbering
an adjacent stone of the opposite color. By clobbering we mean that the
clobbered stone is removed from the graph, and replaced by the clobber-
ing one. The aim is to make a sequence of moves leaving the minimum
number of stones on the graph; this number is called the reducibility
value of the configuration. As any one-player game, Solitaire Clobber is
essentially an optimization problem, whose resolution may give bounds
on the two-player version of the game. As an optimization problem,
Solitaire Clobber can be considered as a constrained version of the
underlying optimization problem related to Hamiltonian path. This
enables to show that Solitaire Clobber is NP-hard. Solitaire Clobber
was already studied in various graph structures, including paths, cycles,
trees, and Hamming graphs. In this paper we investigate the problem in
complete multipartite graphs. In particular, we give a linear-time algo-
rithm computing the reducibility value of any configuration in complete
multipartite graphs. We also address some extremal questions related
to Solitaire Clobber in general graphs.
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1. Introduction and definitions

We consider the game Solitaire Clobber defined by Demaine et al. in [5]. This
game is actually a variant of the two-player Clobber introduced by Albert et al.
in [1].

Solitaire Clobber is a one-player game with the following rules: black and white
stones are placed on the vertices of a given graph G (one per vertex). A move
consists in picking a stone and clobbering another one of the opposite color located
on an adjacent vertex. The clobbered stone is removed from the graph and is
replaced by the picked one. The goal is to find a succession of moves that minimizes
the number of remaining stones.

In the literature, two versions of Solitaire Clobber coexist: the Partisan and
the Impartial ones. In Partisan Solitaire Clobber defined by Demaine et al. [5],
the player is forced to alternate black and white captures. In Impartial Solitaire
Clobber [6], this constraint does not exist. The present paper deals with the
impartial version that we call ISC in its abbreviated form.

A game configuration of ISC is said to be k-reducible if there exists a succession
of moves that leaves at most k stones on the graph. The reducibility value of a
game configuration C is the smallest integer k for which C is k-reducible.

As announced in the abstract, this game appears to be an optimization problem
on graphs:
Impartial Solitaire Clobber – ISC
Instance. A configuration C = (G, �), where G is a graph, and � : V −→ {b, w}
is a labelling of the vertices of G.
Objective. Minimizing the number of labeled vertices on G by playing allowed
moves.

It turns out that Impartial Solitaire Clobber is a NP-hard problem since
the simple question of 1-reducibility of a given configuration can be reduced to the
Hamiltonian path problem. Indeed, if you consider a graph with a black stone
on some vertex v and where all the other stones are white, then this configuration
is clearly 1-reducible if and only if there exists an Hamiltonian path between v
and some other vertex. Since the problem Hamiltonian path was proved to be
NP-complete on graphs in general, and on grid graphs (i.e., induced subgraphs
of the grid) in particular (see [7]), Impartial Solitaire Clobber is a NP-hard
problem on these kinds of graphs.

Nevertheless Impartial Solitaire Clobber was investigated on paths, cycles,
and trees (see [2,3]). The reducibility value of any configuration on a path or a
cycle of size n can be computed in linear time O(n). On a tree, there exists
an algorithm working in O(n3) operations. In [6], it was proved that any game
configuration on a Hamming graph is 1-reducible, except for hypercubes which are
2-reducible.

For convenience for the reader, we may often mix up a vertex with the stone
that it supports. The label or color of a vertex will define the color of the stone
located on it. We may also say that “a vertex clobbers another one”, instead of
talking about the corresponding stones.
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Figure 1. A game configuration on a complete bipartite graph.

Given a game configuration C on a graph G, we say that a label/color c is rare
on a subgraph S of G if there exists a unique vertex v ∈ S such that v is labeled
c. On the contrary, c is said to be common if there exist at least two vertices of
this color in S. A configuration is said to be monochromatic if all the vertices
have the same color. It is said proper otherwise. In all this paper, only proper
configurations will be considered.

If c is a color, denote by c the opposite color. If v is a vertex of G, the color
of v will be denoted by c(v).

According to a probabilistic result of Ruszinkó [9], almost all configurations are
1-reducible (in the sense that, for any fixed p ∈]0, 1[, a configuration on the random
graph Gn,p is 1-reducible with probability tending to 1 as n tends to infinity – for
details about Erdős-Rényi’s random graph model Gn,p, see [4]). This provides us
a motivation for the study of configurations which are not 1-reducible. In the next
section of this paper, we study the case of complete multipartite graphs and decide
when a configuration cannot be 1-reducible. For these graphs, we give a general
formula which computes the reducibility value of any game configuration in linear
time. In Section 3, we consider extremal questions about ISC: given a graph G, we
investigate the proper configurations that minimize and maximize the reducibility
value on G. In [3], it was showed that the reducibility value of a configuration on
a cycle Cn is at most �n/3�. Moreover, for all n there exists a configuration for
which this bound is tight. In the present paper, we claim that on any graph with
n vertices the reducibility value of a proper configuration is at most equal to n−δ,
where δ is the minimum degree of the graph. Therefore, for any fixed value of δ,
we find out the only graphs for which the reducibility value is equal to n − δ.

2. ISC played on complete multipartite graphs

2.1. ISC on complete bipartite graphs

Let G = (V, E) be a complete bipartite graph. Therefore, G can be splitted
into two stable sets, say S0 and S1. A game configuration on a complete bipartite
graph will be represented by a “two rows” layout, each row refering to a stable set
Si with i ∈ {0, 1}. Figure 1 shows an example of a configuration on a complete
bipartite graph. One can move any stone of a row to any stone of the other row
having the opposite color. Moves inside a row are not allowed.
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In [5], Demaine et al. define an invariant δ available for ISC on bipartite graphs.
The description of δ follows.

Let C be a game configuration on a bipartite graph G. We allocate the color
white the to set S0, and the color black to S1. A stone of C is said to be clashing
if its color differs from the color of the stable set to which it belongs. Denote by
δ(C) the following quantity:

δ(C) = number of stones + number of clashing stones.

In their paper, Demaine et al. proved that (δ(C) mod [3]) never changes during
the game, where a mod [b] is the remainder of the division of a by b. This implies
that any 1-reducible configuration on a bipartite graph satisfies δ(C) �≡ 0 mod [3].

A complete bipartite graph is said to be balanced if S0 and S1 have the same
size. It is said well-colored if S0 and S1 are both monochromatic. In a well-colored
configuration, one does not lose generality by assuming that the stones of S0 (resp.
S1) are white (resp. black). Under this assumption, there is no clashing stone in
a well-colored configuration.

2.1.1. The reducibility value of balanced complete bipartite graphs

We now give a first result about the reduciblity value of a well-colored balanced
complete bipartite graph.

Lemma 2.1. A well-colored balanced complete bipartite graph is 1-reducible if
δ �≡ 0 mod [3]. Otherwise, the reducibility value is equal to 2.

Proof. Let C be a game configuration on a well-colored balanced complete bipartite
graph. Denote by n the size of each stable set. Then δ(C) = 2n. According to
the result of Demaine et al., a necessary condition for C to be 1-reducible is that
δ(C) �≡ 0 mod [3], which means n �≡ 0 mod [3].

Let n ≥ 4. Then C can be reduced to a well-colored balanced complete bipartite
graph where each stable set has a size equal to n−3. The reduction is the following:

����
����→ ����

� ��→ ���
� ��→ ���

��→ ���
�→ � �

�→ �
�

By applying recursively this operation, and according to the value (n mod [3]), C
can be reduced to one of these three configurations:

�
�

��
��

���
���

n ≡ 1 mod [3] n ≡ 2 mod [3] n ≡ 0 mod [3].

One clearly see that when n �≡ 0 mod [3], the above configurations are 1-reducible.
When n ≡ 0 mod [3], the above configuration is 2-reducible and we can not improve
this reduction because of the invariant. �

Remark 2.1. When n �≡ 0 mod [3], the value δ(C) sets a correlation between the
color and the location of the remaining stone. When n ≡ 1 mod [3], the last stone
will be clashing. It will not be the case when n ≡ 2 mod [3].



NEW RESULTS ABOUT IMPARTIAL SOLITAIRE CLOBBER 467

S1

1 L3L2

So

L

Figure 2. Splitting a balanced complete bipartite graph.
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Figure 3. Clobbering the monochromatic part of length L2.

Lemma 2.2. A balanced complete bipartite graph is 1-reducible if δ �≡ 0 mod [3].
Otherwise, the reducibility value is equal to 2.

Proof. For more convenience, we arrange “graphically” S0 and S1 as follows: on
S0 the white stones are placed on the left, and the black ones on the right. We
proceed conversely on S1. This operation splits G into three complete bipartite
subgraphs, of respective lengths L1, L2 and L3, as shown in Figure 2.

The values L1 and L3 are the lengths of both well-colored balanced parts,
whereas L2 is dedicated to the monochromatic part.

According to this notation, δ(C) = 2L1 + 3L2 + 4L3. Hence δ(C) ≡ 0 mod [3]
if and only if L1 ≡ L3 mod [3]. Without loss of generality, assume that the
monochromatic part L2 is white. Since there exists a black stone somewhere, we
have it clobber the whole monochromatic part of size L2, as shown in Figure 3:

We now consider the resulting graph as the union of two well-colored balanced
complete bipartite graphs, of respective sizes L1 and L3. We distinguish two cases:

* L1 �≡ L3 mod [3].
Now suppose that either L1 mod [3] or L3 mod [3] is equal to 1. Without

loss of generality, assume that L1 ≡ 1 mod [3]. Then from Lemma 2.1 and
Remark 1, we reduce the left part to a single clashing stone. If L3 = 0, then
it is done. Otherwise, we know that L3 is at least equal to 2. By playing
as shown in Figure 4, we reduce the graph to a well-colored balanced
complete bipartite of length L3 − 1. Since L3 − 1 �≡ 0 mod [3] and from
Lemma 2.1, this resulting graph is 1-reducible.

Now suppose that neither L1 mod [3] nor L3 mod [3] is equal to 1.
Therefore and without loss of generality, we can assume L1 ≡ 2 mod [3]
and L3 ≡ 0 mod [3]. By Lemma 2.1, we reduce the left part to a single
non clashing stone. If L3 = 0, then it is done. Otherwise, L3 ≥ 3. We pro-
ceed as depicted by Figure 4 to reduce the configuration. This operation
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Figure 4. Reduction in a special case.
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Figure 5. The case L1 ≡ L3 ≡ 0 mod [3].

yields a well-colored balanced complete bipartite graph of length (L3−1).
Since (L3 − 1) ≡ 2 mod [3], we conclude to the 1-reducibility thanks to
Lemma 2.1.

* L1 ≡ L3 mod [3].
If L1 and L3 are not multiples of 3, then from Lemma 2.1, both parts

are 1-reducible. Therefore, the whole configuration is 2-reducible. If L1 ≡
L3 ≡ 0 mod [3], we play as depicted by Figure 5.

The resulting configuration is a balanced complete bipartite graph with
L1 ≡ L3 ≡ 2 mod [3], which is 2-reducible. �

2.1.2. The reducibility value of non-balanced complete bipartite graphs

We now consider the general case on Kn,m with |S0| = n > |S1| = m > 0.
Unlike balanced complete bipartite graphs, we will show that the reducibility value
might not be bounded by a constant. For example, it suffices to choose |S1| = 1
and |S0| > |S1|, put a black stone on S1 and only white stones on S0. In such
a configuration, only one move is available, leading to a reducibility value equal
to |S0|.

In order to describe a game configuration on Kn,m, we consider the following
set of parameters: The values nb and nw denote respectively the numbers of black
and white stones in S0. Obviously we have n = nb + nw. Similarily, mb and mw

denote respectively the numbers of black and white stones in S1.
Without loss of generality, we consider configurations satisfying nb ≤ nw. Under

this condition, we define a nonnegative integer q = nw − nb.
With these parameters, a game configuration belongs to one of these two forms:
(F1): Configurations for which q − m < mb.
(F2): Configurations for which q − m ≥ mb.
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Figure 7. A configuration in the form (F2).

Figure 6 illustrates the form (F1) through three examples, according to the sign
of (q−m) and the parity of (n−m). The subdivision into these cases will become
clear later.

Figure 7 illustrates the second form. In that case, the stable set S0 can be
partitioned into three parts:

L1 contains as many black stones than white ones and satisfies |L1| = 2nb.
L2 and L3 are monochromatic parts, of respective sizes (q − m) and m.
We will prove that configurations in the form (F1) have a reducibility value

equal to 1 or 2. The results will be similar to the “balanced case”. For the
configurations in the form (F2), we will present a formula depending on the values
q, m and mb. For such configurations, we introduce new results that will help us
to conclude.

Let C2 be a game configuration in the form (F2). We define the integer function
f as:

f(C2) = q − m − mb.

By definition of (F2), we have f(C2) ≥ 0.
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The following lemma asserts that f never decreases during the game. Moreover,
it adds that any move from a configuration in (F2) yields a resulting configuration
also in (F2).

Lemma 2.3. Let C2 be a game configuration in (F2), and let R be the resulting
configuration after an arbitrary move from C2. If R is not a stable set, then R is
also in (F2) and satisfies f(C2) ≤ f(R).

Proof. Denote by q′, m′ and m′
b the values of q, m and mb after a move from C2

to R. These values are defined since R is supposed to be a configuration on a
complete bipartite graph.

There are four moves to consider:
1. One play a black stone from S0 to S1. Then m′

b = mb + 1, q′ = q + 1 and
m is unchanged. This implies f(R) = f(C2).

2. One play a white stone from S0 to S1. We get q′ = q − 1, m′
b = mb − 1,

and m is unchanged. We still have f(R) = f(C2).
3. One play a black stone from S1 to S0. Then m′

b = mb − 1, m′ = m − 1,
and q′ = q − 2. Therefore f(R) = f(C2).

4. One play a white stone from S1 to S0. Then m′ = m − 1, q′ = q + 2 and
mb is unchanged. Therefore f(R) = f(C2) + 3.

Moreover, since f is monotonic, we clearly have q′ − m′ ≥ m′
b, which means that

R is in the form (F2). �

We now have collected all the necessary results to prove our main theorem about
the reducibility of Kn,m.

Theorem 2.1. Let C be a game configuration on Kn,m with n > m > 0.
If q − m < mb, i.e., C is in (F1), then C is 1-reducible if δ(C) �≡ 0 mod [3], and
2-reducible otherwise.

If q − m ≥ mb, i.e., C is in (F2), then C has a reducibility value equal to
(q − m − mb + 2).

Proof. C is in the form (F1). We will prove that we can reduce C to a non-
monochromatic balanced complete bipartite graph, so as to apply Lemma 2.2. We
distinguish three cases (see Fig. 6).

* q −m < 0 and (n−m) is even. Let s be any stone of S1. Since (n−m) is
even, this means that we can play exactly (n − m) stones (precisely (n −
m)/2 black stones, and (n−m)/2 white ones) from S0 to s by alternating
black and white moves. The resulting configuration R is thus a balanced
complete bipartite graph. Note that S1 is unchanged after this set of
operations. Since q − m < 0, there exists at least a black and a white
stone in the stable set S0 of R, which is consequently not monochromatic.

* q −m < 0 and (n−m) is odd. As previously, we play exactly (n−m− 1)
stones (precisely (n−m−1)/2 black stones, and (n−m−1)/2 white ones)
from S0 to any vertex s of S1 by alternating black and white moves. In the
resulting configuration R, S0 contains exactly (m + 1) stones and is not
monochromatic, whereas S1 is unchanged. We now play any move from



NEW RESULTS ABOUT IMPARTIAL SOLITAIRE CLOBBER 471

S0 to S1. This is possible since S0 is not monochromatic. This operation
yields a non-monochromatic balanced Km,m.

* q − m ≥ 0. We first play 2nb stones (precisely nb stones of each color)
from S0 to any vertex s of S1 by alternating white and black moves. We
then play (q − m) white stones from S0 to S1. This is possible since
mb ≥ (q −m + 1) for a configuration in (F1). The resulting configuration
R contains at least a black stone in S1, and at least a white one in S0.
Moreover, R is balanced.

In each of these three cases, we yield a proper configuration R which is balanced.
We then apply Lemma 2.2 on R to conclude.

C is in the form (F2). We first prove that there exists a way of play that
leaves exactly (q − m − mb + 2) stones on the graph.

If mb > 0, we play the 2nb stones from L1 to any vertex s of S1 by alternating
white and black moves. After this operation, S0 is monochromatic (of color white).
We then play (mb − 1) white stones from L2 to S1. The single remaining black
stone (which belongs to S1) then walks in zigzags to clobber all the white stones
of L1 and S1. The resulting configuration is a stable set containing a black stone
and (q − m − mb + 1) white ones (coming from L2).

If mb = 0, then L1 is not empty, since we do not consider monochromatic
configurations. Therefore, we play a black stone from L1 to S1. We get a resulting
configuration C′ in (F2) with parameters m′

b = mb + 1 and q′ = q + 1. We now
apply the same method as above, which leaves (q′−m−m′

b+2) = (q−m−mb+2)
stones.

We now prove that any succession of moves leaves at least (q − m − mb + 2)
stones on the graph.

On a configuration C in (F2), we consider a succession of moves that leaves a
minimum number of stones. Denote by C′ the final configuration after such a way
of play. No move is playable from C′.

We first suppose that C′ is not a stable set. According to Lemma 2.3, C′

belongs to (F2) and satisfies f(C′) ≥ f(C). Denote by q′, m′, m′
b, L

′
1, L

′
2, L

′
3 the

parameters previously defined and relative to C′.
Since m′ > 0, L′

3 is not empty, which means that there exists a white stone on
S0. Since no move is playable from C′, the set S1 is monochromatic of color white,
i.e., m′

b = 0, and L′
1 is empty.

Moreover, the monotonicity of the function f ensures that

q′ − m′ − m′
b = q′ − m′ ≥ q − m − mb. (1)

Since there is at least a stone in L′
3 and another one in S1, the number of remaining

stones on C′ is at least |L′
2| + 2. Then |L′

2| + 2 = q′ − m′ + 2 ≥ q − m − mb + 2
according to (1).

Now assume that C′ is a stable set. This means that the last move of the
optimal way of play was done from S1 to S0. It remains optimal if we consider
this last move in the opposite direction (i.e., from S0 to S1). Now consider this
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Figure 8. An example of a configuration on a P -partite graph
(P = 6 and i = 3).

new optimal way of play where C′ is not a stable set and refer to the previous case
to conclude. �

2.2. ISC played on complete multipartite graphs (with at least three
parts)

Let P > 2. Denote by S0, S1, . . . , SP−1 the P stable sets of a complete P -partite
graph G. Among these P stable sets, denote by M0, . . . , Mi−1 the i stable sets
whose size is maximum, i.e., |Mj| ≥ |Sl| for all j = 0 . . . i − 1 and l = 0 . . . P − 1.
We call them the maximum stable sets of G.

Denote by G′ the induced subgraph G\{M0, . . . , Mi−1}. For more convenience,
we graphically define “rows” of stones on G\G′: if t = |M0| = . . . = |Mi−1|, then a
row Rj with 1 ≤ j ≤ t defines a set of i stones (one stone per maximum stable set)
such that

⋃
1≤j≤t Rj is the set of all the stones belonging to G\G′. Of course, the

number of partitions of this form is very large (each new “graphical” arrangement
of the stones in G \ G′ defines a new set of rows).

Finally, denote by sk
j (with 1 ≤ j ≤ t and 0 ≤ k < i) the vertex that both

belongs to Mk and Rj .
Figure 8 illustrates these notations.
The reducibility value of P -partite graphs depends on the number i of maximum

stable sets. When i > 1, any game configuration is 1-reducible. The reducibility
value may be far larger when there is a unique maximum stable set.

Theorem 2.2. Let C be a game configuration on a P -partite graph (with P > 2)
having at least two maximum stable sets. Then C is 1-reducible.

Proof. Denote by t the value |M0|, i.e. the size of each maximum stable set.
If t = 1, then the graph is a clique, which is clearly 1-reducible (see [6] for more

details).
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Figure 9. Playing when i = 2 and G\G′ is not monochromatic.

Now consider t > 1 and assume that the result is true for all 1 ≤ t′ < t. We
consider three cases:

1. G\G′ is monochromatic of color c. Since G is not monochromatic, there
exists a vertex x in G′ whose color is c. Now have x clobber the monochro-
matic row Rt, and then any stone of the row Rt−1. In the resulting non-
monochromatic configuration, the size of the maximum stable sets is (t−1),
so that we can apply the induction hypothesis.

2. G\G′ is not monochromatic and i ≥ 3. We consider a partition of G\G′

into t rows, such that Rt is not monochromatic. Such a partition is possible
since G\G′ is not monochromatic. Besides, since i ≥ 3, there exists a stone
of Rt whose color is not rare in Rt. Without loss of generality, assume
that s0

t satisfies this property. For the same reasons, either s1
t−1 or s2

t−1

has a common color. Assume that c(s1
t−1) is not rare.

The row Rt is now seen as a clique. From [6], we know that cliques are
strongly 1-reducible, which means that we can choose the location and the
color of the unique remaining stone (provided some conditions are fulfilled,
which will be the case here). Hence we reduce Rt to a single stone of color
c(s1

t−1) and located on s0
t . We then play from s0

t to s1
t−1, the resulting

configuration is not monochromatic, so that we can apply the induction
hypothesis.

3. G\G′ is not monochromatic and i = 2. As previously, choose a partition
into t rows such that Rt is not monochromatic. Since P > 2, at least a
color, say black, appears in G′. According to the colors of Rt−1, we play
as follows to get a non monochromatic resulting graph, whose size of the
maximum stable sets is (t − 1). We show 1-reducibility by applying the
induction hypothesis.

�
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Figure 10. An example of a P -partite graph with an unique
maximum stable set.

When the graph admits an unique maximum stable set M0 of size t, we define the
values n = t, m as the number of stones in G′ and mb the number of black stones
in G′. The values nb and nw are respectively the numbers of black and white
stones in M0. Without loss of generality, assume that nb ≤ nw. We thus define q
as the value nw − nb. We denote by M ′ a stable set of G′ whose size is maximum
(i.e, M ′ is a “second maximum” stable set in G). Denote by m′ the size of M ′.
Finally, denote by G′′ the graph G′\M ′. Figure 10 shows a P -partite graph with
an unique maximum stable set.

Using these notations, we extend the function f to a complete P -partite graph
having an unique maximum stable set (with P ≥ 2). We define f as f(C) =
q − m − mb. Lemma 2.3 is thus extended to P -partite configurations:

Lemma 2.4. Let C be a game configuration on a complete P -partite graph having
an unique maximum stable set (with P > 2) satisfying q−m ≥ mb, and let R be the
resulting configuration after an arbitrary move from C. Then R is also P -partite
(with P ≥ 2), has an unique maximum stable set and the inequality f(C) ≤ f(R)
holds.

Proof. If is straightforward to see that R is P -partite with P ≥ 2.
By hypothesis, the configuration C satisfies

q = n − 2nb ≥ m + mb = mb + |M ′| + |G′′| ≥ mb + |M ′| + 1.

Hence we have
n ≥ mb + 2nb + |M ′| + 1.

Since C is a proper configuration, the values mb and nb can not be simultaneously
equal to 0. This implies that n ≥ |M ′| + 2. Therefore, any move from C leads to
a configuration R where M0 remains the unique maximum stable set. This result
ensures that the function f is defined on R.
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If we consider any move between G′ and M0, then we refer to Lemma 2.3 to
assert that f(C) ≤ f(R). And if we consider a move inside of G′, we remark
that q is unchanged and the values m and mb are not increased. This also implies
f(C) ≤ f(R). �

Theorem 2.3. Let G be a P -partite graph (with P > 2) having an unique maxi-
mum stable set. Any game configuration on G such that q−m < mb is 1-reducible.
Any game configuration on G such that q − m ≥ mb has a reducibility value equal
to q − m − mb + 2.

Proof. Any game configuration satisfying q < m is 1-reducible.
According to n, we choose a “minimal” counter-example C, i.e. C satisfies

q < m, is not 1-reducible, and there is no other configuration of this type whose
size of M0 is smaller than n.

We first suppose that nb �= 0 and we consider three cases for C:

* n−m′ = 1. We play any authorized move from M0 to M ′: this is possible
since nw ≥ nb > 0. Therefore, the resulting configuration is not monochro-
matic, and admits at least two maximum stable sets of size n−1 (M0 and
M ′). From Theorem 2.2, it is 1-reducible, which ensures the contradiction.

* n−m′ ≥ 2 and nb ≥ 2. We play successively a black and a white stone from
M0 to any stone of G′. The resulting configuration is not monochromatic
since there remains at least a stone of each color in M0, and still satisfies
q < m (both values are unchanged). If |M0| = |M ′| after the operation,
then it is 1-reducible from Theorem 2.2. If not, this means that M0 remains
the unique maximum stable set, but its size is now smaller than n, which
yields a contradiction by minimality of C.

* n − m′ ≥ 2 and nb = 1. If mb > 0, we play any white stone from M0

to any black one of G′. The resulting configuration is not monochro-
matic, has an unique maximum stable set, still satisfies q < m (since m is
unchanged and q is decreased by 1), and is smaller than C. It thus contra-
dicts the minimality of C. Hence we have mb = 0, which means that G′ is
monochromatic white. With the unique black stone of the configuration,
we clobber alternately stones of M0 and G′′, until M ′ and M0 have the
same size. This is possible, since the number of stones in G′′ is equal or
greater than q + 1 − m′. Note that in the case where |G′′| exactly equals
q + 1 − m′, the black stone will delete the entire G′′ and then alternately
clobber all the white stones between M ′ and M0. In any case, we reduce
C to a single stone, which contradicts its existence.

Therefore C satisifies nb = 0. We consider two cases:

* G′ is monochromatic black. Then play any white stone from M0 to G′.
The resulting configuration is not monochromatic (since there remains at
least a black stone in G′), and still satisfies q < m (m is unchanged and q
is decreased by 1). In the resulting configuration, if M0 and M ′ have the
same size, we conclude to 1-reducibility thanks to Theorem 2.2. Otherwise,
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M0 is the unique maximum stable set and it contradicts the minimality
of C.

* G′ is not monochromatic. Let s be any black stone of G′. Then s clobers
any white stone of M0 and then any other white stone of G′. The param-
eters q and m are both decreased by one after these moves. Once again,
the minimality of C is contradicted. Note that the resulting configura-
tion contains is still P -partite with P ≥ 3. Indeeed, if it was bipartite,
this would mean that C contains at least two maximum stable sets, since
q < m.

Any game configuration satisfying 0 ≤ q − m < mb is 1-reducible.
As previously, we choose C as a minimal configuration satisfying 0 ≤ q − m <

mb, not 1-reducible, and such that there is no other configuration of this type
whose size of M0 is smaller than n. Note that this implies mb > 0.

We first suppose that nb �= 0. As previously, if n−m′ = 1, we play an authorized
move from M0 to G′, so as to apply Theorem 2.2. If n−m′ > 1, we play successively
a black and a white stone from M0 to any stone of G′: the resulting configuration
R has its parameters q, m and mb unchanged, and is not monochromatic, since
mb ≥ 1 and there are at least m > 0 white stones in M0. As previously, we either
conlude to the 1-reducibility with Theorem 2.2 (if |M0| = |M ′| in R), or to the
non-minimality of C.

Hence C satisfies nb = 0. This means that |M0| is monochromatic white. We
consider two cases:

* G′ is not monochromatic black.
If G′ contains at least three non empty stable sets, then play any black
stone s from G′ to any white stone of M0 and then to any white stone
of G′. The resulting configuration R is still P -partite with P ≥ 3, and is
not monochromatic (there is at least a black stone in G′ and a white one
in M0). Besides, q and m are both decreased by 1, and mb is unchanged,
which implies that we still have 0 ≤ q − m < mb. We either conlude to
the 1-reducibility thanks to Theorem 2.2 (if |M0| = |M ′| in R), or to the
non-minimality of C.
If G′ contains exactly two stable sets and if mb ≥ 2, we apply the same
method by choosing a black stone s such that s does not belong to a stable
set of size one. It is always possible to find such a stone, since there are
at least three stones in G′ (two blacks and a white) and only two stable
sets. With this choice, the resulting configuration remains tripartite.
If G′ contains exactly two stable sets and if mb = 1, this implies q = m.
There are as many stones in G′ than in M0. We use the only black stone
to clobber alternately the white stones of M0 and G′. This yields a unique
stone on the graph in the end.

* G′ is monochromatic black.
If q > m, then play any white stone from M0 to G′. After this operation,
q and mb are decreased by 1 and m is unchanged. Hence we still have
0 ≤ q − m < mb. The resulting configuration R is not monochromatic,
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since there are at least a black and a white stone in G′. We either conlude
to the 1-reducibility with Theorem 2.2 (if |M0| = |M ′| in R), or to the
non-minimality of C.
If q = m, we ignore the edges inside G′ and see C = G′ ∪ M0 as a well-
colored balanced complete bipartite graph. From Lemma 2.2, if δ(C) �≡
0 mod [3], then C is 1-reducible. And if δ(C) ≡ 0 mod [3], any white stone
of M0 clobbers successively two black stones of G′: this operation uses an
inside edge of G′, and thus changes the value of δ(C) mod [3]. Thanks to
Lemma 2.2, we conclude to the 1-reducibility of C.

Any game configuration satisfying q − m ≥ mb has a reducibility value
equal to q − m − mb + 2.

Let C be a game configuration satisfying q − m ≥ mb. If we ignore the edges
inside of G′, C can be seen as a bipartite graph G′ ∪ M0, where M0 is the largest
stable set. The parameters q, m and mb have been extended from bipartite to mul-
tipartite graphs. From Theorem 2.1 about complete bipartite graphs, we conlude
that the reducibility value of C is at most q − m − mb + 2.

We now consider C′, a final configuration after having played an optimal suc-
cession of moves from C. Note that C′ is necessarily monochromatic. If C′ is
P -partite with P ≥ 2, denote by m′, n′, n′

b, m
′
b and q′ the parameters of C′. We

study two cases.
If C′ is P -partite with P ≥ 3, then without loss of generality, assume that

n′
b = m′

b = 0 (since C′ is monochromatic). The number of remaining stones on C′

is at least |M0|+ |G′| ≥ n′ +2 = q′ +2. Since f is monotonic from Lemma 2.4, we
have q′ −m′ −m′

b = q′ −m′ = f(C′) ≥ f(C) = q −m−mb. Hence the number of
remaining stones is at least q′ + 2 ≥ q − m − mb + m′ + 2 ≥ q − m − mb + 2.

If C′ is P -partite with P < 3, then there exists a configuration C′′ on a complete
bipartite graph in the optimal way of play from C to C′. Since C′′ satisifes
q−m ≥ mb (according to Lem. 2.4), we can apply Theorem 2.1 to prove that the
reducibility value of C′′ is greater than q − m − mb + 2. �

3. Extremal questions

Let us denote by rv(G, C) the reducibility value of G with configuration C, and
denote by maxrv(G) the maximum of these values taken over all proper configu-
rations, and minrv(G) the minimum of these values taken over the same set.

The purpose of this section is to estimate the values of minrv(G) and maxrv(G)
for all graph G.

3.1. Value of minrv(G)

We determine the exact value of minrv(G) for all graph G, and prove that it is
simply equal to the number of connected components of G.

Lemma 3.1. Let T be a tree. Then we have

minrv(T ) = 1.
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Proof. The proof works by induction on the number of vertices of T . If T has one
vertex, then the statement is trivial. If T has at least two vertices, then let u be
a leaf of T . By induction, the tree T ′ := T � {u} admits a configuration C′ such
that rv(T ′, C′) = 1. Let v be the unique neighbour of u in T , and let C be the
following configuration on T :

* C(w) = C′(w) for all w �= u, v;
* C(u) = C′(v);
* C(v) = black if C′(v) = white, and C(v) = white otherwise.

It is easy to check that rv(T, C) = 1 (hint: the first move is u clobbering v). �

Theorem 3.1. Let G be a connected graph. Then we have

minrv(G) = 1.

Proof. This is a straightforward consequence of Lemma 3.1: since G is connected,
then it admits a spanning tree T , that is a tree which is a subgraph of G having
the same vertex set as G. Lemma 3.1 implies the existence of a configuration C
such that rv(T, C) = 1, which implies rv(G, C) = 1. �

3.2. Bounds on maxrv(G)

3.2.1. Upper bound

We prove an upper bound related to the minimum degree of the graph, and we
characterize the graphs for which this bound is tight.

Theorem 3.2. Let G be a graph on n vertices of minimum degree δ, and let C be
a proper configuration of G. Then we have

rv(G, C) ≤ n − δ.

Furthermore, one can make at least δ moves by, step by step, greedily choosing any
move which leaves at least one connected component with a proper configuration.

Proof. The proof works by induction on δ. If δ = 1, then there exists at least an
edge uv such that there are stones of different colors on u and v, hence one can
make at least one move. If δ ≥ 2, then there exists at least an edge uv such that
there are stones of different colors on u and v. Playing along this edge (either u
clobbering v or v clobbering u) surely reduces to a graph of minimum degree at
least δ − 1, but the graph may not be connected, and the configurations on the
connected components of this graph may not be proper. However, it is enough to
get at least one connected component whose configuration is proper to apply the
induction hypothetis. Now two cases follow.

If playing along the edge uv (either u clobbering v or v clobbering u) leads to a
new graph for which at least one connected component C has a proper configura-
tion, then we can apply the induction hypothesis on C. If not, then let us assume
that the stone on u is black (and then the stone on v is white). The fact that
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Figure 11. The graph Sk(Kδ+1).

either u clobbering v or v clobbering u does not lead to a graph for which at least
one its connected component has a proper configuration implies the following:

* the edge uv is such that G � {uv} has two connected components U and
V , such that u ∈ U and v ∈ V ;

* all the stones on vertices of U � {u} are white;
* all the stones on vertices of V � {v} are black.

In this case, one can still apply the induction hypothesis by, for instance, clobbering
a stone of U with the stone placed on u. �

For any δ ≥ 1, let us define Gδ, a set of connected graphs of minimum degree δ
equipped with proper configurations, as follows:

* the complete graph on δ + 1 vertices equipped with any proper configura-
tion belongs to Gδ for all δ ≥ 1;

* for any integer k ≥ 2, let us define Sk(Kδ+1) as the non-disjoint union of
k copies of Kδ+1, where one and only one vertex v belongs to all k copies
of Kδ+1, and no other vertex belongs to more than one copy of Kδ+1

(one can think of Sk(Kδ+1) as a star K1,k, where each of the k leaves has
been expanded into a Kδ, see Fig. 11). Then Sk(Kδ+1), equipped with a
configuration such that the color of the vertex v is rare, belongs to Gδ for
all k ≥ 2;

* for δ = 2, the cycle on 4 vertices equipped with any configuration contain-
ing only two black stones, which are placed on consecutive vertices of the
cycle, belongs to G2;

* no other graph belongs to Gδ.
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Theorem 3.3. For all δ ≥ 1, the set of connected graphs G having minimum
degree δ equipped with a proper configuration C such that

rv(G, C) = n − δ

is exactly Gδ.

Proof. The proof works by induction on δ. The case δ = 1 is easy to prove. Take
an edge uv such that a black stone lies on u and a white stone lies on v. Assume
that u has other neighbours than v. Since the reducibility value is n − 1, then all
the other neighbours of u are white, and form a stable set. This implies that v
has no other neighbours than u.

Now let δ ≥ 2, and let G be a connected graph on n vertices having minimum
degree δ equipped with a proper configuration C such that rv(G, C) = n− δ. Let
uv be the edge along which the first move of a game ending after exactly δ moves
is made. We may assume that the stone lying on u is black, and that this stone
clobbers a white stone placed on v. Let G′ be the graph obtained after this first
move. We then claim the following:

The graph G′ has minimum degree at least δ − 1, and all the
connected components of G′ are of cardinality greater than
or equal to δ. Moreover, there is one and only one of these
components whose configuration is proper.

(2)

The first part of the claim is obvious since G has minimum degree δ. The sec-
ond part derives from Theorem 3.2. Indeed, if G′ had at least two connected
components equipped with proper configurations, then we could make at least
δ − 1 moves on one, and δ − 1 moves on the other, which is a contradiction with
rv(G, C) = n−δ since δ ≥ 2. Hence claim (2) is true, and this implies the following:

One and only one connected component of G′ is a member of
Gδ−1, and all the others are white monochromatic cliques on
δ vertices.

(3)

From claim (2), we know that G′ has a connected component A equipped with
a proper configuration. This component has minimum degree at least δ − 1, and
since rv(G, C) = n − δ, then one can actually make exactly δ − 1 more moves
on A, hence A ∈ Gδ−1. We know from (2) that all the other components are
monochromatic, and that they have at least δ vertices. Let B be such a compo-
nent. By definition, no vertex of B is adjacent to v. This implies that B is white
monochromatic. Indeed, if B were black monochromatic, then v could clobber u,
and this would lead to a graph equipped with a proper configuration of minimum
degree δ. By Theorem 3.2, one could make at least δ more moves, a contradiction
with rv(G, C) = n − δ. Now, let w be a neighbour of u in B. The second part of
Theorem 3.2 implies that u clobbering w can be the first of a sequence of exactly
δ moves, hence B is a member of Gδ−1. For all δ ≥ 2, it is easy to check that the
only one possibility is that B is a complete graph on δ vertices, which proves the
second part of (3).
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To complete the proof, it remains then to make a case study by applying (3)
and using the induction hypothesis. The cases δ = 2 and δ = 3 have to be studied
separately, because of the sporadic event of the cycle on four vertices belonging to
G2. This (rather straightforward) case study is left to the reader. �

3.2.2. Lower bound

Theorem 3.4. Let C0 be a cutset of a simple, connected graph G, and let C1, C2, . . .,
Ck be the connected components of G�C0. Let us assume that |C0| < k. Let C be
the following configuration of stones on G : a black stone lies on all the vertices
of C0, and a white stone lies on all the vertices of C1 ∪ C2 ∪ . . . ∪ Ck. Then the
reducibility value of G under the configuration C is such that

rv(G, C) ≥ n −
⎛
⎝

|C0|∑
i=0

|Ci| − 1

⎞
⎠ .

Proof. The theorem is straightforward if C0 is a single point. Indeed, in this case,
we have a cutvertex v0, on which lies the only black stone of the configuration. If
this stone does not clobber any white stone, then one may make only one move,
consisting in clobbering this stone with a white stone, and the game ends after
1 round. If the black stone clobbers some white stones, then it can clobber only
white stones of a certain component Ci. Indeed, since v0 is a cutvertex, then the
black stone can visit only one of the components of G � C0.

If C0 is a nontrivial cutset, then the situation is a little bit more complicated,
since a black stone can visit more than one components of G�C0. The idea is the
following. If a black stone visits more than one component, then it means that,
at some points, this stone had to go back through C0, hence clobbering a white
stone. Since C0 contains originally no white stones, it means that black stones of
C0 had to be clobbered without having visited any component of G � C0. Thus a
black stone visiting p components implies that p− 1 black stones did not visit any
component, hence, on average, one black stone can visit at most one component.

More formally, given a vertex v ∈ C0, let us define s(v), the score of the black
stone placed on v, as the number of components of G � C0 that this black stone
will visit during the game.

Clearly, we have ∑
v∈C0

s(v) ≤ |C0|. (4)

Now, the desired inequality is derived from (4). Indeed, in the most favorable case,
all the white stones of the |C0| largest components and of |C0|, but for one, were

clobbered, hence the
|C0|∑
i=0

|Ci| − 1 in the formula. �

Remark 3.1. This bound is tight for the path on n vertices, where the worst
configuration is where the central vertex has a rare color (see Fig. 12).
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Figure 12. The path on n vertices has maximum reducibility
value equal to

⌈
n
2

⌉
.

Indeed, the bound of the previous theorem says that rv(G, C) ≥ n− (
1+ �n

2 �−
1
)

= �n
2 �, and it is easy to see that maxrv(Pn) = �n

2 � (where Pn denotes the
path on n vertices). Let us briefly show this. Let {v1, . . . , vn} denotes the vertex
set of Pn such that there is an edge between vi and vi+1 for all i = 1, . . . , n − 1.
Let us call 2-block a non-monochromatic interval vi, . . . , vj , 1 ≤ i < j ≤ n such
that there exists i ≤ k < j for which vertices vi, . . . , vk are of the same color,
and vertices vk+1, . . . , vj are of the same color. Similarly, let us call 3-block a
non-monochromatic interval vi, . . . , vj , 1 ≤ i < j ≤ n such that there exists
i ≤ k < l < j for which vertices vi, . . . , vk are of the same color, vertices vk+1, . . . , vl

are of the same color, and vertices vl+1, . . . , vj are of the same color. Now partition
{v1, . . . , vn} into a certain number of 2-blocks and one 3-block. Clearly, it is always
possible to do this. Now, let us look at a certain 2-block B, independently form
the other blocks. It is clear that at least � |B|

2 � vertices of B can be clobbered by
a vertex of B. Similarly, at least � |B|

2 � vertices of B can be clobbered by a vertex
of a given 3-block B. Hence, we can always clobber at least �n

2 � vertices of Pn,
which means maxrvPn ≤ n − �n

2 � = �n
2 �.

Note that the previous theorem does not apply for the case of cycles, because
any cutset has at least as many vertices as the number of remaining components.

References

[1] M.H. Albert, J.P. Grossman, R.J. Nowakowski and D. Wolfe, An introduction to Clobber.
INTEGERS 5 (2005).
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